Journal articles on the topic 'Overhead conductors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Overhead conductors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bedialauneta, Miren T., Igor Albizu, Elvira Fernandez, and A. Javier Mazon. "Uncertainties in the Testing of the Coefficient of Thermal Expansion of Overhead Conductors." Energies 13, no. 2 (January 14, 2020): 411. http://dx.doi.org/10.3390/en13020411.
Full textMamala, Andrzej, Tadeusz Knych, Beata Smyrak, Paweł Kwaśniewski, Grzegorz Kiesiewicz, Michał Jabłoński, and Wojciech Ściężor. "An Analytical Model for the High Temperature Low Sag Conductor Knee Point Determination." Key Engineering Materials 641 (April 2015): 173–80. http://dx.doi.org/10.4028/www.scientific.net/kem.641.173.
Full textVolokhovskiy, Vasily, Vasily Sukhorukov, and Victor Tzukanov. "Strength Assessment of Deteriorated OHL Conductors and Earth Wires Based on Non-Destructive Testing." Key Engineering Materials 569-570 (July 2013): 1156–63. http://dx.doi.org/10.4028/www.scientific.net/kem.569-570.1156.
Full textMišák, Stanislav, Štefan Hamacek, and Mikołaj Bartłomiejczyk. "Verification of a Novel Method of Detecting Faults in Medium-Voltage Systems with Covered Conductors." Metrology and Measurement Systems 24, no. 2 (June 27, 2017): 277–88. http://dx.doi.org/10.1515/mms-2017-0020.
Full textBadibanga, Remy, Thiago Miranda, Pedro Rocha, Jorge Ferreira, Cosme da Silva, and José Araújo. "The effect of mean stress on the fatigue behaviour of overhead conductor function of the H/w parameter." MATEC Web of Conferences 165 (2018): 11001. http://dx.doi.org/10.1051/matecconf/201816511001.
Full textVarygina, A. O., and N. V. Savina. "Calculation the current carrying capacity of the new generation overhead lines conductors." Power engineering: research, equipment, technology 22, no. 4 (November 15, 2020): 3–15. http://dx.doi.org/10.30724/1998-9903-2020-22-4-3-15.
Full textDeng, Yuan Jing, Jun Chao Yu, Kai Quan Xia, and Lin Yang. "Corrosion Conditions Analysis of In-Service ACSR Overhead Lines." Applied Mechanics and Materials 446-447 (November 2013): 753–58. http://dx.doi.org/10.4028/www.scientific.net/amm.446-447.753.
Full textZheng, Wei, Xizhong Li, Zhongkai Xu, Zhuochen Jin, and Yang Liu. "Research on corrosion mechanism of overhead conductor." E3S Web of Conferences 233 (2021): 01085. http://dx.doi.org/10.1051/e3sconf/202123301085.
Full textLiu, Yongdou, Zhiwei Chen, and Quan Gu. "Numerical Algorithms for Calculating Temperature, Layered Stress, and Critical Current of Overhead Conductors." Mathematical Problems in Engineering 2020 (April 30, 2020): 1–14. http://dx.doi.org/10.1155/2020/6019493.
Full textZhao, Xin Ze, Zhen Xing Yang, Mei Yun Zhao, Lei Wang, and Zhi Cheng Fu. "Analysis on Corona Discharge Characteristics of the Overhead Conductor." Advanced Materials Research 1092-1093 (March 2015): 233–37. http://dx.doi.org/10.4028/www.scientific.net/amr.1092-1093.233.
Full textJiang, Yu Ze, Zhen Guang Liang, Can Li, and Bin Xiang Du. "Effect of Phase Sequence Layout on Electric Field under Overhead Lines." Advanced Materials Research 960-961 (June 2014): 921–24. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.921.
Full textAzam Khan, Amir, David Bong Boon Liang, Andrew Ragai Henry Rigit, Lim Soh Fong, Al-Khalid Othman, and . "Corrosion Study of Galvanized Ultra High Strength Steel Reinforced Overhead Transmission Conductors." International Journal of Engineering & Technology 7, no. 3.18 (August 2, 2018): 83. http://dx.doi.org/10.14419/ijet.v7i3.18.16681.
Full textYaroslavskiy, D. A., V. V. Nguyen, M. F. Sadykov, M. P. Goryachev, and A. A. Naumov. "Model of own harmonic conductor oscillations for tasks of monitoring the status of airline power transmission lines." Power engineering: research, equipment, technology 22, no. 3 (September 8, 2020): 97–106. http://dx.doi.org/10.30724/1998-9903-2020-22-3-97-106.
Full textGomez, Juan C., E. Florena, G. Zamarillo, and Juan C. Amatti. "Cables and conductors protection, part II: overhead conductors." IEEE Latin America Transactions 11, no. 1 (February 2013): 432–38. http://dx.doi.org/10.1109/tla.2013.6502842.
Full textMurín, Justín, Juraj Hrabovský, Roman Gogola, and František Janíček. "Dynamic Analysis of Overhead Power Lines after Ice–Shedding Using Finite Element Method." Journal of Electrical Engineering 67, no. 6 (December 1, 2016): 421–26. http://dx.doi.org/10.1515/jee-2016-0061.
Full textZhao, Mei Yun, Zheng Lin Liu, Xin Ze Zhao, and Rui Feng Wang. "Simulation Study on Amplitude of the Overhead Line Based on Simulink." Applied Mechanics and Materials 316-317 (April 2013): 161–66. http://dx.doi.org/10.4028/www.scientific.net/amm.316-317.161.
Full textSavadjiev, K., and M. Farzaneh. "Flashover between overhead line conductors." IEEE Transactions on Power Delivery 13, no. 2 (April 1998): 579–86. http://dx.doi.org/10.1109/61.660931.
Full textCastro, Pablo, Ramón Lecuna, Mario Manana, Maria Jose Martin, and Dolores del Campo. "Infrared Temperature Measurement Sensors of Overhead Power Conductors." Sensors 20, no. 24 (December 12, 2020): 7126. http://dx.doi.org/10.3390/s20247126.
Full textWydra, Michał, and Piotr Kacejko. "Power System State Estimation Accuracy Enhancement Using Temperature Measurements of Overhead Line Conductors." Metrology and Measurement Systems 23, no. 2 (June 1, 2016): 183–92. http://dx.doi.org/10.1515/mms-2016-0014.
Full textLiu, Zhao, Honglei Deng, Ruidong Peng, Xiangyang Peng, Rui Wang, Wencheng Zheng, Pengyu Wang, Deming Guo, and Gang Liu. "An Equivalent Heat Transfer Model Instead of Wind Speed Measuring for Dynamic Thermal Rating of Transmission Lines." Energies 13, no. 18 (September 8, 2020): 4679. http://dx.doi.org/10.3390/en13184679.
Full textDANILIN, A. N., L. N. RABINSKIY, and S. I. ZHAVORONOK. "DEFORMATION OF THE HELICAL TYPE WIRE STRUCTURES." Periódico Tchê Química 16, no. 33 (March 20, 2019): 583–601. http://dx.doi.org/10.52571/ptq.v16.n33.2019.598_periodico33_pgs_583_601.pdf.
Full textJerrell, J. W., W. Z. Black, and T. J. Parker. "Critical span analysis of overhead conductors." IEEE Transactions on Power Delivery 3, no. 4 (1988): 1942–50. http://dx.doi.org/10.1109/61.194004.
Full textPytlak, Pawel, Petr Musilek, Edward Lozowski, and Janos Toth. "Modelling precipitation cooling of overhead conductors." Electric Power Systems Research 81, no. 12 (December 2011): 2147–54. http://dx.doi.org/10.1016/j.epsr.2011.06.004.
Full textLuqman, H. M., M. N. R. Baharom, N. A. M. Jamail, N. A. Othman, R. Abd Rahman, M. F. M. Yousof, and Irshad Ullah. "Conductor sag comparison for 132 kV overhead transmission line improvement in Malaysia." Bulletin of Electrical Engineering and Informatics 9, no. 1 (February 1, 2020): 39–47. http://dx.doi.org/10.11591/eei.v9i1.1863.
Full textSmyrak, Beata, Tadeusz Knych, Andrzej Mamala, and Kinga Korzeń. "Rheological Inactivity of AIMgSi Conductors (AAAC) in Trend of Negative Stress Gradients." Materials Science Forum 765 (July 2013): 808–12. http://dx.doi.org/10.4028/www.scientific.net/msf.765.808.
Full textBoniardi, Marco, Silvia Cincera, Fabrizio D'Errico, and Chiara Tagliabue. "Fretting Fatigue Phenomena on an all Aluminium Alloy Conductor." Key Engineering Materials 348-349 (September 2007): 5–8. http://dx.doi.org/10.4028/www.scientific.net/kem.348-349.5.
Full textLee, Jae-bok, Jun Zou, Benliang Li, and Munno Ju. "Efficient evaluation of the earth return mutual impedance of overhead conductors over a horizontally multilayered soil." COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 33, no. 4 (July 1, 2014): 1379–95. http://dx.doi.org/10.1108/compel-08-2013-0265.
Full textRashmi, G. S. Shivashankar, and Poornima. "Overview of different overhead transmission line conductors." Materials Today: Proceedings 4, no. 10 (2017): 11318–24. http://dx.doi.org/10.1016/j.matpr.2017.09.057.
Full textChen, S. L., W. Z. Black, and H. W. Loard. "High Temperature Ampacity Model for Overhead Conductors." IEEE Power Engineering Review 22, no. 6 (June 2002): 62. http://dx.doi.org/10.1109/mper.2002.4312314.
Full textChen, Shelley L., William Z. Black, and Mike Fancher. "High Temperature Sag Model for Overhead Conductors." IEEE Power Engineering Review 22, no. 9 (September 2002): 62. http://dx.doi.org/10.1109/mper.2002.4312607.
Full textChen, S. L., W. Z. Black, and M. L. Fancher. "High-temperature sag model for overhead conductors." IEEE Transactions on Power Delivery 18, no. 1 (January 2003): 183–88. http://dx.doi.org/10.1109/tpwrd.2002.801427.
Full textChen, S. L., W. Z. Black, and H. W. Loard. "High-temperature ampacity model for overhead conductors." IEEE Transactions on Power Delivery 17, no. 4 (October 2002): 1136–41. http://dx.doi.org/10.1109/tpwrd.2002.804003.
Full textTesar, Alexander, and Jana Kuglerova. "Tuned vibration control of overhead line conductors." International Journal for Numerical Methods in Engineering 48, no. 8 (July 20, 2000): 1215–39. http://dx.doi.org/10.1002/(sici)1097-0207(20000720)48:8<1215::aid-nme945>3.0.co;2-l.
Full textBarrett, J. S., and Y. Motlis. "Allowable tension levels for overhead-line conductors." IEE Proceedings - Generation, Transmission and Distribution 148, no. 1 (2001): 54. http://dx.doi.org/10.1049/ip-gtd:20010019.
Full textLi, Yong Ping, Yang Ni, Zhi Yi Huang, and Yu Cheng Su. "Estimation of Overhead Transmission Lines ACSR Combined Elastic Coefficient." Advanced Materials Research 639-640 (January 2013): 1127–30. http://dx.doi.org/10.4028/www.scientific.net/amr.639-640.1127.
Full textYaroslavsky, Danil, Van Vu Nguyen, Marat Sadykov, Mikhail Goryachev, Dmitry Ivanov, and Nikolay Andreev. "Determination the conductor sag according to the period of own harmonic oscillations." E3S Web of Conferences 220 (2020): 01036. http://dx.doi.org/10.1051/e3sconf/202022001036.
Full textAbbasi, M. Z., B. Noor, M. A. Aman, S. Farooqi, and F. W. Karam. "An Investigation of Temperature and Wind Impact on ACSR Transmission Line Sag and Tension." Engineering, Technology & Applied Science Research 8, no. 3 (June 19, 2018): 3009–12. http://dx.doi.org/10.48084/etasr.2046.
Full textLu, Jia Zheng, Chun Zhao, Bo Li, Zhen Fang, and Hong Xian Zhang. "A Novel Overhead Ground Wire with Winded Insulated Conductors for Ice-Melting." Advanced Materials Research 614-615 (December 2012): 1168–71. http://dx.doi.org/10.4028/www.scientific.net/amr.614-615.1168.
Full textLu, Ying, Jian gong Zhang, Zheyuan Gan, and Zhibin Zhao. "Influence of Transmission Line Pitch on Passive Interference." E3S Web of Conferences 64 (2018): 05006. http://dx.doi.org/10.1051/e3sconf/20186405006.
Full textSakala, Japhet D. "Improved Calculation of Sag for a Conductor Supported at Unequal Heights." International Journal of Electrical Engineering & Education 45, no. 4 (October 2008): 327–35. http://dx.doi.org/10.7227/ijeee.45.4.6.
Full textDeželak, Klemen, and Gorazd Štumberger. "Seeking the optimal arrangements of overhead power line conductors with conductor sagging consideration." International Journal of Applied Electromagnetics and Mechanics 42, no. 3 (April 1, 2011): 359–68. http://dx.doi.org/10.3233/tad-131670.
Full textDawalibi, F. "Electromagnetic Fields Generated by Overhead and Buried Short Conductors. Part 1??? Single Conductor." IEEE Power Engineering Review PER-6, no. 10 (October 1986): 32–33. http://dx.doi.org/10.1109/mper.1986.5527601.
Full textDawalibi, F. "Electromagnetic Fields Generated by Overhead and Buried Short Conductors Part 1 - Single Conductor." IEEE Transactions on Power Delivery 1, no. 4 (1986): 105–11. http://dx.doi.org/10.1109/tpwrd.1986.4308036.
Full textBeryozkina, Svetlana. "Evaluation Study of Potential Use of Advanced Conductors in Transmission Line Projects." Energies 12, no. 5 (March 1, 2019): 822. http://dx.doi.org/10.3390/en12050822.
Full textYang, Jia Lun, Kuan Jun Zhu, Bin Liu, Jia Jun Si, Quan Yin, and Liang Hu Jiang. "Research Progress on Manual Ice Measurement Devices for Overhead Transmission Lines." Advanced Materials Research 765-767 (September 2013): 2272–75. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.2272.
Full textPopoli, Arturo, Leonardo Sandrolini, and Andrea Cristofolini. "Reduction in the Electromagnetic Interference Generated by AC Overhead Power Lines on Buried Metallic Pipelines with Screening Conductors." Electricity 2, no. 3 (August 19, 2021): 316–29. http://dx.doi.org/10.3390/electricity2030019.
Full textWang, Rui, Ruidong Peng, Xiangyang Peng, Zhao Liu, Jiajian Huang, Wencheng Zheng, and Gang Liu. "Non-contact Dynamic Capacity-Increasing of Overhead Conductor Based on Cooling Tester (CT)." E3S Web of Conferences 185 (2020): 01078. http://dx.doi.org/10.1051/e3sconf/202018501078.
Full textErol, Harun, Hicran Tecer, Emine Acer, Coşkun Kadioğlu, and Mehmet Gündüz. "Tensile Strength of Al-Zr Overhead Line Conductors." Materials Science Forum 765 (July 2013): 793–97. http://dx.doi.org/10.4028/www.scientific.net/msf.765.793.
Full textRawlins, Charles B. "Flexural self-damping in overhead electrical transmission conductors." Journal of Sound and Vibration 323, no. 1-2 (June 2009): 232–56. http://dx.doi.org/10.1016/j.jsv.2008.12.022.
Full textBarber, K. W., and K. J. Callaghan. "Improved overhead line conductors using aluminium alloy 1120." IEEE Transactions on Power Delivery 10, no. 1 (1995): 403–9. http://dx.doi.org/10.1109/61.368373.
Full text