Academic literature on the topic 'Oxford Nanopore sequencing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oxford Nanopore sequencing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Oxford Nanopore sequencing"

1

Heikema, Astrid P., Deborah Horst-Kreft, Stefan A. Boers, et al. "Comparison of Illumina versus Nanopore 16S rRNA Gene Sequencing of the Human Nasal Microbiota." Genes 11, no. 9 (2020): 1105. http://dx.doi.org/10.3390/genes11091105.

Full text
Abstract:
Illumina and nanopore sequencing technologies are powerful tools that can be used to determine the bacterial composition of complex microbial communities. In this study, we compared nasal microbiota results at genus level using both Illumina and nanopore 16S rRNA gene sequencing. We also monitored the progression of nanopore sequencing in the accurate identification of species, using pure, single species cultures, and evaluated the performance of the nanopore EPI2ME 16S data analysis pipeline. Fifty-nine nasal swabs were sequenced using Illumina MiSeq and Oxford Nanopore 16S rRNA gene sequenci
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Bo, Jianan Hui, and Hongju Mao. "Nanopore Technology and Its Applications in Gene Sequencing." Biosensors 11, no. 7 (2021): 214. http://dx.doi.org/10.3390/bios11070214.

Full text
Abstract:
In recent years, nanopore technology has become increasingly important in the field of life science and biomedical research. By embedding a nano-scale hole in a thin membrane and measuring the electrochemical signal, nanopore technology can be used to investigate the nucleic acids and other biomacromolecules. One of the most successful applications of nanopore technology, the Oxford Nanopore Technology, marks the beginning of the fourth generation of gene sequencing technology. In this review, the operational principle and the technology for signal processing of the nanopore gene sequencing ar
APA, Harvard, Vancouver, ISO, and other styles
3

Lu, Hengyun, Francesca Giordano, and Zemin Ning. "Oxford Nanopore MinION Sequencing and Genome Assembly." Genomics, Proteomics & Bioinformatics 14, no. 5 (2016): 265–79. http://dx.doi.org/10.1016/j.gpb.2016.05.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eisenstein, Michael. "Oxford Nanopore announcement sets sequencing sector abuzz." Nature Biotechnology 30, no. 4 (2012): 295–96. http://dx.doi.org/10.1038/nbt0412-295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sereika, Mantas, Rasmus Hansen Kirkegaard, Søren Michael Karst, et al. "Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing." Nature Methods 19, no. 7 (2022): 823–26. http://dx.doi.org/10.1038/s41592-022-01539-7.

Full text
Abstract:
AbstractLong-read Oxford Nanopore sequencing has democratized microbial genome sequencing and enables the recovery of highly contiguous microbial genomes from isolates or metagenomes. However, to obtain near-finished genomes it has been necessary to include short-read polishing to correct insertions and deletions derived from homopolymer regions. Here, we show that Oxford Nanopore R10.4 can be used to generate near-finished microbial genomes from isolates or metagenomes without short-read or reference polishing.
APA, Harvard, Vancouver, ISO, and other styles
6

MacKenzie, Morgan, and Christos Argyropoulos. "An Introduction to Nanopore Sequencing: Past, Present, and Future Considerations." Micromachines 14, no. 2 (2023): 459. http://dx.doi.org/10.3390/mi14020459.

Full text
Abstract:
There has been significant progress made in the field of nanopore biosensor development and sequencing applications, which address previous limitations that restricted widespread nanopore use. These innovations, paired with the large-scale commercialization of biological nanopore sequencing by Oxford Nanopore Technologies, are making the platforms a mainstay in contemporary research laboratories. Equipped with the ability to provide long- and short read sequencing information, with quick turn-around times and simple sample preparation, nanopore sequencers are rapidly improving our understandin
APA, Harvard, Vancouver, ISO, and other styles
7

Салахов, Р. Р., М. В. Голубенко, Е. Н. Павлюкова, et al. "Application of monomolecular sequencing technology to the diagnostics of hypertrophic cardiomyopathy." Nauchno-prakticheskii zhurnal «Medicinskaia genetika», no. 5(214) (May 29, 2020): 9–10. http://dx.doi.org/10.25557/2073-7998.2020.05.9-10.

Full text
Abstract:
В работе представлены результаты секвенирования пяти генов, ассоциированных с гипертрофической кардиомиопатией, с использованием технологии мономолекулярного секвенирования компании Oxford Nanopore Technologies. В результате анализа данных с помощью различных алгоритмов были выявлены миссенс-варианты в исследованных генах, которые могут являться причиной заболевания у пациентов. The paper presents the results of sequencing of five genes associated with hypertrophic cardiomyopathy, using monomolecular sequencing (Oxford Nanopore Technologies). As a result of data analysis with various algorithm
APA, Harvard, Vancouver, ISO, and other styles
8

Burns, Adam, David Robert Bruce, Pauline Robbe, et al. "Detection of Clinically Relevant Molecular Alterations in Chronic Lymphocytic Leukemia (CLL) By Nanopore Sequencing." Blood 132, Supplement 1 (2018): 1847. http://dx.doi.org/10.1182/blood-2018-99-110948.

Full text
Abstract:
Abstract Introduction Chronic Lymphocytic Leukaemia (CLL) is the most prevalent leukaemia in the Western world and characterised by clinical heterogeneity. IgHV mutation status, mutations in the TP53 gene and deletions of the p-arm of chromosome 17 are currently used to predict an individual patient's response to therapy and give an indication as to their long-term prognosis. Current clinical guidelines recommend screening patients prior to initial, and any subsequent, treatment. Routine clinical laboratory practices for CLL involve three separate assays, each of which are time-consuming and r
APA, Harvard, Vancouver, ISO, and other styles
9

Dumschott, Kathryn, Maximilian H.-W. Schmidt, Harmeet Singh Chawla, Rod Snowdon, and Björn Usadel. "Oxford Nanopore sequencing: new opportunities for plant genomics?" Journal of Experimental Botany 71, no. 18 (2020): 5313–22. http://dx.doi.org/10.1093/jxb/eraa263.

Full text
Abstract:
Abstract DNA sequencing was dominated by Sanger’s chain termination method until the mid-2000s, when it was progressively supplanted by new sequencing technologies that can generate much larger quantities of data in a shorter time. At the forefront of these developments, long-read sequencing technologies (third-generation sequencing) can produce reads that are several kilobases in length. This greatly improves the accuracy of genome assemblies by spanning the highly repetitive segments that cause difficulty for second-generation short-read technologies. Third-generation sequencing is especiall
APA, Harvard, Vancouver, ISO, and other styles
10

Leger, Adrien, and Tommaso Leonardi. "pycoQC, interactive quality control for Oxford Nanopore Sequencing." Journal of Open Source Software 4, no. 34 (2019): 1236. http://dx.doi.org/10.21105/joss.01236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!