Academic literature on the topic 'Oxidation coupling of methane'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oxidation coupling of methane.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Oxidation coupling of methane"

1

Sugiyama, Shigeru, Yasunori Hayashi, Ikumi Okitsu, Naohiro Shimoda, Masahiro Katoh, Akihiro Furube, Yuki Kato, and Wataru Ninomiya. "Oxidative Dehydrogenation of Methane When Using TiO2- or WO3-Doped Sm2O3 in the Presence of Active Oxygen Excited with UV-LED." Catalysts 10, no. 5 (May 18, 2020): 559. http://dx.doi.org/10.3390/catal10050559.

Full text
Abstract:
There are active oxygen species that contribute to oxidative coupling or the partial oxidation during the oxidative dehydrogenation of methane when using solid oxide catalysts, and those species have not been definitively identified. In the present study, we clarify which of the active oxygen species affect the oxidative dehydrogenation of methane by employing photo-catalysts such as TiO2 or WO3, which generate active oxygen from UV-LED irradiation conditions under an oxygen flow. These photo-catalysts were studied in combination with Sm2O3, which is a methane oxidation coupling catalyst. For this purpose, we constructed a reaction system that could directly irradiate UV-LED to a solid catalyst via a normal fixed-bed continuous-flow reactor operated at atmospheric pressure. Binary catalysts prepared from TiO2 or WO3 were either supported on or kneaded with Sm2O3 in the present study. UV-LED irradiation clearly improved the partial oxidation from methane to CO and/or slightly improved the oxidative coupling route from methane to ethylene when binary catalysts consisting of Sm2O3 and TiO2 are used, while negligible UV-LED effects were detected when using Sm2O3 and WO3. These results indicate that with UV-LED irradiation the active oxygen of O2− from TiO2 certainly contributes to the activation of methane during the oxidative dehydrogenation of methane when using Sm2O3, while the active oxygen of H2O2 from WO3 under the same conditions afforded only negligible effects on the activation of methane.
APA, Harvard, Vancouver, ISO, and other styles
2

ZANTHOFF, H., Z. ZHANG, T. GRZYBEK, L. LEHMANN, and M. BAERNS. "ChemInform Abstract: Oxidative Coupling and Partial Oxidation of Methane." ChemInform 23, no. 38 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199238105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Siritanaratkul, Bhavin, Sean-Thomas B. Lundin, and Kazuhiro Takanabe. "Oxidative coupling of methane over sodium zirconate catalyst." Catalysis Science & Technology 11, no. 14 (2021): 4803–11. http://dx.doi.org/10.1039/d1cy00741f.

Full text
Abstract:
Previously only known for CO2 absorption and CO oxidation, Na2ZrO3 is shown to be a selective catalyst for the oxidative coupling of methane (OCM) by detailed kinetic measurements and kinetic analysis.
APA, Harvard, Vancouver, ISO, and other styles
4

Mackie, John C., Julie G. Smith, Peter F. Nelson, and Ralph J. Tyler. "Inhibition of C2 oxidation by methane under oxidative coupling conditions." Energy & Fuels 4, no. 3 (May 1990): 277–85. http://dx.doi.org/10.1021/ef00021a011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lomonosov, V. I., T. R. Usmanov, M. Yu Sinev, and V. Yu Bychkov. "Ethylene oxidation under conditions of the oxidative coupling of methane." Kinetics and Catalysis 55, no. 4 (July 2014): 474–80. http://dx.doi.org/10.1134/s0023158414030070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Delparish, Amin, Shamayita Kanungo, John van der Schaaf, and M. Fernanda Neira d'Angelo. "Towards coupling direct activation of methane with in situ generation of H2O2." Catalysis Science & Technology 9, no. 18 (2019): 5142–49. http://dx.doi.org/10.1039/c9cy01304k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Simon, Yves, and Paul-Marie Marquaire. "A unified mechanism for oxidative coupling and partial oxidation of methane." Fuel 297 (August 2021): 120683. http://dx.doi.org/10.1016/j.fuel.2021.120683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Shibin, Shenggang Li, and David A. Dixon. "Mechanism of selective and complete oxidation in La2O3-catalyzed oxidative coupling of methane." Catalysis Science & Technology 10, no. 8 (2020): 2602–14. http://dx.doi.org/10.1039/d0cy00141d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Shanfu, Sagar Udyavara, Chi Zhang, Matthias Peter, Tracy L. Lohr, Vinayak P. Dravid, Matthew Neurock, and Tobin J. Marks. "“Soft” oxidative coupling of methane to ethylene: Mechanistic insights from combined experiment and theory." Proceedings of the National Academy of Sciences 118, no. 23 (June 1, 2021): e2012666118. http://dx.doi.org/10.1073/pnas.2012666118.

Full text
Abstract:
The oxidative coupling of methane to ethylene using gaseous disulfur (2CH4 + S2 → C2H4 + 2H2S) as an oxidant (SOCM) proceeds with promising selectivity. Here, we report detailed experimental and theoretical studies that examine the mechanism for the conversion of CH4 to C2H4 over an Fe3O4-derived FeS2 catalyst achieving a promising ethylene selectivity of 33%. We compare and contrast these results with those for the highly exothermic oxidative coupling of methane (OCM) using O2 (2CH4 + O2 → C2H4 + 2H2O). SOCM kinetic/mechanistic analysis, along with density functional theory results, indicate that ethylene is produced as a primary product of methane activation, proceeding predominantly via CH2 coupling over dimeric S–S moieties that bridge Fe surface sites, and to a lesser degree, on heavily sulfided mononuclear sites. In contrast to and unlike OCM, the overoxidized CS2 by-product forms predominantly via CH4 oxidation, rather than from C2 products, through a series of C–H activation and S-addition steps at adsorbed sulfur sites on the FeS2 surface. The experimental rates for methane conversion are first order in both CH4 and S2, consistent with the involvement of two S sites in the rate-determining methane C–H activation step, with a CD4/CH4 kinetic isotope effect of 1.78. The experimental apparent activation energy for methane conversion is 66 ± 8 kJ/mol, significantly lower than for CH4 oxidative coupling with O2. The computed methane activation barrier, rate orders, and kinetic isotope values are consistent with experiment. All evidence indicates that SOCM proceeds via a very different pathway than that of OCM.
APA, Harvard, Vancouver, ISO, and other styles
10

Lacombe, S., J. G. Sanchez, M. P. Delichere, H. Mozzanega, J. M. Tatibouet, and C. Mirodatos. "Total oxidation pathways in oxidative coupling of methane over lanthanum oxide catalysts." Catalysis Today 13, no. 2-3 (March 1992): 273–82. http://dx.doi.org/10.1016/0920-5861(92)80151-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Oxidation coupling of methane"

1

Zhang, Yi Qun. "Methane oxidative coupling over fluoride/oxide catalysts : a dissertation." HKBU Institutional Repository, 1993. http://repository.hkbu.edu.hk/etd_ra/15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hargreaves, J. S. J. "The catalysed oxidative coupling of methane." Thesis, University of Liverpool, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chung, Elena Yin-Yin. "Investigation of Chemical Looping Oxygen Carriers and Processes for Hydrocarbon Oxidation and Selective Alkane Oxidation to Chemicals." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1469182957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lapena-Rey, Nieves. "Oxidative coupling of methane in ceramic electrochemical reactors." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tsang, S. C. "An investigation of the catalytic oxidative coupling of methane." Thesis, University of Reading, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.277111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Serres, Thomas. "Oxidative Coupling of Methane followed by Oligomerization to Liquids." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10229.

Full text
Abstract:
Les importantes réserves de gaz naturel – avérées ou potentielles – font de cet hydrocarbure un substitut plausible du pétrole pour la production d'hydrocarbures liquides. Cependant la plupart des réserves de gaz découvertes à l'heure actuelle sont de taille réduite et dispersées loin des sites de transformation ou de consommation. Le couplage du réformage (RM) et du couplage oxydant du méthane (OCM) dans un réacteur à microcanaux permettrait de rendre viable l'exploitation de ces réserves grâce à des coûts opératoires de transformation du gaz naturel réduits par rapport aux usines actuelles. De plus, l'utilisation de ce type de réacteurs compacts réduirait fortement la taille des usines de transformation du méthane. L'intégration de réactions de réformage du méthane en microréacteur a déjà été étudiée et des systèmes stables et performants ont été développés. En revanche, aucune étude n'a été faite sur le comportement de l'OCM dans ces réacteurs. Il a cependant été prouvé que ce procédé est basé sur un équilibre sensible entre réactions de surface et réactions en phase gazeuse. Or l'efficacité thermique des microréacteurs est liée au très grand rapport surface sur volume de gaz au sein des microcanaux par rapport à des réacteurs en lit fixe. L'étude présente de l'influence de la conception des réacteurs sur les performances du système OCM montre qu'une contribution trop importante de la surface catalytique est négative pour l'activité et la sélectivité des catalyseurs OCM. La comparaison des catalyseurs en poudre ou en revêtement a montré que seule la géométrie des réacteurs – soit le rapport volume de phase gaz sur surface catalytique (rapport V/S) – avait une influence sur les performances du système catalyseur + réacteur. L'utilisation de ce paramètre montre en effet que le type du réacteur choisi n'a aucun effet sur les performances de la réaction d'OCM à rapport V/S constant. L'influence positive d'une augmentation du rapport V/S sur les performances du système est en revanche limitée à cause de la faible durée de vie des radicaux en jeu dans l'OCM. L'utilisation du paramètre V/S a en revanche permis d'estimer la géométrie idéale des canaux d'un microréacteur à travers leur diamètre. Deux types très distincts de catalyseurs OCM ont été sélectionnés pour cette étude, conduisant soit à une activité réduite mais une plus grande sélectivité en éthylène soit l'inverse selon la composition et la structure/texture de ces catalyseurs. Au maximum de leurs productivités en éthylène respectives, le catalyseur au lanthane présente une productivité quatre fois plus importante que le catalyseur basé sur le système Mn-W-Na. La différence d'activité des deux catalyseurs étudiés peut s'expliquer par la densité en site actifs de chaque catalyseur. Celui au lanthane est uniquement constitué d'éléments actifs (La, Sr and Ca) contrairement au catalyseur Mn-W-Na dont la surface est en partie constituée de silice inerte. De plus le système Mn-W-Na présente des surfaces spécifiques en général cinq fois inférieures au catalyseur au lanthane. Cependant, les sites actifs du catalyseur au lanthane ne sont pas tous sélectifs envers la production de C2 et sont en revanche très actifs envers la production de précurseurs de COx. Un catalyseur OCM idéal associerait donc la densité de sites actifs du catalyseur au lanthane avec la sélectivité des systèmes Mn-W-Na. La concentration en éléments actifs pour ce système Mn-W-Na a donc été augmentée progressivement. Il s'est avérée que cette augmentation améliorait l'activité de ces catalyseurs par rapport à ceux référencés dans la littérature mais que l'amélioration était limitée au-delà d'une certaine concentration. deux fois inférieure à celle du catalyseur au lanthane soit quatre fois plus importante que le catalyseur référencé dans la littérature [etc…]
APA, Harvard, Vancouver, ISO, and other styles
7

Graf, P. O. "Combining oxidative coupling and reforming of methane vision or utopia? /." Enschede : University of Twente [Host], 2009. http://doc.utwente.nl/60460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Driscoll, Sharon Anne. "Oxidative coupling of methane over alkali-promoted manganese molybdate catalysts /." The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487847761306923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

He, Hong. "The oxidative coupling of methane over BaX2/La2O3, LaOX, and BaCO3/LaOX (X=halogen) catalysts." HKBU Institutional Repository, 1996. http://repository.hkbu.edu.hk/etd_ra/58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hamid, Hamzah b. Abd. "Oxidative coupling of methane on samaria and on mixed oxide catalysts." Thesis, University of Hull, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Oxidation coupling of methane"

1

Rana, Rajinder P. S. Low temperature oxidation of methane. Uxbridge: Brunel University, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lein, Alla Yu. Biogeokhimicheskiĭ t︠s︡ikl metana v okeane. Moskva: Nauka, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aruti︠u︡nov, V. S. Okislitelʹnye prevrashchenii︠a︡ metana. Moskva: Nauka, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thebrath, Bernward. Bildung, Oxidation und Emission von Methan sowie anaerobe Stoffumsätze in limnischen Standorten. Konstanz: Hartung-Gorre, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Koh, Loo Hwa. Coupling photo-induced oxidation with biofiltration for the treatment of air pollutants. Ottawa: National Library of Canada, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Deng, You Quan. Non-steady behaviour in the oxidation of methane over supported noble-metal catalysts. Portsmouth: University of Portsmouth, Division of Chemistry, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pilkington, S. J. The soluble methane monooxygenase and ammonia oxidation in the obligate methanotroph "Methylosinus trichosporium (OB3b)". [s.l.]: typescript, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prior, Stephen David. The effect of copper ions on methane oxidation by the obligate methylotroph 'Methylococcus capsulatus' (Bath). [s.l.]: typescript, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xu, Shoumin. Catalysts for the oxidative coupling of methane. 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tommy K.M.* Chan. Oxidative coupling of methane over MnO r-MgO and CoO r-MgO mixed oxide catalysts. 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Oxidation coupling of methane"

1

Choudhary, V. R., A. M. Rajput, and B. Prabhakar. "Coupling of Catalytic Partial Oxidation and Steam Reforming of Methane to Syngas." In Methane and Alkane Conversion Chemistry, 305–13. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1807-5_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhasin, M. M., and K. D. Campbell. "Oxidative Coupling of Methane-A Progress Report." In Methane and Alkane Conversion Chemistry, 3–17. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1807-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Martin, Guy A., and Claude Mirodatos. "Morphological Aspects of Catalysts for Oxidative Coupling of Methane." In Methane Conversion by Oxidative Processes, 351–81. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-7449-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baerns, Manfred. "Basic Solids as Catalysts for the Oxidative Coupling of Methane." In Methane Conversion by Oxidative Processes, 382–402. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-7449-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kalenik, Zbigniew, and Eduardo E. Wolf. "The Role of Gas-Phase Reactions during Methane Oxidative Coupling." In Methane Conversion by Oxidative Processes, 30–77. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-7449-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ekstrom, A. "The Oxidative Coupling of Methane: Reaction Pathways and Their Process Implications." In Methane Conversion by Oxidative Processes, 99–137. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-7449-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peil, Kevin P., George Marcelin, and James G. Goodwin. "The Role of Lattice Oxygen in the Oxidative Coupling of Methane." In Methane Conversion by Oxidative Processes, 138–67. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-7449-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

van der Wiele, K., J. W. M. H. Geerts, and J. M. N. van Kasteren. "Elementary Reactions and Kinetic Modeling of the Oxidative Coupling of Methane." In Methane Conversion by Oxidative Processes, 259–319. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-7449-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Altin, Orhan, Isik Onal, Timur Doğu, and J. B. Butt. "Dysprosium Oxide for Oxidative Coupling of Methane." In Chemical Reactor Technology for Environmentally Safe Reactors and Products, 317–23. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2747-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sárkány, János, Qun Sun, Juana Isabel Di Cosimo, Richard G. Herman, and Kamil Klier. "Oxidative Coupling of Methane Over Sulfated SrO/La2O3 Catalysts." In Methane and Alkane Conversion Chemistry, 31–38. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1807-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Oxidation coupling of methane"

1

MARIN, G. B. "HIGH TEMPERATURE OXIDATION PROCESSES: OXIDATIVE COUPLING OF METHANE." In Proceedings of the NIOK (Netherlands Institute for Catalysis Research) Course on Catalytic Oxidation. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814503884_0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

PENTEADO, A. T., H. R. GODINI, E. ESCHE, G. LOVATO, J. A. D. RODRIGUES, and J. REPKE. "OPTIMAL DESIGN OF A CO2 REMOVAL SECTION FOR A BIOGAS-BASED OXIDATIVE COUPLING OF METHANE PROCESS." In XXII Congresso Brasileiro de Engenharia Química. São Paulo: Editora Blucher, 2018. http://dx.doi.org/10.5151/cobeq2018-co.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abe, Tomotaka, Ken’ichi Hiratsuka, and Czesław Kajdas. "Tribocatalytic Enhancement of Methane Oxidation." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64034.

Full text
Abstract:
Oxidation reaction of methane is one of the most fundamental reactions in organic chemistry. This reaction is enhanced by silver catalyst [1]. In this study, we confirmed that the catalytic activity of silver is enhanced more by the friction. This effect is called tribocatalysis. In previous studies about tribocatalysis, we have shown that the oxidation reactions of hydrogen [2], carbon monoxide [3] and ethylene were promoted by the friction. According to NIRAM (negative-ion-radical action mechanism) approach, exo-electron emission triggers the promotion of chemical reactions [4]. Insulator such as aluminum oxide, when it is worn, emits larger number of negative particles including electrons compared with metals [5]. Therefore we expected that the friction of aluminum oxide promotes tribochemical reactions more than metals.
APA, Harvard, Vancouver, ISO, and other styles
4

Chanton, Jeffrey P., Tarek Abichou, Gary Hater, Roger Green, and Jean Bogner. "Methane Oxidation in Landfill Cover Soils." In GeoFlorida 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41095(365)295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Togai, Kuninori, Nicholas Tsolas, and Richard A. Yetter. "Kinetics of plasma-assisted oxidation of methane." In 54th AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Droege, M. W., L. M. Hair, W. J. Pitz, and C. K. Westbrook. "Partial Oxidation Reactions of Methane and Oxygen." In SPE Gas Technology Symposium. Society of Petroleum Engineers, 1989. http://dx.doi.org/10.2118/19081-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rose, Juliana L., Pedro Paulo F. Gouvêa, and Cláudio F. Mahler. "Methane Oxidation on a Coverage Layer Study." In GeoCongress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40970(309)12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hirasawa, Yoshiro, Yasushi Tanaka, Yasuyuki Banno, and Makoto Nagata. "Development of Methane Oxidation Catalyst and Its Mechanism." In SAE 2005 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-1098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nicolas, Ghassan, Mohammad Janbozorgi, and Hameed Metghalchi. "Constrained-Equilibrium Modeling of Methane Oxidation in Air." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62138.

Full text
Abstract:
The Rate-Controlled Constrained-Equilibrium (RCCE) has been further developed and applied to model methane/air combustion process. The RCCE method is based on local maximization of entropy or minimization of a relevant free energy at any time during the non-equilibrium evolution of the system subject to a set of constraints. The constraints are imposed by slow rate-limiting reactions. Direct integration of the rate equations for the constraint potentials has been employed. Once the values of the potentials are obtained, the concentration of all species can be calculated. A set of constraints has been developed for methane/air mixtures in the method of Rate-Controlled Constrained-Equilibrium (RCCE). The model predicts the ignition delay times, which have been compared to those predicted by detailed kinetic model (DKM) and with shock tube experimental measurements. The DKM includes 60 H/O/C1–2/N species and 352 reactions. The RCCE model using 16 constraints has been applied for combustion modeling in a wide range of initial temperatures (900–1200 K), pressures (1–50 atmospheres) and fuel-air equivalence ratio (0.6–1.2). The predicted results of using RCCE are within 5% of those of DKM model and are in excellent agreement with experimental measurements in shock tubes.
APA, Harvard, Vancouver, ISO, and other styles
10

Cadieux, Sarah Beth, Ursel M. E. Schuette, Jeffrey R. White, and Lisa M. Pratt. "UNDERSTANDING EXTREME ISOTOPE ENRICHMENT CAUSED BY METHANE OXIDATION." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-318817.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Oxidation coupling of methane"

1

Dr. Y.H. Ma, Dr. W.R. Moser, Dr. A.G. Dixon, Dr. A.M. Ramachandra, Dr. Y. Lu, and C. Binkerd. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS. Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/766717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Radaelli, Guido, Gaurav Chachra, and Divya Jonnavittula. Low-Energy, Low-Cost Production of Ethylene by Low- Temperature Oxidative Coupling of Methane. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1414280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tonkovich, A. L. Y., and R. W. Carr. A simulated countercurrent moving-bed chromatographic reactor for the oxidative coupling of methane: Experimental results. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10107209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Taylor, R. The oxidative coupling of methane by lanthanum oxide catalysts: The influence of phase morphology on catalytic properties. Office of Scientific and Technical Information (OSTI), February 1990. http://dx.doi.org/10.2172/6971824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Heinemann, H., G. A. Somorjai, and D. L. Perry. Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/7152421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Heinemann, H., G. A. Somorjai, and D. L. Perry. Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, July 1--September 30, 1992. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10163938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Iglesia, E., H. Heinemann, and D. L. Perry. Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, 1 January--31 March 1994. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10165399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heinemann, H., G. A. Somorjai, and D. L. Perry. Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, January 1--March 31, 1992. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/10178973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Heinemann, H., G. A. Somorjai, and D. L. Perry. Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, October 1--December 31, 1992. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10160558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Heinemann, H., E. Iglesia, and D. L. Perry. Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, October 1--December 31, 1993. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10129151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography