Journal articles on the topic 'Oxide-based heterostructures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Oxide-based heterostructures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lee, Sang Woon. "Two-Dimensional Electron Gas at SrTiO3-Based Oxide Heterostructures via Atomic Layer Deposition." Journal of Nanomaterials 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/1671390.
Full textNguyen, Dong Tri, Viet Vu Quoc, Wonhyuk Son, et al. "Growth, domain structure, and magnetic properties of CaMnO3(110) and La0.7Ca0.3MnO3(110) layers synthesized on hexagonal YMnO3(0001)." CrystEngComm 19, no. 35 (2017): 5269–74. http://dx.doi.org/10.1039/c7ce01187c.
Full textXiao, Haodong, Lin Lin, Jia Zhu, et al. "Highly sensitive and broadband photodetectors based on WSe2/MoS2 heterostructures with van der Waals contact electrodes." Applied Physics Letters 121, no. 2 (2022): 023504. http://dx.doi.org/10.1063/5.0100191.
Full textБлохин, С. А., В. Н. Неведомский, М. А. Бобров та ін. "Вертикально-излучающие лазеры спектрального диапазона 1.55 мкм, изготовленные по технологии спекания гетероструктур, выращенных методом молекулярно-пучковой эпитаксии из твердотельных источников". Физика и техника полупроводников 54, № 10 (2020): 1088. http://dx.doi.org/10.21883/ftp.2020.10.49947.9463.
Full textGE, CHEN, KUI-JUAN JIN, HUI-BIN LU, and CONG WANG. "NOVEL PROPERTIES IN OXIDE HETEROSTRUCTURES." Modern Physics Letters B 23, no. 09 (2009): 1129–45. http://dx.doi.org/10.1142/s0217984909019594.
Full textTrenczek-Zajac, Anita, Joanna Banas-Gac, and Marta Radecka. "TiO2@Cu2O n-n Type Heterostructures for Photochemistry." Materials 14, no. 13 (2021): 3725. http://dx.doi.org/10.3390/ma14133725.
Full textDorovskikh, Svetlana I., Darya D. Klyamer, Evgeny A. Maksimovskiy, et al. "Heterostructures Based on Cobalt Phthalocyanine Films Decorated with Gold Nanoparticles for the Detection of Low Concentrations of Ammonia and Nitric Oxide." Biosensors 12, no. 7 (2022): 476. http://dx.doi.org/10.3390/bios12070476.
Full textLi, Junjiao, Jun Xie, Dongchen Li, et al. "An Interface Heterostructure of NiO and CeO2 for Using Electrolytes of Low-Temperature Solid Oxide Fuel Cells." Nanomaterials 11, no. 8 (2021): 2004. http://dx.doi.org/10.3390/nano11082004.
Full textSlepchenkov, Michael M., Dmitry A. Kolosov, Igor S. Nefedov, and Olga E. Glukhova. "Band Gap Opening in Borophene/GaN and Borophene/ZnO Van der Waals Heterostructures Using Axial Deformation: First-Principles Study." Materials 15, no. 24 (2022): 8921. http://dx.doi.org/10.3390/ma15248921.
Full textSlepchenkov, Michael M., Dmitry A. Kolosov, and Olga E. Glukhova. "First-Principles Study of Electronic and Optical Properties of Tri-Layered van der Waals Heterostructures Based on Blue Phosphorus and Zinc Oxide." Journal of Composites Science 6, no. 6 (2022): 163. http://dx.doi.org/10.3390/jcs6060163.
Full textJIN, YU-LING, KUI-JUAN JIN, CHEN GE, HUI-BIN LU, and GUO-ZHEN YANG. "RESISTIVE SWITCHING PHENOMENA IN COMPLEX OXIDE HETEROSTRUCTURES." Modern Physics Letters B 27, no. 29 (2013): 1330021. http://dx.doi.org/10.1142/s0217984913300214.
Full textGu, Youdi, Qian Wang, Weijin Hu, et al. "An overview of SrRuO3-based heterostructures for spintronic and topological phenomena." Journal of Physics D: Applied Physics 55, no. 23 (2022): 233001. http://dx.doi.org/10.1088/1361-6463/ac4fd3.
Full textKarsthof, Robert, Holger von Wenckstern, Jesús Zúñiga-Pérez, Christiane Deparis, and Marius Grundmann. "Nickel Oxide–Based Heterostructures with Large Band Offsets." physica status solidi (b) 257, no. 7 (2019): 1900639. http://dx.doi.org/10.1002/pssb.201900639.
Full textBerman, Diana, Yuchen Sha, and Elena V. Shevchenko. "Effect of Polymer Removal on the Morphology and Phase of the Nanoparticles in All-Inorganic Heterostructures Synthesized via Two-Step Polymer Infiltration." Molecules 26, no. 3 (2021): 679. http://dx.doi.org/10.3390/molecules26030679.
Full textNobile, Concetta, and Pantaleo Davide Cozzoli. "Synthetic Approaches to Colloidal Nanocrystal Heterostructures Based on Metal and Metal-Oxide Materials." Nanomaterials 12, no. 10 (2022): 1729. http://dx.doi.org/10.3390/nano12101729.
Full textTulina, N. A., V. V. Sirotkin, I. Yu Borisenko, and A. A. Ivanov. "Simulating resistive switching in heterostructures based on oxide compounds." Bulletin of the Russian Academy of Sciences: Physics 77, no. 3 (2013): 265–67. http://dx.doi.org/10.3103/s1062873813030362.
Full textSemenov, Andrey R., Tatiana A. Kholomina, Vladimir G. Litvinov, and Alexander V. Ermachikhin. "Investigation of the properties of zinc oxide based heterostructures." Physics of Complex Systems 2, no. 4 (2021): 172–79. http://dx.doi.org/10.33910/2687-153x-2021-2-4-172-179.
Full textChen, Y. Z., E. Stamate, N. Pryds, J. R. Sun, B. G. Shen, and S. Linderoth. "Charge modulated interfacial conductivity in SrTiO3-based oxide heterostructures." Applied Physics Letters 98, no. 23 (2011): 232105. http://dx.doi.org/10.1063/1.3598391.
Full textSanna, Simone, Vincenzo Esposito, Mogens Christensen, and Nini Pryds. "High ionic conductivity in confined bismuth oxide-based heterostructures." APL Materials 4, no. 12 (2016): 121101. http://dx.doi.org/10.1063/1.4971801.
Full textZappa, Dario, Vardan Galstyan, Navpreet Kaur, Hashitha M. M. Munasinghe Arachchige, Orhan Sisman, and Elisabetta Comini. "“Metal oxide -based heterostructures for gas sensors”- A review." Analytica Chimica Acta 1039 (December 2018): 1–23. http://dx.doi.org/10.1016/j.aca.2018.09.020.
Full textSchaper, Nicholas, Dheyaa Alameri, Yoosuk Kim, et al. "Controlled Fabrication of Quality ZnO NWs/CNTs and ZnO NWs/Gr Heterostructures via Direct Two-Step CVD Method." Nanomaterials 11, no. 7 (2021): 1836. http://dx.doi.org/10.3390/nano11071836.
Full textZhang, Raymond, Timofey Averianov та Ekaterina Pomerantseva. "Assembly of Two-Dimensional δ-V2O5-Ti3C2Tx Heterostructure Electrodes for Li-Ion Batteries". ECS Meeting Abstracts MA2022-02, № 2 (2022): 150. http://dx.doi.org/10.1149/ma2022-022150mtgabs.
Full textHan, Jinkyu, Lei Wang, and Stanislaus S. Wong. "Morphology and dopant-dependent optical characteristics of novel composite 1D and 3D-based heterostructures of CdSe nanocrystals and LaPO4:Re (Re = Eu, Ce, Tb) metal phosphate nanowires." RSC Adv. 4, no. 66 (2014): 34963–80. http://dx.doi.org/10.1039/c4ra05933f.
Full textPrakash, Varnika, Raul D. Rodriguez, Ammar Al-Hamry, et al. "Flexible plasmonic graphene oxide/heterostructures for dual-channel detection." Analyst 144, no. 10 (2019): 3297–306. http://dx.doi.org/10.1039/c8an02495b.
Full textLi, Yuan, and Nitin Chopra. "Fabrication of thermally-conductive carbon nanotubes-copper oxide heterostructures." MRS Proceedings 1543 (2013): 119–24. http://dx.doi.org/10.1557/opl.2013.673.
Full textQuintela, Camilo X., Kyung Song, Ding-Fu Shao, et al. "Epitaxial antiperovskite/perovskite heterostructures for materials design." Science Advances 6, no. 30 (2020): eaba4017. http://dx.doi.org/10.1126/sciadv.aba4017.
Full textСтрюков, Д. В., В. М. Мухортов, Ю. И. Головко та С. В. Бирюков. "Особенности сегнетоэлектрического состояния в двухслойных гетероструктурах на основе титаната бария-стронция". Физика твердого тела 60, № 1 (2018): 113. http://dx.doi.org/10.21883/ftt.2018.01.45297.186.
Full textFukatsu, S., Y. Kishimoto, Y. Ishikawa, and N. Shibata. "Si(Ge)/oxide-based heterostructures and their applications to optoelectronics." Applied Surface Science 159-160 (June 2000): 472–80. http://dx.doi.org/10.1016/s0169-4332(00)00153-7.
Full textChen, Yunzhong, Nini Pryds, Josée E. Kleibeuker, et al. "Metallic and Insulating Interfaces of Amorphous SrTiO3-Based Oxide Heterostructures." Nano Letters 11, no. 9 (2011): 3774–78. http://dx.doi.org/10.1021/nl201821j.
Full textJaiswal, A. K., R. Schneider, M. Le Tacon, and D. Fuchs. "Magnetotransport of SrIrO3-based heterostructures." AIP Advances 12, no. 3 (2022): 035120. http://dx.doi.org/10.1063/9.0000325.
Full textZhang, Lijia, Zhongbin Luo, Lingshan Su, and Dianping Tang. "A surface plasmon resonance enhanced photoelectrochemical immunoassay based on perovskite metal oxide@gold nanoparticle heterostructures." Analyst 144, no. 19 (2019): 5717–23. http://dx.doi.org/10.1039/c9an01395d.
Full textBu, Fan-Xing, Li Xu, Wei Zhang, et al. "A versatile strategy to construct multifunctional metal oxide@cyanometallate-based coordination polymer heterostructures." Chemical Communications 51, no. 28 (2015): 6198–201. http://dx.doi.org/10.1039/c4cc10097b.
Full textAbadi, M. Tommy Hasan, Nurma Ari Sofa, Siti Zulaikah, and Nandang Mufti. "Influence of Au Sputtered in ZnO/Au/PANI Heterostructures Film for Photoelectrochemical Cells." Materials Science Forum 1028 (April 2021): 117–26. http://dx.doi.org/10.4028/www.scientific.net/msf.1028.117.
Full textLichtensteiger, Céline. "InteractiveXRDFit: a new tool to simulate and fit X-ray diffractograms of oxide thin films and heterostructures." Journal of Applied Crystallography 51, no. 6 (2018): 1745–51. http://dx.doi.org/10.1107/s1600576718012840.
Full textPloog, Klaus H. "Molecular Beam Epitaxy of Materials Interfaces with Atomic Precision." Физика и техника полупроводников 52, no. 5 (2018): 513. http://dx.doi.org/10.21883/ftp.2018.05.45857.46.
Full textVengalis, B., K. Šliužienė, and V. Lisauskas. "Growth and Investigation of Oxide Heterostructures Based on Half-Metallic Fe3O4." Acta Physica Polonica A 105, no. 6 (2004): 659–65. http://dx.doi.org/10.12693/aphyspola.105.659.
Full textWang, Kai, He Zheng, Guangyu Wen, et al. "Modulating domain structures in Al 2 O 3 -based oxide heterostructures." Materials Research Bulletin 106 (October 2018): 465–70. http://dx.doi.org/10.1016/j.materresbull.2018.06.042.
Full textZhang, Yiteng, Yanqiang Cao, Haihua Hu, et al. "Flexible Metal–Insulator Transitions Based on van der Waals Oxide Heterostructures." ACS Applied Materials & Interfaces 11, no. 8 (2019): 8284–90. http://dx.doi.org/10.1021/acsami.8b22664.
Full textLi, Jingyu, Yuanxu Wang, Guangbiao Zhang, et al. "Seeking large Seebeck effects in LaX(X = Mn and Co)O3/SrTiO3 superlattices by exploiting high spin-polarized effects." Physical Chemistry Chemical Physics 21, no. 27 (2019): 14973–83. http://dx.doi.org/10.1039/c9cp02486g.
Full textEom, C. B., R. J. Cava, Julia M. Phillips, and D. J. Werder. "Epitaxial thin films and heterostructures of a copper‐oxide‐based isotropic metallic oxide (La8−xSrxCu8O20)." Journal of Applied Physics 77, no. 10 (1995): 5449–51. http://dx.doi.org/10.1063/1.359240.
Full textZharkov, D. K., A. V. Leontyev, D. P. Pavlov, and R. F. Mamin. "Features of the Photoinduced Conductivity of Heterostructures Based on Complex Lanthanum Oxide and Strontium Oxide." Bulletin of the Russian Academy of Sciences: Physics 83, no. 12 (2019): 1473–74. http://dx.doi.org/10.3103/s1062873819120323.
Full textWang, Yaqin, Wu Tang, Jianli Cheng, Safdar Nazir, and Kesong Yang. "High-mobility two-dimensional electron gas in SrGeO3- and BaSnO3-based perovskite oxide heterostructures: an ab initio study." Physical Chemistry Chemical Physics 18, no. 46 (2016): 31924–29. http://dx.doi.org/10.1039/c6cp05572a.
Full textKim, Ji Eun, Van Tu Vu, Thi Thanh Huong Vu, et al. "A Non-Volatile Memory Based on NbOx/NbSe2 Van der Waals Heterostructures." Applied Sciences 10, no. 21 (2020): 7598. http://dx.doi.org/10.3390/app10217598.
Full textSirotkin, V. V., N. A. Tulina, A. N. Rossolenko, and I. Yu Borisenko. "Numerical simulation of resistive switching in heterostructures based on anisotropic oxide compounds." Bulletin of the Russian Academy of Sciences: Physics 80, no. 5 (2016): 497–99. http://dx.doi.org/10.3103/s1062873816050191.
Full textBuonsanti, Raffaella, Etienne Snoeck, Cinzia Giannini, et al. "Colloidal semiconductor/magnetic heterostructures based on iron-oxide-functionalized brookite TiO2 nanorods." Physical Chemistry Chemical Physics 11, no. 19 (2009): 3680. http://dx.doi.org/10.1039/b821964h.
Full textDurand, O., D. Rogers, F. Hosseini Teherani, M. Andrieux, and M. Modreanu. "Studies of oxide-based thin-layered heterostructures by X-ray scattering methods." Thin Solid Films 515, no. 16 (2007): 6360–67. http://dx.doi.org/10.1016/j.tsf.2006.11.111.
Full textWang, Miao, Xiaojuan Lian, Yiming Pan, et al. "A selector device based on graphene–oxide heterostructures for memristor crossbar applications." Applied Physics A 120, no. 2 (2015): 403–7. http://dx.doi.org/10.1007/s00339-015-9208-y.
Full textDey, Urmimala, Swastika Chatterjee, and A. Taraphder. "Antisite-disorder engineering in La-based oxide heterostructures via oxygen vacancy control." Physical Chemistry Chemical Physics 20, no. 26 (2018): 17871–80. http://dx.doi.org/10.1039/c8cp01500g.
Full textShang, Jie, Gang Liu, Huali Yang, et al. "Thermally Stable Transparent Resistive Random Access Memory based on All-Oxide Heterostructures." Advanced Functional Materials 24, no. 15 (2013): 2171–79. http://dx.doi.org/10.1002/adfm.201303274.
Full textYu, Sujing, Dongzhi Zhang, Yu Zhang, et al. "Green light-driven enhanced ammonia sensing at room temperature based on seed-mediated growth of gold-ferrosoferric oxide dumbbell-like heteronanostructures." Nanoscale 12, no. 36 (2020): 18815–25. http://dx.doi.org/10.1039/d0nr05530a.
Full text