Journal articles on the topic 'Oxide based resistive memories OxRRAM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 40 journal articles for your research on the topic 'Oxide based resistive memories OxRRAM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bocquet, Marc, Hassen Aziza, Weisheng Zhao, et al. "Compact Modeling Solutions for Oxide-Based Resistive Switching Memories (OxRAM)." Journal of Low Power Electronics and Applications 4, no. 1 (2014): 1–14. http://dx.doi.org/10.3390/jlpea4010001.
Full textAmbrogio, Stefano, Simone Balatti, David C. Gilmer, and Daniele Ielmini. "Analytical Modeling of Oxide-Based Bipolar Resistive Memories and Complementary Resistive Switches." IEEE Transactions on Electron Devices 61, no. 7 (2014): 2378–86. http://dx.doi.org/10.1109/ted.2014.2325531.
Full textXu, Zhemi, Peiyuan Guan, Adnan Younis, Dewei Chu, and Sean Li. "Manipulating resistive states in oxide based resistive memories through defective layers design." RSC Advances 7, no. 89 (2017): 56390–94. http://dx.doi.org/10.1039/c7ra11681k.
Full textGuo, Yuzheng, and John Robertson. "Materials selection for oxide-based resistive random access memories." Applied Physics Letters 105, no. 22 (2014): 223516. http://dx.doi.org/10.1063/1.4903470.
Full textWan, Zhenni, Robert B. Darling, and M. P. Anantram. "Vanadium Oxide Based RRAM Device." MRS Advances 2, no. 52 (2017): 3019–24. http://dx.doi.org/10.1557/adv.2017.442.
Full textBocquet, Marc, Damien Deleruyelle, Hassen Aziza, et al. "Robust Compact Model for Bipolar Oxide-Based Resistive Switching Memories." IEEE Transactions on Electron Devices 61, no. 3 (2014): 674–81. http://dx.doi.org/10.1109/ted.2013.2296793.
Full textGottlob, Daniel M., Eugénie Martinez, Claire Mathieu, et al. "Laboratory based X-ray photoemission core-level spectromicroscopy of resistive oxide memories." Ultramicroscopy 183 (December 2017): 94–98. http://dx.doi.org/10.1016/j.ultramic.2017.03.026.
Full textJang, Sung Hwan, Dong Hun Kim, Dong Yoel Yoon, and Tae Whan Kim. "Electrical Characteristics of Metal Oxide Based Multi-Layer Vertical Resistive Switching Memories." Journal of Nanoscience and Nanotechnology 14, no. 11 (2014): 8201–4. http://dx.doi.org/10.1166/jnn.2014.9894.
Full textWang, Junjun, Feng Wang, Lei Yin, et al. "A unipolar nonvolatile resistive switching behavior in a layered transition metal oxide." Nanoscale 11, no. 43 (2019): 20497–506. http://dx.doi.org/10.1039/c9nr07456b.
Full textJIN, YU-LING, KUI-JUAN JIN, CHEN GE, HUI-BIN LU, and GUO-ZHEN YANG. "RESISTIVE SWITCHING PHENOMENA IN COMPLEX OXIDE HETEROSTRUCTURES." Modern Physics Letters B 27, no. 29 (2013): 1330021. http://dx.doi.org/10.1142/s0217984913300214.
Full textZhu, Xiaojian, Wenjing Su, Yiwei Liu, et al. "Resistive Switching Memories: Observation of Conductance Quantization in Oxide-Based Resistive Switching Memory (Adv. Mater. 29/2012)." Advanced Materials 24, no. 29 (2012): 3898. http://dx.doi.org/10.1002/adma.201290176.
Full textJeon, Hyeong-Un, and Won-Ju Cho. "Fully Transparent and Sensitivity-Programmable Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistor-Based Biosensor Platforms with Resistive Switching Memories." Sensors 21, no. 13 (2021): 4435. http://dx.doi.org/10.3390/s21134435.
Full textVianello, E., D. Garbin, N. Jovanovic, et al. "(Keynote) Oxide based Resistive Memories for Low Power Embedded Applications and Neuromorphic Systems." ECS Transactions 69, no. 3 (2015): 3–10. http://dx.doi.org/10.1149/06903.0003ecst.
Full textDas, Nipom Sekhar, Koustav Kashyap Gogoi, and Avijit Chowdhury. "Review on graphene oxide-based nanocomposites for resistive switching applications." International Journal of Innovative Research in Physics 2, no. 4 (2021): 1–7. http://dx.doi.org/10.15864/ijiip.2401.
Full textOhta, Akio, Motoki Fukusima, Katsunori Makihara, Hideki Murakami, Seiichiro Higashi, and Seiichi Miyazaki. "Characterization of Resistive Switching Behaviors of RF Sputtered Si Oxide Resistive Random Access Memories with Ti-Based Electrodes." Japanese Journal of Applied Physics 52, no. 11S (2013): 11NJ06. http://dx.doi.org/10.7567/jjap.52.11nj06.
Full textLiu, Chang, Lai-Guo Wang, Kang Qin, et al. "Impact of Metal Nanocrystal Size and Distribution on Resistive Switching Parameters of Oxide-Based Resistive Random Access Memories." IEEE Transactions on Electron Devices 65, no. 10 (2018): 4674–78. http://dx.doi.org/10.1109/ted.2018.2866168.
Full textRocha, Paulo R. F., Henrique Leonel Gomes, Lode K. J. Vandamme, et al. "Low-Frequency Diffusion Noise in Resistive-Switching Memories Based on Metal–Oxide Polymer Structure." IEEE Transactions on Electron Devices 59, no. 9 (2012): 2483–87. http://dx.doi.org/10.1109/ted.2012.2204059.
Full textVerrelli, E., D. Tsoukalas, P. Normand, A. H. Kean, and N. Boukos. "Forming-free resistive switching memories based on titanium-oxide nanoparticles fabricated at room temperature." Applied Physics Letters 102, no. 2 (2013): 022909. http://dx.doi.org/10.1063/1.4775760.
Full textIbáñez, María José, Domingo Barrera, David Maldonado, Rafael Yáñez, and Juan Bautista Roldán. "Non-Uniform Spline Quasi-Interpolation to Extract the Series Resistance in Resistive Switching Memristors for Compact Modeling Purposes." Mathematics 9, no. 17 (2021): 2159. http://dx.doi.org/10.3390/math9172159.
Full textRahaman, Sk Ziaur, Yu-De Lin, Heng-Yuan Lee, et al. "The Role of Ti Buffer Layer Thickness on the Resistive Switching Properties of Hafnium Oxide-Based Resistive Switching Memories." Langmuir 33, no. 19 (2017): 4654–65. http://dx.doi.org/10.1021/acs.langmuir.7b00479.
Full textDrouin, Dominique, Gabriel Droulers, Marina Labalette, et al. "A Fabrication Process for Emerging Nanoelectronic Devices Based on Oxide Tunnel Junctions." Journal of Nanomaterials 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/8613571.
Full textJang, Jingon, Han‐Hyeong Choi, Sung Hoon Paik, Jai Kyeong Kim, Seungjun Chung, and Jong Hyuk Park. "Highly Improved Switching Properties in Flexible Aluminum Oxide Resistive Memories Based on a Multilayer Device Structure." Advanced Electronic Materials 4, no. 12 (2018): 1800355. http://dx.doi.org/10.1002/aelm.201800355.
Full textWang, Lu-Hao, Wen Yang, Qing-Qing Sun, et al. "The mechanism of the asymmetric SET and RESET speed of graphene oxide based flexible resistive switching memories." Applied Physics Letters 100, no. 6 (2012): 063509. http://dx.doi.org/10.1063/1.3681366.
Full textSenapati, Asim, Sourav Roy, Yu-Feng Lin, Mrinmoy Dutta, and Siddheswar Maikap. "Oxide-Electrolyte Thickness Dependence Diode-Like Threshold Switching and High on/off Ratio Characteristics by Using Al2O3 Based CBRAM." Electronics 9, no. 7 (2020): 1106. http://dx.doi.org/10.3390/electronics9071106.
Full textArashloo, Banafsheh Alizadeh. "Cupper doping effect on the electrical characteristics of TiO2 based Memristor." Brilliant Engineering 2, no. 1 (2020): 19–24. http://dx.doi.org/10.36937/ben.2021.001.004.
Full textHu, Lei, Shengju Zhu, Qi Wei, et al. "Enhancement of resistive switching ratio induced by competing interfacial oxygen diffusion in tantalum oxide based memories with metal nitride electrode." Applied Physics Letters 113, no. 4 (2018): 043503. http://dx.doi.org/10.1063/1.5037840.
Full textCopetti, Thiago, Guilherme Cardoso Medeiros, Mottaqiallah Taouil, Said Hamdioui, Letícia Bolzani Poehls, and Tiago Balen. "Evaluation of Single Event Upset Susceptibility of FinFET-based SRAMs with Weak Resistive Defects." Journal of Electronic Testing 37, no. 3 (2021): 383–94. http://dx.doi.org/10.1007/s10836-021-05949-x.
Full textKoohzadi, Pooria, Mohammad Taghi Ahmadi, Javad Karamdel, and Truong Khang Nguyen. "Graphene band engineering for resistive random-access memory application." International Journal of Modern Physics B 34, no. 18 (2020): 2050171. http://dx.doi.org/10.1142/s0217979220501714.
Full textBousoulas, P., I. Michelakaki, J. Giannopoulos, K. Giannakopoulos, and D. Tsoukalas. "Material and Device Parameters Influencing Multi-Level Resistive Switching of Room Temperature Grown Titanium Oxide Layers." MRS Proceedings 1729 (2015): 59–64. http://dx.doi.org/10.1557/opl.2015.84.
Full textMishra, Akshita, Soumen Saha, Henam Sylvia Devi, Abhisek Dixit, and Madhusudan Singh. "High resistive state retention in room temperature solution processed biocompatible memory devices for health monitoring applications." MRS Advances 4, no. 24 (2019): 1409–15. http://dx.doi.org/10.1557/adv.2019.161.
Full textSchulman, A., M. J. Rozenberg, and C. Acha. "Anomalous time relaxation of the nonvolatile resistive state in bipolar resistive-switching oxide-based memories." Physical Review B 86, no. 10 (2012). http://dx.doi.org/10.1103/physrevb.86.104426.
Full text"(Keynote) Oxide based Resistive Memories for Low Power Embedded Applications and Neuromorphic Systems." ECS Meeting Abstracts, 2015. http://dx.doi.org/10.1149/ma2015-02/16/761.
Full textKamiya, Katsumasa, Moon Young Yang, Takahiro Nagata, et al. "Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories." Physical Review B 87, no. 15 (2013). http://dx.doi.org/10.1103/physrevb.87.155201.
Full textKhurana, Geetika, Nitu Kumar, Manish Chhowalla, James F. Scott, and Ram S. Katiyar. "Non-Polar and Complementary Resistive Switching Characteristics in Graphene Oxide devices with Gold Nanoparticles: Diverse Approach for Device Fabrication." Scientific Reports 9, no. 1 (2019). http://dx.doi.org/10.1038/s41598-019-51538-6.
Full textGhalamestani, S. Gorji, L. Goux, D. E. Díaz-Droguett, D. Wouters, and J. G. Lisoni. "WOx resistive memory elements for scaled Flash memories." MRS Proceedings 1337 (2011). http://dx.doi.org/10.1557/opl.2011.985.
Full textRocha, Paulo F., Henrique L. Gomes, Asal Kiazadeh, Qian Chen, Dago M. de Leeuw, and Stefan C. J. Meskers. "Switching speed in Resistive Random Access Memories (RRAMS) based on plastic semiconductor." MRS Proceedings 1337 (2011). http://dx.doi.org/10.1557/opl.2011.859.
Full textChang, Yao-Feng, Burt Fowler, Ying-Chen Chen, et al. "Resistive switching characteristics and mechanisms in silicon oxide memory devices." Physical Sciences Reviews 1, no. 5 (2016). http://dx.doi.org/10.1515/psr-2016-0011.
Full textSchulman, A., M. J. Rozenberg, and C. Acha. "Publisher's Note: Anomalous time relaxation of the nonvolatile resistive state in bipolar resistive-switching oxide-based memories [Phys. Rev. B86, 104426 (2012)]." Physical Review B 86, no. 9 (2012). http://dx.doi.org/10.1103/physrevb.86.099902.
Full textAhmed, Taimur, Sumeet Walia, Edwin L. H. Mayes, et al. "Time and rate dependent synaptic learning in neuro-mimicking resistive memories." Scientific Reports 9, no. 1 (2019). http://dx.doi.org/10.1038/s41598-019-51700-0.
Full text"Comprehensive Examination on Resistive Random Access Memory." International Journal of Recent Technology and Engineering 8, no. 4 (2019): 4663–67. http://dx.doi.org/10.35940/ijrte.d8398.118419.
Full text