Academic literature on the topic 'Oxide nanomaterials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oxide nanomaterials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Oxide nanomaterials"
Chen, Wen, Li Qiang Mai, Yan Yuan Qi, Wei Jin, T. Hu, W. L. Guo, Y. Dai, and E. D. Gu. "One-Dimensional Oxide Nanomaterials through Rheological Self-Assembling." Key Engineering Materials 336-338 (April 2007): 2128–33. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.2128.
Full textLiu, Mingling, Meiling Sun, and Zhijia Wang. "Synthesis, Optical Properties and Applications of Ternary Oxide Nanoparticles by a Microwave Technique." Journal of Nanoscience and Nanotechnology 21, no. 10 (October 1, 2021): 5307–11. http://dx.doi.org/10.1166/jnn.2021.19359.
Full textLi, Tianle, and Tao Zhang. "The Application of Nanomaterials in Angiogenesis." Current Stem Cell Research & Therapy 16, no. 1 (December 1, 2021): 74–82. http://dx.doi.org/10.2174/1574888x15666200211102203.
Full textБутенко, О. О., О. В. Черниш, В. Г. Хоменко, В. С. Твердохліб, and В. З. Барсуков. "ОСОБЛИВОСТІ ВПЛИВУ НАНОМАТЕРІАЛІВ НА ЕКРАНУВАННЯ ЕЛЕКТРОМАГНІТНОГО ВИПРОМІНЮВАННЯ КОМПОЗИТАМИ." Bulletin of the Kyiv National University of Technologies and Design. Technical Science Series 146, no. 3 (January 11, 2021): 155–64. http://dx.doi.org/10.30857/1813-6796.2020.3.13.
Full textБутенко, О. О., О. В. Черниш, В. Г. Хоменко, В. С. Твердохліб, and В. З. Барсуков. "ОСОБЛИВОСТІ ВПЛИВУ НАНОМАТЕРІАЛІВ НА ЕКРАНУВАННЯ ЕЛЕКТРОМАГНІТНОГО ВИПРОМІНЮВАННЯ КОМПОЗИТАМИ." Bulletin of the Kyiv National University of Technologies and Design. Technical Science Series 146, no. 3 (January 11, 2021): 155–64. http://dx.doi.org/10.30857/1813-6796.2020.3.13.
Full textNg, C. W. W., and J. L. Coo. "Hydraulic conductivity of clay mixed with nanomaterials." Canadian Geotechnical Journal 52, no. 6 (June 2015): 808–11. http://dx.doi.org/10.1139/cgj-2014-0313.
Full textGarriga, Rosa, Tania Herrero-Continente, Miguel Palos, Vicente L. Cebolla, Jesús Osada, Edgar Muñoz, and María Jesús Rodríguez-Yoldi. "Toxicity of Carbon Nanomaterials and Their Potential Application as Drug Delivery Systems: In Vitro Studies in Caco-2 and MCF-7 Cell Lines." Nanomaterials 10, no. 8 (August 18, 2020): 1617. http://dx.doi.org/10.3390/nano10081617.
Full textKumar, Abhishek, Rajiv Rakshit, Arnab Bhowmik, Nintu Mandal, Anupam Das, and Samrat Adhikary. "Nanoparticle-Induced Changes in Resistance and Resilience of Sensitive Microbial Indicators towards Heat Stress in Soil." Sustainability 11, no. 3 (February 7, 2019): 862. http://dx.doi.org/10.3390/su11030862.
Full textBarbillon, Grégory. "Latest Novelties on Plasmonic and Non-Plasmonic Nanomaterials for SERS Sensing." Nanomaterials 10, no. 6 (June 19, 2020): 1200. http://dx.doi.org/10.3390/nano10061200.
Full textSaleem, Haleema, and Syed Javaid Zaidi. "Developments in the Application of Nanomaterials for Water Treatment and Their Impact on the Environment." Nanomaterials 10, no. 9 (September 7, 2020): 1764. http://dx.doi.org/10.3390/nano10091764.
Full textDissertations / Theses on the topic "Oxide nanomaterials"
Hodgson, Gregory K. "Samarium Oxide Based Nanomaterials for Heterogeneous Catalysis." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37785.
Full textGarzón, Manjón Alba. "Synthesis of Metal Oxide Nanoparticles for Superconducting Nanocomposites and Other Applications." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/399330.
Full textThermal and microwave methodologies are used to synthesize different metal oxides nanoparticles such as magnetite (Fe3O4), cerium oxide (CeO2). By modifying the precursors (Fe(R2diket)3 (R= Ph, tBu and CF3), Ce(acac)3 and Ce(OAc)3), and following the same synthetic route, it is possible to control the size and shape of the nanocrystals obtained. The general route is carried out in triethylene glycol (TREG) or benzyl alcohol (BnOH) media, due to its high boiling point and, which acts also as a capping ligand of the nanoparticles, stabilizing them in polar solvents. Nanoparticles have been characterized by several common physical laboratory techniques: High Resolution Transmission Electron Microscopy (HR TEM), infrared spectroscopy (IR), X-ray Powder Diffraction (XRPD), magnetometry via Superconducting Quantum Interference Device (SQUID), Nuclear Magnetic Resonance (RMN), Gas Chromatography-Mass Spectroscopy (GC-MS), X-ray Photoelectron Spectroscopy (XPS) and Thermogravimetric Analysis (TGA). With all these techniques, the final size, shape, composition, crystal structure, magnetic behaviour and capping ligand interaction have been studied, showing the high quality crystals generated. In addition, we demonstrate the high efficiency of all two one-pot methodologies that have been optimized to synthesize different families of nanoparticles. The stable colloidal solutions obtained in ethanol have been used to generate ex-situ hybrid YBa2Cu3O7-δ (YBCO) superconducting layers because the critical current can be increased when the nanoparticles are embedded. Finally, a new application as an antioxidant behaviour in human cells is tested for the case of CeO2 nanoparticles due to their specifically properties that make them really interested in this new field.
Yang, Rusen. "Oxide nanomaterials synthesis, structure, properties and novel devices /." Diss., Available online, Georgia Institute of Technology, 2007, 2007. http://etd.gatech.edu/theses/available/etd-06212007-161309/.
Full textPeter J. Hesketh, Committee Member ; Zhong Lin Wang, Committee Chair ; C.P. Wong, Committee Member ; Robert L. Snyder, Committee Member ; Christopher Summers, Committee Member.
Mai, Wenjie. "Synthesis, characterization and application of ZnO nanomaterials." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28172.
Full textCommittee Chair: Wang, Zhong Lin; Committee Member: Gall, Kenneth A.; Committee Member: Snyder, Robert L.; Committee Member: Wong, Ching-Ping; Committee Member: Wu, C.F. Jeff.
Yeandel, Stephen. "Atomistic simulation of thermal transport in oxide nanomaterials." Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.687351.
Full textGravani, Styliani. "Synthesis of nanomaterials via anodic aluminium oxide templates." Thesis, University of Surrey, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616919.
Full textMcCrory, Michael S. "Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials." Scholar Commons, 2017. https://scholarcommons.usf.edu/etd/7424.
Full textImagawa, Haruo. "Study on Metal Oxide Nanomaterials for Automotive Catalysts." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/158079.
Full textTsai, Chung-Ying. "NOVEL NANOMATERIALS FOR ENERGY RELATED APPLICATIONS." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/dissertations/1426.
Full textMueller, Paul S. "Synthesis of silica based porous nanomaterials." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/1368.
Full textBooks on the topic "Oxide nanomaterials"
Carpenter, Michael A. Metal Oxide Nanomaterials for Chemical Sensors. New York, NY: Springer New York, 2013.
Find full textCarpenter, Michael A., Sanjay Mathur, and Andrei Kolmakov, eds. Metal Oxide Nanomaterials for Chemical Sensors. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5395-6.
Full textRodríguez, José A., and Marcos Fernández-García, eds. Synthesis, Properties, and Applications of Oxide Nanomaterials. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0470108975.
Full textXiangchao, Zhang, and Ouyang, Jing, Professor in Materials Sciences, eds. Di wei jin shu yang hua wu na mi cai liao: Low-dimensional metal oxide nanomaterials. Beijing: Ke xue chu ban she, 2012.
Find full textHu, Yating. Carbon and Metal Oxides Based Nanomaterials for Flexible High Performance Asymmetric Supercapacitors. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8342-6.
Full textRoy, Nandini, Utshab Singha, Saurav Paul, Gaurav Kumar Pushp, Swagat Bardoloi, Maimy Debbarma, and Freeman Boro. Metal Oxide Nanomaterials. Edited by Sunayana Goswami (Ed.). Glasstree, 2020. http://dx.doi.org/10.20850/9781716360367.
Full textMaccato, Chiara, and Davide Barreca, eds. Tailored Functional Oxide Nanomaterials. Wiley, 2022. http://dx.doi.org/10.1002/9783527826940.
Full textMathur, Sanjay, Andrei Kolmakov, and Michael A. Carpenter. Metal Oxide Nanomaterials for Chemical Sensors. Springer, 2012.
Find full textMaccato, C. Functional Oxide Nanomaterials with Tailored Organization. Wiley & Sons, Limited, John, 2021.
Find full textBioinspired Nanomaterials. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901571.
Full textBook chapters on the topic "Oxide nanomaterials"
Bing Kong, Ling, Wenxiu Que, Lang Liu, Freddy Yin Chiang Boey, Zhichuan J. Xu, Kun Zhou, Sean Li, Tianshu Zhang, and Chuanhu Wang. "Oxide Based Supercapacitors I-Manganese Oxides." In Nanomaterials for Supercapacitors, 162–276. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017] | "A Science Publishers book.": CRC Press, 2017. http://dx.doi.org/10.1201/9781315153025-4.
Full textBing Kong, Ling, Wenxiu Que, Lang Liu, Freddy Yin Chiang Boey, Zhichuan J. Xu, Kun Zhou, Sean Li, Tianshu Zhang, and Chuanhu Wang. "Oxide Based Supercapacitors II-Other Oxides." In Nanomaterials for Supercapacitors, 277–421. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017] | "A Science Publishers book.": CRC Press, 2017. http://dx.doi.org/10.1201/9781315153025-5.
Full textAmollo, Tabitha A., and Vincent O. Nyamori. "Photovoltaic Application of Graphene Oxide and Reduced Graphene Oxide." In 2D Nanomaterials, 263–78. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003178453-15.
Full textSeshadri, R. "Oxide Nanoparticles." In The Chemistry of Nanomaterials, 94–112. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/352760247x.ch5.
Full textEigler, Siegfried. "Graphene Oxide." In Encyclopedia of Polymeric Nanomaterials, 883–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_333.
Full textGao, Wei. "Graphite Oxide." In Springer Handbook of Nanomaterials, 571–604. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20595-8_15.
Full textEigler, Siegfried. "Graphene Oxide." In Encyclopedia of Polymeric Nanomaterials, 1–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_333-1.
Full textRives, Vicente, Raquel Trujillano, and Miguel A. Vicente. "Oxide Nanomaterials in Ceramics." In Synthesis, Properties, and Applications of Oxide Nanomaterials, 683–713. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470108970.ch22.
Full textMohammad, S. Noor. "Oxide-Assisted Growth Mechanism." In Synthesis of Nanomaterials, 173–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57585-4_10.
Full textBhattacharya, Sagarika, Subhra Samanta, and Biswarup Chakraborty. "Nitric Oxide Sensing with Carbon Nanomaterials." In Nitric Oxide Sensing, 43–78. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003142188-3.
Full textConference papers on the topic "Oxide nanomaterials"
Adam, Rania Elhadi, Elfatih Mohammed Mustafa, Sami Elhag, Omer Nour, and Magnus Willander. "Photocatalytic properties for different metal-oxide nanomaterials." In Oxide-based Materials and Devices X, edited by Ferechteh H. Teherani, David C. Look, and David J. Rogers. SPIE, 2019. http://dx.doi.org/10.1117/12.2517436.
Full textHidalgo Alcalde, Pedro, Jaime José Dolado Fernández, and Bianchi Méndez. "Efficient white-light emission from Zn2GeO4 nanomaterials." In Oxide-based Materials and Devices X, edited by Ferechteh H. Teherani, David C. Look, and David J. Rogers. SPIE, 2019. http://dx.doi.org/10.1117/12.2511254.
Full textQIAN, YI-TAI, and YUNLE GU. "SOLVOTHERMAL SYNTHESIS OF NON-OXIDE NANOMATERIALS." In Proceedings of the International Symposium on Solid State Chemistry in China. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776846_0003.
Full textVayssieres, Lionel. "Water-oxide interfacial control and nanomaterials design." In Optics & Photonics 2005, edited by Clemens Burda and Randy J. Ellingson. SPIE, 2005. http://dx.doi.org/10.1117/12.616118.
Full textA. A., Popova. "Electrochemical Properties of Anodic Oxide Films on Titanium, Vanadium, Niobium." In NANOMATERIALS AND TECHNOLOGIES-VI. Buryat State University Publishing Department, 2016. http://dx.doi.org/10.18101/978-5-9793-0883-8-60-63.
Full textPrakash, D., K. R. Nagabhushana, Sonia H. Tatumi, Rene R. Rocca, and Shigueo Watanabe. "Investigation on luminescence properties of nanocrystalline calcium oxide exposed to beta rays." In FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982135.
Full textRathod, Tejas, Hemali Padalia, and Sumitra Chanda. "Green synthesized zinc oxide nanoparticles as a therapeutic tool to combat candidiasis." In FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982149.
Full textMistry, Vaibhavi H., Bhaumik V. Mistry, B. P. Modi, and U. S. Joshi. "Effect of annealing on pulse laser deposition grown copper oxide thin film." In FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982154.
Full textA. M., Volodin, Zaikovskii V. I., and Stoyanovskii V. O. "Synthesis and Solid-state Transformation of Oxide Materials in Carbon Nanoreactor." In NANOMATERIALS AND TECHNOLOGIES-VI. Buryat State University Publishing Department, 2016. http://dx.doi.org/10.18101/978-5-9793-0883-8-44-48.
Full textBas, Salih Zeki, Mustafa Ozmen, and Salih Yildiz. "Electrochemical H2O2 sensor based on graphene oxide-iron oxide nanoparticles composite." In 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190318.
Full textReports on the topic "Oxide nanomaterials"
Chen, Kevin. Final Reports Engineering Metal Oxide Nanomaterials for Fiber Optical Sensor Platforms. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1737358.
Full textFenske, George. Characterization of the Tribological Behavior of Oxide-Based NanoMaterials: Final CRADA Report. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1348352.
Full textO’Neal, Kenneth, and Janice Musfeldt. Spectroscopic studies of size-dependent optical properties of oxide nanomaterials, molecule-based materials in extreme condition - Spectroscopic studies of size-dependent optical properties of oxide nanomaterials, molecule-based materials in extreme condition. University of Tennessee, Knoxville, October 2019. http://dx.doi.org/10.7290/qtlpnw5g3.
Full textArmstrong, Neal R. Asymmetric Semiconductor Nanorod/Oxide Nanoparticle Hybrid Materials: Model Nanomaterials for Light-Activated Formation of Fuels from Sunlight. Formal Progress Report -- Award DE-FG02-05ER15753. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1365549.
Full textTeng, Xiaowei. Transition Metal Oxides Nanomaterials for Aqueous Electrochemical Energy Storage. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1546597.
Full textChefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova, and Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604286.bard.
Full text