Journal articles on the topic 'Oxide pseudocapacitors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Oxide pseudocapacitors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
IWATA, Tomoo, Takayuki HIROSE, Atushi UEDA, and Naoahiko SAWTARI. "Ruthenium Oxide Impregnated Carbon Pseudocapacitors." Electrochemistry 69, no. 3 (2001): 177–81. http://dx.doi.org/10.5796/electrochemistry.69.177.
Full textCao, Fei, and Jai Prakash. "Performance investigations of Pb2Ru2O6.5 oxide based pseudocapacitors." Journal of Power Sources 92, no. 1-2 (2001): 40–44. http://dx.doi.org/10.1016/s0378-7753(00)00526-7.
Full textQiu, Yongcai, Yihua Zhao, Xiaowei Yang, et al. "Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors." Nanoscale 6, no. 7 (2014): 3626–31. http://dx.doi.org/10.1039/c3nr06675d.
Full textShen, Liuxue, Peng Sun, Chuanxi Zhao, Shaozao Tan, and Wenjie Mai. "Tailorable pseudocapacitors for energy storage clothes." RSC Advances 6, no. 72 (2016): 67764–70. http://dx.doi.org/10.1039/c6ra11733c.
Full textBiswas, Sudipta, Vikas Sharma, Trilok Singh, and Amreesh Chandra. "External vibrations can destroy the specific capacitance of supercapacitors – from experimental proof to theoretical explanations." Journal of Materials Chemistry A 9, no. 10 (2021): 6460–68. http://dx.doi.org/10.1039/d0ta11794c.
Full textHu, Chi-Chang, Chao-Ming Huang, and Kuo-Hsin Chang. "Electrocatalytic Deposition of Nanostructured Vanadium Oxide for Pseudocapacitors." ECS Transactions 16, no. 1 (2019): 163–66. http://dx.doi.org/10.1149/1.2985639.
Full textJagadale, A. D., V. S. Kumbhar, D. S. Dhawale, and C. D. Lokhande. "Potentiodynamically deposited nickel oxide (NiO) nanoflakes for pseudocapacitors." Journal of Electroanalytical Chemistry 704 (September 2013): 90–95. http://dx.doi.org/10.1016/j.jelechem.2013.06.020.
Full textQuispe-Garrido, Vanessa, Gabriel Antonio Cerron-Calle, Antony Bazan-Aguilar, José G. Ruiz-Montoya, Elvis O. López, and Angélica M. Baena-Moncada. "Advances in the design and application of transition metal oxide-based supercapacitors." Open Chemistry 19, no. 1 (2021): 709–25. http://dx.doi.org/10.1515/chem-2021-0059.
Full textXu, Zichen, Zhiqiang Zhang, Huiling Yin, et al. "Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode." RSC Advances 10, no. 6 (2020): 3122–29. http://dx.doi.org/10.1039/c9ra07842h.
Full textAbdollahifar, Mozaffar, Hao‐Wen Liu, Chia‐Hsin Lin, et al. "Enabling Extraordinary Rate Performance for Poorly Conductive Oxide Pseudocapacitors." ENERGY & ENVIRONMENTAL MATERIALS 3, no. 3 (2020): 405–13. http://dx.doi.org/10.1002/eem2.12094.
Full textKataky, R., J. H. L. Hadden, K. S. Coleman, et al. "Graphene oxide nanocapsules within silanized hydrogels suitable for electrochemical pseudocapacitors." Chemical Communications 51, no. 51 (2015): 10345–48. http://dx.doi.org/10.1039/c5cc00968e.
Full textWu, Tzu-Ho, David Hesp, Vin Dhanak, et al. "Charge storage mechanism of activated manganese oxide composites for pseudocapacitors." Journal of Materials Chemistry A 3, no. 24 (2015): 12786–95. http://dx.doi.org/10.1039/c5ta03334a.
Full textYu, Xu, Ligang Feng, and Ho Seok Park. "Highly flexible pseudocapacitors of phosphorus-incorporated porous reduced graphene oxide films." Journal of Power Sources 390 (June 2018): 93–99. http://dx.doi.org/10.1016/j.jpowsour.2018.04.032.
Full textWang, Gongming, Xihong Lu, Yichuan Ling, et al. "LiCl/PVA Gel Electrolyte Stabilizes Vanadium Oxide Nanowire Electrodes for Pseudocapacitors." ACS Nano 6, no. 11 (2012): 10296–302. http://dx.doi.org/10.1021/nn304178b.
Full textHung, Chung Jung, Jeng Han Hung, Pang Lin, and Tseung Yuen Tseng. "Electrophoretic Fabrication and Characterizations of Manganese Oxide/Carbon Nanotube Nanocomposite Pseudocapacitors." Journal of The Electrochemical Society 158, no. 8 (2011): A942. http://dx.doi.org/10.1149/1.3601862.
Full textWitomska, Samanta, Zhaoyang Liu, Włodzimierz Czepa, et al. "Graphene Oxide Hybrid with Sulfur–Nitrogen Polymer for High-Performance Pseudocapacitors." Journal of the American Chemical Society 141, no. 1 (2018): 482–87. http://dx.doi.org/10.1021/jacs.8b11181.
Full textChen, L. Y., Y. Hou, J. L. Kang, A. Hirata, and M. W. Chen. "Asymmetric metal oxide pseudocapacitors advanced by three-dimensional nanoporous metal electrodes." Journal of Materials Chemistry A 2, no. 22 (2014): 8448. http://dx.doi.org/10.1039/c4ta00965g.
Full textXiao, Xu, Chuanfang (John) Zhang, Shizhe Lin, et al. "Intercalation of cations into partially reduced molybdenum oxide for high-rate pseudocapacitors." Energy Storage Materials 1 (November 2015): 1–8. http://dx.doi.org/10.1016/j.ensm.2015.05.001.
Full textHu, Chi-Chang, Chao-Ming Huang, and Kuo-Hsin Chang. "Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors." Journal of Power Sources 185, no. 2 (2008): 1594–97. http://dx.doi.org/10.1016/j.jpowsour.2008.08.017.
Full textWang, Chundong, Junling Xu, Muk-Fung Yuen, et al. "Hierarchical Composite Electrodes of Nickel Oxide Nanoflake 3D Graphene for High-Performance Pseudocapacitors." Advanced Functional Materials 24, no. 40 (2014): 6372–80. http://dx.doi.org/10.1002/adfm.201401216.
Full textPatricio, Jonathan N., Eduardo C. Atayde Jr., Marco Laurence M. Budlayan, and Susan D. Arco. "Zinc Oxide-Based Pseudocapacitors with Electrospun Poly(Vinylidene Fluoride)/Poly(Ionic Liquid) Nanofibers as Solid Polymer Electrolyte." Key Engineering Materials 889 (June 16, 2021): 112–19. http://dx.doi.org/10.4028/www.scientific.net/kem.889.112.
Full textWu, Zhong, Lin Li, Xiao-lei Huang, Xin-bo Zhang, and Jun-min Yan. "Hybrid Film from Nickel Oxide and Oxygenated Carbon Nanotube as Flexible Electrodes for Pseudocapacitors." ChemNanoMat 2, no. 7 (2016): 698–703. http://dx.doi.org/10.1002/cnma.201600039.
Full textChen, Wei, R. B. Rakhi, and H. N. Alshareef. "Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors." Journal of Materials Chemistry A 1, no. 10 (2013): 3315. http://dx.doi.org/10.1039/c3ta00499f.
Full textHuq, Mohammad Mahmudul, Chien-Te Hsieh, Zih-Wei Lin, and Chun-Yao Yuan. "One-step electrophoretic fabrication of a graphene and carbon nanotube-based scaffold for manganese-based pseudocapacitors." RSC Advances 6, no. 91 (2016): 87961–68. http://dx.doi.org/10.1039/c6ra10724a.
Full textZhang, Ming-Yue, Yu Song, Di Guo, Duo Yang, Xiaoqi Sun, and Xiao-Xia Liu. "Strongly coupled polypyrrole/molybdenum oxide hybrid films via electrochemical layer-by-layer assembly for pseudocapacitors." Journal of Materials Chemistry A 7, no. 16 (2019): 9815–21. http://dx.doi.org/10.1039/c9ta00705a.
Full textChang, Jeng-Kuei, and Wen-Ta Tsai. "Material Characterization and Electrochemical Performance of Hydrous Manganese Oxide Electrodes for Use in Electrochemical Pseudocapacitors." Journal of The Electrochemical Society 150, no. 10 (2003): A1333. http://dx.doi.org/10.1149/1.1605744.
Full textYang, Lei, Shuang Cheng, Yong Ding, Xingbao Zhu, Zhong Lin Wang, and Meilin Liu. "Hierarchical Network Architectures of Carbon Fiber Paper Supported Cobalt Oxide Nanonet for High-Capacity Pseudocapacitors." Nano Letters 12, no. 1 (2011): 321–25. http://dx.doi.org/10.1021/nl203600x.
Full textHussain, Sk Khaja, and Jae Su Yu. "HMTA-assisted uniform cobalt ions activated copper oxide microspheres with enhanced electrochemical performance for pseudocapacitors." Electrochimica Acta 258 (December 2017): 388–95. http://dx.doi.org/10.1016/j.electacta.2017.11.073.
Full textFarsi, Hossein, and Fereydoon Gobal. "A mathematical model of nanoparticulate mixed oxide pseudocapacitors; part II: the effects of intrinsic factors." Journal of Solid State Electrochemistry 15, no. 1 (2010): 115–23. http://dx.doi.org/10.1007/s10008-010-1072-2.
Full textChen, Qidi, Daoping Cai, and Hongbing Zhan. "Construction of reduced graphene oxide nanofibers and cobalt sulfide nanocomposite for pseudocapacitors with enhanced performance." Journal of Alloys and Compounds 706 (June 2017): 126–32. http://dx.doi.org/10.1016/j.jallcom.2017.02.189.
Full textKim, Se Yun, Hyung Mo Jeong, Jun Ho Kwon, et al. "Nickel oxide encapsulated nitrogen-rich carbon hollow spheres with multiporosity for high-performance pseudocapacitors having extremely robust cycle life." Energy & Environmental Science 8, no. 1 (2015): 188–94. http://dx.doi.org/10.1039/c4ee02897j.
Full textLi, Xiangcun, Le Wang, Jianhang Shi, Naixu Du, and Gaohong He. "Multishelled Nickel–Cobalt Oxide Hollow Microspheres with Optimized Compositions and Shell Porosity for High-Performance Pseudocapacitors." ACS Applied Materials & Interfaces 8, no. 27 (2016): 17276–83. http://dx.doi.org/10.1021/acsami.6b04654.
Full textWang, Teng, Liang Li, Xiaocong Tian, et al. "3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors." Electrochimica Acta 319 (October 2019): 245–52. http://dx.doi.org/10.1016/j.electacta.2019.06.163.
Full textFarsi, Hossein, and Fereydoon Gobal. "A mathematical model of nanoparticulate mixed oxide pseudocapacitors; part I: model description and particle size effects." Journal of Solid State Electrochemistry 13, no. 3 (2008): 433–43. http://dx.doi.org/10.1007/s10008-008-0576-5.
Full textEhsani, A., R. Safari, H. Yazdanpanah, E. Kowsari, and H. Mohammad Shiri. "Electroactive Conjugated Polymer / Magnetic Functional Reduced Graphene Oxide for Highly Capacitive Pseudocapacitors: Electrosynthesis, Physioelectrochemical and DFT Investigation." Journal of Electrochemical Science and Technology 9, no. 4 (2018): 301–7. http://dx.doi.org/10.33961/jecst.2018.9.4.301.
Full textLou, Shuaifeng, Yang Zhao, Jiajun Wang, Geping Yin, Chunyu Du, and Xueliang Sun. "Ti‐Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors." Small 15, no. 52 (2019): 1904740. http://dx.doi.org/10.1002/smll.201904740.
Full textLing, Tao, Pengfei Da, Xueli Zheng, et al. "Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance." Science Advances 4, no. 10 (2018): eaau6261. http://dx.doi.org/10.1126/sciadv.aau6261.
Full textSu, Yu, Chunxiao Wu, Yajie Song, Yaru Li, Ying Guo, and Sailong Xu. "Sulfides/3D reduced graphene oxide composite with a large specific surface area for high-performance all-solid-state pseudocapacitors." Applied Surface Science 488 (September 2019): 134–41. http://dx.doi.org/10.1016/j.apsusc.2019.05.252.
Full textGhosh, Debasis, Joonwon Lim, Rekha Narayan, and Sang Ouk Kim. "High Energy Density All Solid State Asymmetric Pseudocapacitors Based on Free Standing Reduced Graphene Oxide-Co3O4 Composite Aerogel Electrodes." ACS Applied Materials & Interfaces 8, no. 34 (2016): 22253–60. http://dx.doi.org/10.1021/acsami.6b07511.
Full textSellam and S. A. Hashmi. "Quasi-solid-state pseudocapacitors using proton-conducting gel polymer electrolyte and poly(3-methyl thiophene)–ruthenium oxide composite electrodes." Journal of Solid State Electrochemistry 18, no. 2 (2013): 465–75. http://dx.doi.org/10.1007/s10008-013-2276-z.
Full textEhsani, A., H. Mohammad Shiri, E. Kowsari, R. Safari, J. Torabian, and S. Kazemi. "Nanocomposite of p-type conductive polymer/functionalized graphene oxide nanosheets as novel and hybrid electrodes for highly capacitive pseudocapacitors." Journal of Colloid and Interface Science 478 (September 2016): 181–87. http://dx.doi.org/10.1016/j.jcis.2016.06.013.
Full textForouzandeh, Parnia, Vignesh Kumaravel, and Suresh C. Pillai. "Electrode Materials for Supercapacitors: A Review of Recent Advances." Catalysts 10, no. 9 (2020): 969. http://dx.doi.org/10.3390/catal10090969.
Full textEhsani, Ali, Ali Akbar Heidari, and Hamid Mohammad Shiri. "Electrochemical Pseudocapacitors Based on Ternary Nanocomposite of Conductive Polymer/Graphene/Metal Oxide: An Introduction and Review to it in Recent Studies." Chemical Record 19, no. 5 (2018): 908–26. http://dx.doi.org/10.1002/tcr.201800112.
Full textMohammad Shiri, Hamid, and Ali Ehsani. "Electrosynthesis of neodymium oxide nanorods and its nanocomposite with conjugated conductive polymer as a hybrid electrode material for highly capacitive pseudocapacitors." Journal of Colloid and Interface Science 495 (June 2017): 102–10. http://dx.doi.org/10.1016/j.jcis.2017.01.097.
Full textKazazi, Mahdi. "Facile preparation of nanoflake-structured nickel oxide/carbon nanotube composite films by electrophoretic deposition as binder-free electrodes for high-performance pseudocapacitors." Current Applied Physics 17, no. 2 (2017): 240–48. http://dx.doi.org/10.1016/j.cap.2016.11.028.
Full textEhsani, A., H. Mohammad Shiri, E. Kowsari, R. Safari, J. Shabani Shayeh, and M. Barbary. "Electrosynthesis, physioelectrochemical and theoretical investigation of poly ortho aminophenol/magnetic functional graphene oxide nanocomposites as novel and hybrid electrodes for highly capacitive pseudocapacitors." Journal of Colloid and Interface Science 490 (March 2017): 695–702. http://dx.doi.org/10.1016/j.jcis.2016.12.003.
Full textChen, Hsiang-Chun, Yang-Ru Lyu, Alex Fang, et al. "The Design of ZnO Nanorod Arrays Coated with MnOx for High Electrochemical Stability of a Pseudocapacitor Electrode." Nanomaterials 10, no. 3 (2020): 475. http://dx.doi.org/10.3390/nano10030475.
Full textMakgopa, Katlego, Paul M. Ejikeme, Charl J. Jafta, et al. "A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids." Journal of Materials Chemistry A 3, no. 7 (2015): 3480–90. http://dx.doi.org/10.1039/c4ta06715k.
Full textZhang, Kai, Xiaopeng Han, Zhe Hu, Xiaolong Zhang, Zhanliang Tao, and Jun Chen. "Nanostructured Mn-based oxides for electrochemical energy storage and conversion." Chemical Society Reviews 44, no. 3 (2015): 699–728. http://dx.doi.org/10.1039/c4cs00218k.
Full textSellam and S. A. Hashmi. "High Rate Performance of Flexible Pseudocapacitors fabricated using Ionic-Liquid-Based Proton Conducting Polymer Electrolyte with Poly(3, 4-ethylenedioxythiophene):Poly(styrene sulfonate) and Its Hydrous Ruthenium Oxide Composite Electrodes." ACS Applied Materials & Interfaces 5, no. 9 (2013): 3875–83. http://dx.doi.org/10.1021/am4005557.
Full text