Academic literature on the topic 'Oxyde de graphène'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oxyde de graphène.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Oxyde de graphène"
Inagaki, Michio, and Feiyu Kang. "Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne." J. Mater. Chem. A 2, no. 33 (2014): 13193–206. http://dx.doi.org/10.1039/c4ta01183j.
Full textCao, Qiang, Xiao Geng, Huaipeng Wang, Pengjie Wang, Aaron Liu, Yucheng Lan, and Qing Peng. "A Review of Current Development of Graphene Mechanics." Crystals 8, no. 9 (September 6, 2018): 357. http://dx.doi.org/10.3390/cryst8090357.
Full textStrankowski, Michał, Damian Włodarczyk, Łukasz Piszczyk, and Justyna Strankowska. "Polyurethane Nanocomposites Containing Reduced Graphene Oxide, FTIR, Raman, and XRD Studies." Journal of Spectroscopy 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/7520741.
Full textBanerjee, Arghya Narayan. "Graphene and its derivatives as biomedical materials: future prospects and challenges." Interface Focus 8, no. 3 (April 20, 2018): 20170056. http://dx.doi.org/10.1098/rsfs.2017.0056.
Full textXiao, Zhen Hui, Shui Sheng Wu, Yan Lin Sun, Yu Lin Zhao, and Ya Ming Wang. "Microwave-Hydrothermal Synthesis and Characterization of Graphene." Advanced Materials Research 602-604 (December 2012): 917–20. http://dx.doi.org/10.4028/www.scientific.net/amr.602-604.917.
Full textJ, Monica, and Divyasankari G. "Experimental Study on Green Concrete using Graphene." International Journal of Innovative Research in Advanced Engineering 10, no. 07 (July 31, 2023): 486–89. http://dx.doi.org/10.26562/ijirae.2023.v1007.07.
Full textWang, Xuan Lun, and Wei Jiu Huang. "Fabrication and Characterization of Graphene/Polyimide Nanocomposites." Advanced Materials Research 785-786 (September 2013): 138–44. http://dx.doi.org/10.4028/www.scientific.net/amr.785-786.138.
Full textLi, Jinghao, Qiangu Yan, Xuefeng Zhang, Jilei Zhang, and Zhiyong Cai. "Efficient Conversion of Lignin Waste to High Value Bio-Graphene Oxide Nanomaterials." Polymers 11, no. 4 (April 4, 2019): 623. http://dx.doi.org/10.3390/polym11040623.
Full textWang, Yachao, and Jiangping Zhao. "Effect of Graphene on Flame Retardancy of Graphite Doped Intumescent Flame Retardant (IFR) Coatings: Synergy or Antagonism." Coatings 9, no. 2 (February 3, 2019): 94. http://dx.doi.org/10.3390/coatings9020094.
Full textAbaszade, R. G. "Synthesis and analysis of flakes graphene oxide." Journal of Optoelectronic and Biomedical Materials 14, no. 3 (July 2022): 107–14. http://dx.doi.org/10.15251/jobm.2022.143.107.
Full textDissertations / Theses on the topic "Oxyde de graphène"
Avril, Florian. "Contribution à l'élaboration d'un supercondensateur à basse de graphène." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS034/document.
Full textThe use of micro-power generation energy is a promising concept that consists in harvesting low and diffuse energy sources present in our environment for the supply of autonomous systems. The growing number of new miniaturized and communicating devices in civil and military fields should accentuate the phenomenon of energy dependence and open up new markets.Among possible sources of renewable energy, solar energy is the most promising source because it is potentially the most powerful and best distributed. The development of these micro-energy recovery systems involves low costs with flexible substrate (paper, polymer) and easily exploitable materials. After energy recovery, it is necessary for the autonomous systems to store electricity.For this purpose, supercapacitors are ideal candidates. Indeed, the main advantage of supercapacitors over batteries is their high power density (fast energy collection) as well as a long cycle life. The thesis concerns the manufacture of a supercapacitor and ultimately coupling with a solar cell. The work specifically concerns the study of graphene oxide (GO) synthesized by the Hummers and Marcano methods, its reduction in reduced graphene oxide (RGO) by chemical and electrochemical routes and the realization of supercapacitor. In this project, the properties of reduced graphene oxide (RGO) will be optimized during the reduction step and the material will be shaped into a sandwich structure (RGO / electrolyte / RGO) or interdigitated.Keywords: Graphene,supercapacitor, graphene oxide,energy micro-source
Pakulski, Dawid. "Graphene based materials and their potential applications." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAF060.
Full textScientific purpose of this doctoral dissertation is synthesis of functionalized two-dimensional materials (graphene and graphene oxide) and their comprehensive physicochemical characterization, with particular emphasis on adsorption and energy storage properties. We could demonstrate that covalent modification of graphene oxide (GO) with an organic polymer (BPEI) very favorably affects the efficiency of the adsorption process. The maximum adsorption capacity (qmax) values for heavy metal ions significantly favour this material in comparison to the majority of known carbon adsorbents. Moreover, functionalization of GO with mesoporous aminosilica (SiO2NH2) leads to obtaining an efficient and rapid adsorbent of organic cationic dyes (MB, RhB, MV). ln addition we proved that the functionalization of graphene (EEG) using the POM-surfactant su bu nits proved that this type of organic-inorganic hybrids material is very stable and have interesting electrical properties with potential application in the production of supercapacitors
Alami, Omar. "Oxyde de graphène fonctionnalisés par des dendrons et dendrimères pour des applications en oncologie." Thesis, Toulouse 3, 2022. http://www.theses.fr/2022TOU30086.
Full textGraphene, a monolayer of carbon atoms densely packed in a honeycomb lattice, was first isolated in 2004. In recent years, research on graphene and its derivatives has generated considerable interest in a wide range of research activities thanks to its interesting properties. The easiest and most versatile way to obtain graphene-based nanocomposites is to oxidize natural graphite to obtain graphene oxide (GO), a material with a surface rich in modifiable chemical functions. Graphene oxide nanocomposites have been synthesized for potential applications in electronics, energy storage, catalysis and sorption, gas storage, separation and detection as well as in the biomedical field. Dendrimers are particularly advantageous macromolecules for a very large number of applications in extremely varied fields. This interest resides essentially in their properties of cooperativity and multivalence, as well as in their very high capacity for encapsulation or fixing of small molecules, and this in a volume of nanometric size. This structural characteristic is the consequence of their unique branched architecture containing a central core and having many peripheral functions. Dendrimers are very interesting tools for the delivery of drugs and nucleic acids. In this work we will develop simple approaches to decorate the surface of graphene oxide with phosphorus dondron and dendrimers in order to create new hybrid materials with new properties. First, the synthesis of classical phosphorus dendrimers and of AB5 dendrons will be carried out, followed by the grafting of the different monomers on their surface. In parallel the preparation of graphene oxide (GO) as well as the modification of the GO surface with different methods will be carried out, and finally the grafting of the different dendrons on the platform of graphene oxide will afford new hybrid materials that will be biologically tested
Al-Nafiey, Amer Khudair Hussien. "Reduced graphene oxide-based nanocomposites : synthesis, characterization and applications." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10009/document.
Full textWe successfully obtained these nanocomposites (rGO/Arg-Ag NPs, rGO-Ni NPs and rGO-Co3O4NPs).The resulting rGO-based nanocomposites were characterized by a variety of different techniques, including XPS, SEM, TEM, FTIR, Raman, UV-Vis and TGA. These analysis shows that these graphene-based nanocomposites have excellent properties and stability. The rGO-based nanocomposites, applied as a catalyst in environmental applications and shows good catalytic performance for reduction of 4nitrophenol to 4aminophenol and high adsorption dyes and Cr (VI) from wastewater
Nasr, Maryline. "Elaboration of oxides membranes by electrospinning for photocatalytic applications." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT210/document.
Full textNowadays, industrial toxic chemicals are still not properly treated and these contaminants may directly impact the safety of drinking water. Photocatalysis “a green technology” is an effective and economical approach and plays an important role in solar energy conversion and degradation of organic pollutants. This thesis manuscript reports on developing advanced materials (based on TiO2 and ZnO) being capable of exploiting renewable solar energy for solving the environmental pollution problems. A part of this work was dedicated to improve the UV and visible light TiO2 photoresponse. Therefore, rGO/TiO2, BN/TiO2 and BN-Ag/TiO2 composties nanofibers were successfully elaborated using the electrospinning technique. The second part focused on ZnO. Novel structures of ZnO/ZnAl2O4 multi co-centric nanotubes and Al2O3 doped ZnO nanotubes were designed by combining the two techniques of atomic layer deposition (ALD) and electrospinning. The morphological, structural and optical properties of all synthesized nanostructures were investigated by several characterization techniques. The results show that the chemical and physical properties have a high impact on the photocatalytic properties of the synthesized materials. Moreover, it was found that the doping effect lead to a more efficient charge separation in the photocatalyst, which is an advantage for photocatalytic activities. In addition, methyl orange and methylene blue were used as model reference. A significant enhancement and a long-term stability in the photocatalytic activity were observed with the doped materials compared to the non-doped ones under both UV and visible light. Antibacterial tests against Escherichia coli have also been performed; the results indicate that BN-Ag/TiO2 present interesting photocatalytic properties for both organic compound degradation and bacterial removal
Kaminska, Izabela. "Préparation et applications de plateformes à base de nanaoparticules d’or et de graphène." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10003/document.
Full textIn this thesis, new methods for the preparation of interfaces covered with gold nanoparticles (AuNPs) and/or reduced graphene oxide (rGO) based materials are introduced. An electrode|aqueous electrolyte|gold precursor solution in toluene three-phase junction was applied for AuNPs electrodeposition. Nanoparticles obtained in various conditions, with cyclic voltammetry or chronoamperometry, were investigated to find optimal conditions for their electrodeposition. To characterize the properties of AuNPs deposited at the electrode surface, electrochemical, spectroscopic and microscopic methods were employed. These modified surfaces were applied as a new catalytic and bioelectrocatalytic material, as well as sensing platform for surface-enhanced Raman spectroscopy and fluorescence microscopy. This allowed to demonstrate some potential applications of AuNPs deposited at the three-phase junction. In the following part, a new and simple method for GO reduction and simultaneous functionalization was proposed. Selected aromatic molecules were employed as reducing agents in reactions carried out under mild conditions. To characterize the new composites, electrochemical, spectroscopic and microscopic techniques were used. These composites were also investigated as potential substrates for sensors and (electro)chemical switches. Finally, AuNPs and/or rGO were applied as new sensors in fluorescence microscopy. Using these materials separately and afterwards hybrid coatings containing both structures, allowed exploring interactions between them. This strategy was also applied to explore fluorescence properties of a selected biomolecule and the influence of both materials on it
Wang, Qi. "Carbon-based materials : preparation, functionalization and applications." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10156/document.
Full textGraphene and its derivatives have attracted tremendous research interest over the years due to their exceptional physical and chemical properties. For the integration of graphene into electrochemical devices, it is essential to have a simple, reproducible and controllable technique to produce high quality graphene sheets on large surfaces. In this respect, the use of chemically derived reduced graphene oxide (rGO) rather than CVD graphene is a promising approach. In this thesis, we have developed simple, environmentally friendly, and controllable approaches for the chemical reduction of graphene oxide to rGO and the simultaneous functionalization of the resulting rGO matrix with the used reducing agents. These techniques are based on the use of tyrosine, 4-aminophenyl boronic acid (APBA), alkynyl-modified dopamine, and diamond nanoparticles (ND) as reducing agents. The robustness of the developed derivatization schemes was evaluated by the post-functionalization of alkynyl-dopamine/rGO with thiolated molecules via a photochemical “click” reaction.The resulting rGO matrices were characterized by a variety of different techniques, including XPS, AFM, SEM, FTIR, Raman, UV/Vis, and electrochemical measurements. The rGO matrices, deposited on glassy carbon (GC) electrodes, have been further used for electrochemical based applications for nonenzymatic detection of hydrogen peroxide, glucose, and simultaneously L-dopa and carbidopa. Furthermore, rGO/NDs nanocomposites have been successfully used as electrode in supercapacitors and exhibited a specific capacitance of 186 F g-1 and excellent long term stability
Al, Zohbi Fatima. "Etude de Polyanilines et de nanocomposites Polyaniline/Graphène en milieu liquide ionique protique pour la réalisation de supercondensateurs." Thesis, Tours, 2016. http://www.theses.fr/2016TOUR4026/document.
Full textThe work carried out during this PhD thesis is based on the preparation of conducting polymers such as polyaniline (Pani) and their composites associated with graphene for use as electrode materials for supercapacitors application. This work was first dedicated to the synthesis of new protic ionic liquids (PILs) combining pyrrolidinium (Pyrr+) or imidazolium (Imi+) cations with p-toluene sulfonate (PTS-), hydrogen sulfate (HSO4-) or (+)-camphor-10-sulfonate (Cs-) anion, and the study of their physico-chemicals properties (conductivity, viscosity) in binary mixtures PILs/water. After determining the formulations needed to achieve the optimum of transport properties, the specific capacitance of Pani/HCl in these PILs medium was determined, and we have shown that the performance of symmetrical devices are improved in capacitance, specific energy and specific power (400F/g, 7Wh/kg and 4kW/kg for the higher values) in comparison to those obtained in a H2SO4 1M medium. These PILs mediums were also used as a synthesis medium of Pani. We have shown that the nature of PILs, acting as soft template, could change the electronic, morphological and thermal properties of Pani. An optimum of electronic conductivity of Pani (22 S/cm) was obtained with a synthesis realized in the binary mixture [Imi][HSO4]/water 70/30 generating a fibrillar morphology and a good cyclability (93% capacitance retention over 1000 cycles in H2SO4 1M at 2 A/g). For Pani synthesis in [Pyrr][PTS]/water, a thermal stability gain (360 °C) is obtained thanks to a PTS- doped Pani. Finally, a preliminary study on the preparation of composite Pani/graphene and Pani/graphene oxide was performed. The syntheses of nanocomposites were realized in PILs/water mixtures. The optimization of the composition of the Pani nanocomposites was studied and it was found that a mass ratio of about 15% in weight of graphene or graphene oxide enables to obtain promising nanomaterials with higher electrochemical performances compared with pristine Pani
Roman, Julien. "Mise en forme de matériaux carbonés biosourcés par voie liquide." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0202/document.
Full textThis work is devoted to the preparation of new bio-based carbon materials. Carbon materials, such as carbon fibers used in composites, are mainly obtained from a petroleum precursor. These precursors are expensive and not compatible with a sustainable industry. The use of a bio-based precursor available in large quantities such as lignin makes it possible to overcome limitations of petroleum based precursors. The aromatic molecular structure and high carbon content of lignin make it an ideal candidate for the production of bio-based carbon material. Lignin could be transformed into various materials such as carbon nanofibers, twisted carbon nanofibers, or carbonized composite 3D structures. These materials have been obtained from innovative techniques such as electrospinning and 3D printing. Twisting of the lignin-based-carbon nanofibers allowed for measurements of their mechanical strength. The electrochemical properties of the lignin-based twisted carbon nanofibers are interesting for potential microelectrode applications. The low microstructural order of the carbon from the carbonized lignin has been improved. Graphitization treatment or addition of carbon nanofillers contributed to this improvement. The mechanical, structural and electrical properties of nanocomposite carbon nanofibers illustrate the influence of graphene oxide on lignin. A composite effect between these two components has been observed. The 3D printing of composite inks based on lignin and graphene oxide has been reported for the first time in order to elaborate dense, organized and electrically conductive 3D carbonized structures
Hamandi, Marwa. "Élaboration et caractérisation d’oxydes de Titane de Morphologie Contrôlée : application à la Photodégradation de Polluants Organiques." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1077/document.
Full textTwo main objectives were achieved in the present work. The first objective concerns the elaboration of nanohybrid materials formed by combining titanium dioxide (in spherical or tubular form) with carbon allotropes (functionalized fullerene or graphene). The second objective consists in evaluating these different nanomaterials in the photodegradation of formic acid (FA) under UV irradiation. A beneficial effect of the different carbon allotropes on the photocatalytic activity of the resulting nanohybrids was observed and ascribed to an increased lifetime of photogenerated electron-hole pairs. In a first step, the elaboration method of functionalized fullerenes and their content were optimized leading to the development of nanomaterials showing improved photocatalytic properties compared to TiO2 nanotube alone. Textural properties, photoelectric properties and the FA degradation rate constant were correlated in order to determine the reasons for the photocatalytic activity improvement. In a second step, a detailed study about the development of a new generation of nanocomposites combining TiO2 nanotubes and graphene oxide (GO) was carried out. The degree of reduction of GO strongly influences the photocatalytic activity. Thus, the addition of reduced GO or GO to TiO2 nanotubes improves the intrinsic photodegradation performance of formic acid by facilitating the transfer of photoelectrons from the conduction band of TiO2 to graphene oxide. Finally, composite materials combining graphene oxide and various anatase/rutile compositions were analyzed showing a synergy between GO and the two TiO2 phases
Books on the topic "Oxyde de graphène"
Dimiev, Ayrat M., and Siegfried Eigler, eds. Graphene Oxide. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.
Full textGao, Wei, ed. Graphene Oxide. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15500-5.
Full textJain, Pallavi, Chandrabhan Verma, Anirudh Pratap Singh Raman, Kamlesh Kumari, and Prashant Singh. Biosensors Based on Graphene, Graphene Oxide and Graphynes for Early Detection of Cancer. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003491361.
Full textZhao, Jijun, Lizhao Liu, and Fen Li. Graphene Oxide: Physics and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44829-8.
Full textPendolino, Flavio, and Nerina Armata. Graphene Oxide in Environmental Remediation Process. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60429-9.
Full textGao, Zhenghan. Phase Diagrams of Water Confined by Graphene and Graphene Oxide. [New York, N.Y.?]: [publisher not identified], 2018.
Find full textEzema, Fabian Ifeanyichukwu, Tingkai Zhao, and Ishaq Ahmad. Graphene Oxide in Enhancing Energy Storage Devices. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003215196.
Full textJean, Corbin, and United States. National Aeronautics and Space Administration., eds. Synthesis and thermal stability of graphite oxide-like materials. [Washington, D.C: National Aeronautics and Space Administration, 1997.
Find full textHameed, Abdulrahman Shahul. Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2302-6.
Full textFusaro, Robert L. Sputtered cadmium oxide as a surface pretreatment for graphite solid lubricant films. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1986.
Find full textBook chapters on the topic "Oxyde de graphène"
Lerf, Anton. "Graphite Oxide Story - From the Beginning Till the Graphene Hype." In Graphene Oxide, 1–35. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch1.
Full textJeevaraj, A. Kingson Solomon, and M. Muthuvinayagam. "Graphene Oxide." In Graphene, 91–104. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1206-3_5.
Full textGudarzi, Mohsen Moazzami, Seyed Hamed Aboutalebi, and Farhad Sharif. "Graphene Oxide-Based Composite Materials." In Graphene Oxide, 314–63. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch10.
Full textKovbasyuk, Larisa, and Andriy Mokhir. "Toxicity Studies and Biomedical Applications of Graphene Oxide." In Graphene Oxide, 364–81. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch11.
Full textPavlidis, Ioannis V. "Catalysis." In Graphene Oxide, 382–409. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch12.
Full textLowe, Sean E., and Yu Lin Zhong. "Challenges of Industrial-Scale Graphene Oxide Production." In Graphene Oxide, 410–31. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch13.
Full textDimiev, Ayrat M. "Mechanism of Formation and Chemical Structure of Graphene Oxide." In Graphene Oxide, 36–84. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch2.
Full textEigler, Siegfried, and Ayrat M. Dimiev. "Characterization Techniques." In Graphene Oxide, 85–120. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch3.
Full textVallés, Cristina. "Rheology of Graphene Oxide Dispersions." In Graphene Oxide, 121–46. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch4.
Full textNaumov, Anton V. "Optical Properties of Graphene Oxide." In Graphene Oxide, 147–74. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch5.
Full textConference papers on the topic "Oxyde de graphène"
Wu, Leiming. "Graphdiyne Oxide as a Promising Candidate for Nonlinear Optical Switching Applications." In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, JTu1A.39. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/bgpp.2024.jtu1a.39.
Full textJovanovic, S., M. Yasir, W. Saeed, I. Spanopoulos, Z. Syrgiannis, M. Milenkovic, and D. Kepic. "Carbon-Based Nanomaterials in Electromagnetic Interference Shielding: Graphene Oxide, Reduced Graphene Oxide, Electrochemically Exfoliated Graphene, and Biomass-Derivated Graphene." In 2024 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/marss61851.2024.10612734.
Full textHidayah, N. M. S., Wei-Wen Liu, Chin-Wei Lai, N. Z. Noriman, Cheng-Seong Khe, U. Hashim, and H. Cheun Lee. "Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience. Author(s), 2017. http://dx.doi.org/10.1063/1.5005764.
Full textChen, Zhen, Wanyoung Jang, Wenzhong Bao, Chun Ning Lau, and Chris Dames. "Heat Transfer in Encased Graphene." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88370.
Full textRohini, Puliyasseri, and Dillibabu Sastikumar. "Synthesis and characterization of Graphite Oxide from Graphite using Nano second pulsed laser ablation in liquid." In Advanced Solid State Lasers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/assl.2022.jtu6b.17.
Full textJankovský, Ondřej, David Sedmidubský, Michal Lojka, and Zdeněk Sofer. "Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4994480.
Full textZhang, Yan, Yingying Wang, Yunfei Chen, and Yujuan Wang. "The Friction Forces Between Si Tip and Multilayer Graphene." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87131.
Full textRafitasari, Yeti, Haris Suhendar, Nurul Imani, Fitri Luciana, Hesti Radean, and Iman Santoso. "SINTESIS GRAPHENE OXIDE DAN REDUCED GRAPHENE OXIDE." In SEMINAR NASIONAL FISIKA 2016 UNJ. Pendidikan Fisika dan Fisika FMIPA UNJ, 2016. http://dx.doi.org/10.21009/0305020218.
Full textIllera, Danny, Chatura Wickramaratne, Diego Guillen, Chand Jotshi, Humberto Gomez, and D. Yogi Goswami. "Stabilization of Graphene Dispersions by Cellulose Nanocrystals Colloids." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87830.
Full textKanbur, Kürşat, Işıl Birlik, Fatih Sargin, Funda Ak Azem, and Ahmet Türk. "Optimization of Oxidation Time During Graphene Oxide Production." In 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.045.
Full textReports on the topic "Oxyde de graphène"
Sevigny, Gary J., Radha K. Motkuri, David W. Gotthold, Leonard S. Fifield, Anthony P. Frost, and Wesley Bratton. Separation of tritiated water using graphene oxide membrane. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1222908.
Full textBlanchard, Jeremy, David C. Gerlach, Randall D. Scheele, Mark L. Stewart, Bruce D. Reid, Phillip A. Gauglitz, Larry M. Bagaasen, et al. Uranium Oxide Aerosol Transport in Porous Graphite. Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1051989.
Full textMattei-Sosa, Jose, Victor Medina, Chris Griggs, and Veera Gude. Crosslinking graphene oxide and chitosan to form scalable water treatment membranes. Engineer Research and Development Center (U.S.), July 2019. http://dx.doi.org/10.21079/11681/33263.
Full textMannion, J. M., R. M. Achey, J. H. Hewitt, C. R. Shick, Jr., and M. J. Siegfried. Reduced graphene oxide as a filament material for thermal ionization mass spectrometry. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475282.
Full textAttias, Andre-Jean, Kwang-Sup Lee, and Alex K. Jen. Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics. Fort Belvoir, VA: Defense Technical Information Center, August 2015. http://dx.doi.org/10.21236/ada636883.
Full textKichukova, Diana, Daniela Kovacheva, Anna Staneva, and Ivanka Spassova. Аntimicrobial Impact of Nanocomposites of Reduced Graphene Oxide with Silver and Copper. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2021. http://dx.doi.org/10.7546/crabs.2021.02.04.
Full textPramanik, Avijit, Olorunsola Praise Kolawole, Kaelin Gates, Sanchita Kundu, Manoj Shukla, Robert Moser, Mine Ucak-Astarlioglu, Ahmed Al-Ostaz, and Paresh Chandra Ray. 2D fluorinated graphene oxide (FGO)-polyethyleneimine (PEI) based 3D porous nanoplatform for effective removal of forever toxic chemicals, pharmaceutical toxins, and waterborne pathogens from environmental water samples. Engineer Research and Development Center (U.S.), February 2024. http://dx.doi.org/10.21079/11681/48232.
Full textBiedermann, Laura, Richard Breckenridge, and Jeffery Preece. Permeation testing of thermal power plant cooling water impacts of Graphite Oxide (GO)/polymer membranes. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1528986.
Full textMedina, Victor, Chandler Noel, and Jose Mattei-Sosa. Conceptual development and testing of a chitosan/graphene oxide (CSGO) “bandage” to isolate and remove chemical contamination from surfaces. Engineer Research and Development Center (U.S.), July 2019. http://dx.doi.org/10.21079/11681/33403.
Full textVidal, Judith. Graphene Oxide Fuel Cell Materials Development and Testing: Cooperative Research and Development Final Report, CRADA Number: CRD-16-648. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1659914.
Full text