Dissertations / Theses on the topic 'Oxyde de zinc – Applications scientifiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 32 dissertations / theses for your research on the topic 'Oxyde de zinc – Applications scientifiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kilburger, Sébastien. "Réalisation et caractérisations d'hétérostructures à base de couches minces de LiNbO3 pour des applications en optique intégrée." Limoges, 2008. https://aurore.unilim.fr/theses/nxfile/default/f9760bed-4f20-4c57-8bed-a82d7d55e49f/blobholder:0/2008LIMO4061.pdf.
Full textLithium niobate (LiNbO3: LN) is a widely used optical material due to its interesting electrooptical and non linear properties. LN is particularly used as bulk technology in active devices such as electrooptical modulators. Thin films offer the advantage of strongly decreasing the distance between electrodes and improving the recovering factor of optical and applied fields and allow integration and devices size reduction. Firstly, our work has consisted in optimizing from experimental designs the deposition parameters leading to the elaboration by laser ablation of epitaxially grown lithium niobate films onto sapphire substrate. Structural and microstructural characterizations underline the very high quality of as-grown layers. These ones, exhibiting an average thickness of 150 nm, allow light propagation with low losses (≤1 dB/cm) compatible with the aim of wave guide’s use. Secondly, we focused on the electrode’s choice necessary for the electrooptical modulator conception. ZnO material was chosen. We have demonstrated an epitaxial growth of lithium niobate onto ZnO film itself epitaxially grown onto sapphire. Nevertheless, no guiding mode has been highlighted in LN/ZnO/sapphire heterostructure because of important optical losses attributed to high conductive values (σ ≥ 500 S. M-1) of the ZnO thin layers. To solve this problem, numerical simulations helped us to put forward the necessity of introducing a ZnO low conductive values buffer layer in order to decrease the optical losses. The study of such a structure allowed us to highlight an optical propagation. So, a LN/low conducting ZnO/highly conducting ZnO/sapphire heterostructure would certainly be a suitable solution to envisage the electrooptical modulation of a light beam
El, Belghiti Hanane. "Etude de la croissance électrochimique de nanocolonnes d'oxyde de zinc pour des applications optoélectroniques." Paris 6, 2010. http://www.theses.fr/2010PA066167.
Full textNasr, Maryline. "Elaboration of oxides membranes by electrospinning for photocatalytic applications." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT210/document.
Full textNowadays, industrial toxic chemicals are still not properly treated and these contaminants may directly impact the safety of drinking water. Photocatalysis “a green technology” is an effective and economical approach and plays an important role in solar energy conversion and degradation of organic pollutants. This thesis manuscript reports on developing advanced materials (based on TiO2 and ZnO) being capable of exploiting renewable solar energy for solving the environmental pollution problems. A part of this work was dedicated to improve the UV and visible light TiO2 photoresponse. Therefore, rGO/TiO2, BN/TiO2 and BN-Ag/TiO2 composties nanofibers were successfully elaborated using the electrospinning technique. The second part focused on ZnO. Novel structures of ZnO/ZnAl2O4 multi co-centric nanotubes and Al2O3 doped ZnO nanotubes were designed by combining the two techniques of atomic layer deposition (ALD) and electrospinning. The morphological, structural and optical properties of all synthesized nanostructures were investigated by several characterization techniques. The results show that the chemical and physical properties have a high impact on the photocatalytic properties of the synthesized materials. Moreover, it was found that the doping effect lead to a more efficient charge separation in the photocatalyst, which is an advantage for photocatalytic activities. In addition, methyl orange and methylene blue were used as model reference. A significant enhancement and a long-term stability in the photocatalytic activity were observed with the doped materials compared to the non-doped ones under both UV and visible light. Antibacterial tests against Escherichia coli have also been performed; the results indicate that BN-Ag/TiO2 present interesting photocatalytic properties for both organic compound degradation and bacterial removal
Ghifari, Najla. "Microfluidic-based colloidal ZnO microcapsules : synthesis, structure,organization and first applications." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST066.
Full textThis work focuses on the development of an original droplet-based microfluidics approach to generate highly monodisperse micrometer-sized ZnO spheres with well-controlled size and morphology. This approach is straightforward, and promising not only for the fabrication of uniform-sized ZnO microcapsules, with adjustable size and precise control at the microscale, but also for gaining new insights into the understanding of colloidal growth processes and self-organization of ZnO nanoparticles by the microfluidic route. In addition, such microparticles may find interesting applications in many areas such as photonics, photovoltaics, or biomedecine. This work deals with the effect of handling parameters on droplet formation, size, and stability of the resulting microspheres, as well as the study of their optical and electrical properties coupling experimental and theoretical works. We have shown the synthesis, in a micrometric range from 10 mm to 30 mm, of mesoporous ZnO microcapsules with a thin and flexible shell. We investigate the polar feature of ZnO nanoparticles and their interfacial self-organization. Besides, we reveal that the electric charges carried by ZnO primary units play a crucial role in the stability of the droplets in the presence and in the absence of charged molecules. It also plays a key role throughout the assembly process from the creation of the colloidal ZnO nanoparticles to the microdroplets, and finally the microspheres. We report, for the first time, the selforganization of doped-ZnO liquid microdroplets in square arrays. We demonstrate that such a result discloses the polar aspect of ZnO microdroplets and corroborate a shift in the balance between the driving forces controlling the ZnO nanoparticles organization at the nanoscale. We have developed different models, in very good agreement with the dipole-field and interfacial forces mechanisms, to support the experimental results put forward, and to explain the ZnO/RhB nanoparticles interfacial organization based on ZnO droplets organization properties. Based on our findings, and on the stated dependence of the microcapsules size, shell thickness, and nanoparticles surface density versus the droplets size, we provide an original model for the contribution of the involved factors in the shell formation mechanism
Magne, Constance. "Optimisation de couches d'oxyde nano-structurées pour applications aux cellules solaires à colorant." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00833234.
Full textGarnier, Jérôme. "Elaboration de couches minces d’oxydes transparents et conducteurs par spray cvd assiste par radiation infrarouge pour applications photovoltaÏques." Paris, ENSAM, 2009. http://www.theses.fr/2009ENAM0030.
Full textMaterials like metallic oxides are both properties of electrical conductivity and good transparency in the visible range. They are called "Transparent Conductive Oxides", TCO. Nowadays, the most used of this material is the indium oxide doped with tin (ITO). Indium is scarce and expensive since the huge fiat screen industries demand on ITO, his priee is thus increasing a lot. Research is looking for a challenger like tin oxide or zinc oxide which are promising materials. Different techniques can be used to deposit such materials in thin films. We chose the method called Spray-CVD because association of good quality deposition from CVD reaction and facility to handle precursors by spray is advantageous. Thus, this technique is simple and economic. The special feature of this deposition method is used infrared lamps as heating mode. Association of Spray-CVD technique and infrared heating is unique as far as we know. We called this entire system: IRASCVD (InfraRed Assisted Spray Chemical Vapour Deposition). Two strategies are developed to deposit competitive TCO thin films with our technique. The first one consists in building an experimental reactor of Spray-CVD in our laboratory. Fluorine doped and undoped tin oxide thin films have been studied and parameters of IRASCVD reactor have been optimized. These films have been used as transparent electrodes for organic solar cells. This allows us to validate the technique of TCO deposition. The second strategy consists in using a R&D reactor based on the same principle. We deposited aluminum doped and undoped zinc oxide in this reactor. We focused our work on infrared influence on thin films properties. A comparison with films deposited with classical heating such as hot plate has been done. This study highlights infrared impact on TCO thin films
Badre, Chantal. "Etude de la réactivité de surface par mesure d'angle de contact : influence de la fonctionnalisation et de la structure : applications aux films d'oxyde de zinc électrodéposés." Paris 6, 2007. https://pastel.archives-ouvertes.fr/pastel-00004902.
Full textIn this work, we studied the surface reactivity by contact angle measurements. In our case, we were particularly interested in preparing textured surfaces with different roughness scales. Firstly, we have prepared smooth polyvinylchloride polymers acidified with lauric acid. Then, aerosil balls are added to create some roughness on the polymer. Controlling the roughness and the morphology of these polymers remain a main disadvantage that leaded us to use other materials with easier roughness control like Zinc Oxide (ZnO). Different morphologies were prepared by electrodeposition such like nanorods and nanowires. It is well known that the wettability of ZnO can be modified by applying the bottom-up process. We used self assembled layers (SAMs) of organic molecules like octadecylsilane and fatty acids. We succeeded to prepare superhydrophobic surfaces with the highest contact angle 176° ever obtained on ZnO. The study was extended and ferrocene probe molecules were used
El, Zein Basma. "Growth and characterization of zinc oxide (ZnO) nanostructures for photovotaic applications." Thesis, Lille 1, 2012. http://www.theses.fr/2012LIL10141/document.
Full textTo date, the development of nanotechnology has launched new ways to design efficient solar cells. Strategies have been employed to develop nanostructure architectures of semiconductors, metals, and polymers for solar cells. In this research we have considered the Lead sulfide (PbS) nanoparticles with their tunable band gap and optical properties to harvest the entire solar spectrum which can improve the optical absorption, and charge generation. On the other hand, Zinc oxide (ZnO) nanowires will provide the charge separation and transportation. The ZnO Nanowires sensitized with PbS nanoparticles might significantly impact power conversion efficiency of the solar cells Driven by these unique properties, we demonstrate the successful growth of self catalyzed ZnO nanowires on silicon and glass substrates, by pulsed laser deposition (PLD) using ZnO nanowall network with honeycomb structure as seed layer. We identified that the growth parameters are vital to control the crystallinity, morphology and the defect levels in the synthesized ZnO nanowires. SEM, XRD, TEM, HRTEM analysis show that the nanostructures are highly crystalline and are vertically oriented. We also report the in-situ growth of PbS nanoparticles without linker on the surface of well –oriented ZnO NWs by (SILAR) technique. The PbS Nanoparticles are packed tightly on the surface of the ZnO Nanowires with different sizes and densities, without insulating nature organic ligands, which might affect both the electronic structure at the interface and the electron - transfer rate. The SEM, TEM, HRTEM, PL and XRD analysis, confirm the attachment of the spherical shape polycrystalline PbS nanoparticles. We propose at the end of the thesis the p-PbS /n-ZnO hetero-junction with its future applications in solar cells
Sandana, Eric Vinod. "Synthèse et maîtrise de la croissance de nanocristaux : applications aux composants à base de semi-conducteurs à grande bande interdite." Palaiseau, Ecole polytechnique, 2011. http://pastel.archives-ouvertes.fr/docs/00/64/06/52/PDF/Eric_Vinod_SANDANA_Ecole_Polytechnique_EDX_447.pdf.
Full textThe objective of this work was to grow, study & control the properties of ZnO thin films & nanostructures. Three growth processes were studied: Metal-Organic Chemical Vapour Deposition (MOCVD), Pulsed Laser Deposition (PLD) & Physical Vapour Transport (PVT). The substrates used were: c-Al2O3; Si, ZnO, steel, mylar & paper. The ZnO was characterized using scanning electron microscopy, photoluminescence , cathodoluminescence , X-ray diffraction & optical reflectivity. A very wide range of ZnO nanostructures was observed, including nanorods, nanoneedles, nanocombs & some novel structures. Self-forming arrays of vertically aligned nanostructures (moth-eye nanocones & nanocolumns (vertical & broadening)) could be obtained by PLD without the use of a catalyst. The various characterisation techniques indicated that these arrays were significantly better crystallized & more highly oriented than those grown by PVT/MOCVD. The feasibility of devices was also demonstrated. A nanoLED (n-nanoZnO/p-Si) had a rectifying I/V characteristic & gave blue/white electroluminescence. Moth-eye coatings on Si, resembling black-silicon, were used as templates for the growth of GaN by MOCVD. Angular-dependent specular reflection indicated that the GaN/ZnO nanostructures were broadband antireflection coatings with < 1% reflection over the visible spectrum for incidence angles < 60°. A back-gate geometry ZnO/Si3N4/SiO2/Si transparent thin film transistor was fabricated. It demonstrated a rectifying transfer characteristic, hard saturation & enhancement mode operation. Id was in the mA range & the VON was ~ 0V. Finally, conductive Amorphous Oxide Semiconductor ZnO was grown at RT on paper & mylar
Davesnne, Christian. "Elaboration et caractérisation de films de ZnO dopé pour des applications optoélectroniques." Caen, 2014. http://www.theses.fr/2014CAEN2046.
Full textThis thesis is part of the development of new monolithic white LED emission. Rare earth(s) and transition metal doped ZnO films were prepared by RF magnetron sputtering. A judicious choice of deposition parameters has allowed us to a better understanding of the influence of dopants on the structure of ZnO:Eu films and their luminescence and electrical properties. We have shown that europium is optically active and that energy transfer occurs between the matrix and the rare earth under optical excitation. However, optimizations of the optical and electrical properties are obtained for antagonist deposit conditions. We have conducted an attempt to optimize these properties by different heat treatments. These were not successful but they have showed a diffusion of Eu3+ ions to the bottom of the film for annealing temperatures of 1173 K, unlike the Eu2+ ions whose distribution remained homogeneous. Correlations between the structural properties and the dopant luminescence have been possible. An Eu/Tb co-doping of ZnO allowed observing both red and green contributions of the rare earth elements and highlighting the energy transfer mechanism between Eu and Tb in ZnO. The weak intensities of luminescence led us to replace the europium by the cobalt. Although the cobalt ion is optically active at 660 nm in ZnO, ZnO:Co films have the same disadvantages as those encountered previously in that they have an optimum luminescence when the electrical conductivity is low and vice versa
Shah, Syed mujtaba. "Nanohybrides d'oxyde de zinc fonctionnalisés par des colorants organiques : synthèse, caractérisation et applications opto-électroniques." Thesis, Aix-Marseille 2, 2010. http://www.theses.fr/2010AIX22041.
Full textThe research presented in this dissertation deals with the synthesis, properties andoptoelectronic applications of the nanohybrids based on dye and fullerene functionalizedZnO nanoparticles. These molecules being acid functionalized, were co-grafted on thesurface of ZnO nanoparticles. The effect of changing ratio of donor to acceptor, polarityof the solvent and shapes of the nanoparticles on porphyrin/fullerene interaction werestudied. The molecules were found appreciably interacting at a ratio of 1:2 under the cograftedstate on ZnO nanorods. This was indicated by the strong bathochromic shift of thesoret peak of porphyrin and quenching of its fluorescence however, at this ratio chargetransfer complex is not detectable. The complex formation requires both the donors andacceptors to be enough close to each other to undergo Van der Waal’s type interactionwhich is achievable by raising the stoichiometric ratio to 1:3 and beyond. Weak CTabsorption (700-800 nm) and emission bands (800 nm) characterizing supramolecularcomplexation, were noticed only in polar solvent acetonitrile. When applied as acomponent of the active layer in bulk heterojunction hybrid solar cells, the dyefunctionalized ZnO nanoprods raised the efficiency of the solar cells at lowconcentrations but addition of fullerene had an inverse effect. This was investigated to bedue to the morphological defects induced by the clusterization of nanorods
Kinadjian, Natacha. "Chimie intégrative dédiée aux morphosynthèses de matériaux composites multi-échelles et études de leurs applications en photoluminescence, photocatalyse et photovoltaïque." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0049/document.
Full textThe shaping of functional materials and the control of their texture at all length scales are sine qua non conditions for the improvement of current systems. This PhD project consists in creating complex solid architectures using interdisciplinary methods such as sol-gel chemistry or complex fluids physics. Therefore, it is possible to synthesize Titanium Dioxide macroscopic fibers orfilms which possess a hierarchical porosity. This organization allows the optimization of the matter transport (liquid/gaz) for air depollution application (photocatalysis) or dye-sensitizedsolar cells. In another project, we were able to control the alignment of zinc oxide nanorods within a macroscopic fiber. This alignment provides to the fiber an anisotropic photoluminescence behavior which can be useful for switching devices application. Finally, we synthesized anisotropic particles and nano-sheets of polypyrrole (conducting polymer) in order to obtain smooth thin films presenting interesting electrical properties. The objective was to use them as electrolyte and/or electrode in dye-sensitized solar cells
Berbel, Manaia Eloísa. "Conception de Quantum dots à base d’oxyde de zinc (ZnO) pour des applications en bio-imagerie de nanosystèmes lipidiques." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS127/document.
Full textTheranostic systems consist of a single device containing therapeutic and diagnosis agents and receive increased attention because these devices can improve the therapy of diseases such as cancer, decreasing the toxic side effects and permitting to monitor the treatment. The aim of this work was to develop theranostic systems consisting of lipid based nanocarriers containing ZnO based quantum dots (QDs) as luminescent probes, and allowing to encapsulate a model drug for cancer therapy. Firstly, the synthesis of ZnO/ZnS QDs was studied, aiming to achieve improved luminescent properties. In this step, X-Rays Absorption Spectroscopy, together with other usual characterization techniques, could identify the synthesis condition in which core-shell structures were formed. Nevertheless, the emission of ZnO/ZnS QDs in the visible range was not promising. Therefore, Mg-doped ZnO QDs were synthesized; their luminescence went through a maximum for a 20 mol% nominal concentration of Mg2+ ions in the reaction medium. Zn0.8Mg0.2O QDs presented quantum yield (QY) six times higher (QY = 64%) than undoped ones (QY = 10%). ZnO and Zn0.8Mg0.2O QDs capped by oleic acid (OA) were synthesized and formed stable colloidal dispersions in chloroform and toluene. The QY of OA-Zn0.8Mg0.2O was about 4 times (around 40%) higher than that of the OA-ZnO QDs. Zn0.8Mg0.2O QDs and OA-Zn0.8Mg0.2O QDs could be incorporated into lipid based nanocarriers of average hydrodynamic diameter around 100 – 220 nm. The luminescent solid lipid nanoparticles (SLN) were stable in different media at 37°C during 3 hours. The fluorescence study showed slightly enhanced emission of the J774 macrophage-like cells treated with 2 mg/mL of luminescent SLN during 50 min, suggesting partial internalization of the nanoparticles into the macrophages. However, the internalization studies using fluorescence video-microscopy and microscopy were not successful, because the equipment (wavelengths of excitation and emission) did not allow overcoming the cell auto-fluorescence phenomena
Zakhtser, Alter. "Synthesis and Reactivity of PtZn Nanostructures and Nanocrystals for Heterogeneous Catalysis Applications." Thesis, Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=http://theses-intra.upmc.fr/modules/resources/download/theses/2019SORUS434.pdf.
Full textThe purpose of this thesis was to explore the surface chemistry of platinum-zinc bimetallic systems, and their catalytic activity in the oxidation reaction of CO. The research on this bimetallic system was carried out on two fronts: a surface science study of the model system, a discontinuous ZnO single layer epitaxied on Pt(111), using scanning tunneling microscopy and synchrotron radiation near ambien pressure x-ray photoemission, and a more “nanomaterial science” oriented study of the same bi-metallic system, using complex colloidal synthesis chemistry, transmission and scanning electron microscopy, and finally laboratory XPS. First, a model surface consisting of a ZnO monolayer film supported on Pt(111) was fabricated under ultra-high vacuum conditions. Its surface chemistry was explored by STM and then by synchrotron radiation NAP-XPS under operando conditions. We were able to prove that this system was indeed a typical case of inverse catalysis. Synergetic effects due to the presence of both materials were well seen, but only at low temperatures (up to 410 K). Beyond that temperature, mass transport effects prevent the reactivity of the ZnO/Pt(111) and Pt(111) surfaces from being compared. We have shown that reaction intermediates must be formed in the border area between ZnO and platinum, when the ZnO film is discontinuous. We have highlighted the key role played by the hydroxyls present only ion the ZnO patches, which are due to the dissociation of H2 or H2O from the residual atmosphere on the platinum patches. In particular, we have detected by NAP-XPS the presence of a carboxyl species (due to the association of OH with CO), which precedes the desorption of CO2. Above 410 K, a formate appears, and the latter species is likely a spectator in the CO oxidation process. The transfer of the knowledge accumulated in the preceding surface science and model catalysts studies, to the more realistic case of nanocrystals of the PtZn alloy, while it helped identify some common phenomena, it also shows its limitations. In fact the NC coated with their oleylamine ligands have characteristics that UHV model surfaces do not possess, due to the NC fabrication process itself: we have found spectroscopic hints of the presence of water (possibly a byproduct of the reaction, arising from a condensation reaction between the ketone and the amine); in addition, a capping of the platinum surface by H atoms, is, at present, explanatory of many observed phenomena. Finding the experimental conditions to produce bimetallic nano-alloys from two metal-acac2 precursors was a daunting task, much more than that of physically depositing a thin film on a UHV monocrystal. Our efforts were rewarded as we were able to produce PtZn alloy NCs. This one of the main points of the present study. The presence of Pt(acac)2 prevents zinc (whose from being fully oxidized to ZnO, which is the case when Zn(acac)2 alone is present in oleylamine. Monochromatized XPS shows that zinc makes an alloy with platinum, where it remains metallic, while another fraction is under the form of ZnO. It is not completely clear whether two reaction channels are in competion (PtZn alloying versus Zn oxidation by water), or Zn is oxidized afterwards, i.e. after exposure to air. The alloyed NCs have been studied in detail by advanced methods of electron microscopy (including under operando conditions), diffraction and EDS. Unlike the case of the surface model where the STM images were particularly telling, we do not have at this stage of the study an exact model of the interface between the metal alloy and the zinc oxide that surrounds it. On the other hand, we know that the core of the NCs is occupied by the PtZn alloy, and that the outer planes are identical to those of pure platinum. [...]
Zehani, Mongia. "Optimisation du procédé polyol pour la synthèse de nanoparticules d'oxyde de zinc : mise à l'échelle du procédé et applications photovoltaïques." Thesis, Paris 13, 2014. http://www.theses.fr/2014PA132044/document.
Full textThanks to developments in synthesis methods and characterization techniques, nanomaterials research field is increasingly active and attractive. This thesis aims to investigate the polyol process for zinc oxide nanoparticles synthesis. Indeed, this method has the advantage of providing a wide variety of particle morphology with a good crystalline quality. In this thesis, we show that by varying the synthesis conditions we can adjust the size, the size distribution and the morphology of nanoparticles to obtain either shaped nanospheres as small as 6 nm or nanowires as long as 600 nm. Our systemic study focused on a set of parameters that control the forced hydrolysis reaction including stoichiometry, temperature, nature of the polyol but also mixing, injection of reagents and ultrasound activation. We show that the shape of the nanoparticles is determined by the competition between growth rates of different zinc oxide crystal facets. Our study also compared different mixing devices such as laboratory reactor, T- mixer and impinging jets. More over, to mass produce zinc oxide nanoparticles, we developed an original strategy to understand the effect of mixing on nanoparticle size. In our approach, we correlate the turbulent energy dissipated as obtained from Computation Fluid Dynamics with theme asured nanoparticle size. The application to the specific case of zinc oxide has allowed us to produce sample aliquots of ~50 g per Batch. These nanoparticles were subsequently incorporated into dye-sensitized solar cells as semi conducting material at the École Nationale Supérieure de Chimie de Paris. Indeed, the morphological richness of the zinc oxide produced via polyol process suggests good adsorption of the dye on their surfaces. Our results show that the photoconversion efficiencies depend both on the morphology and the size. Our best photoconversion efficiency approaches 5.3%
Parize, Romain. "Architectures radiales à base de nanofils de ZnO pour des applications photovoltaïques." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI017/document.
Full textSolar energy has a huge potential for the futur electricity generation. The research in this area is therefore accelerating these last years; Especially, the development of non-toxic semiconductor materials, which can be elaborated by a low-cost and easy-to-use techniques such as growths in liquid chemistry. In this context, zinc oxide (ZnO) has become increasingly important in research laboratories.This thesis has been carried out for several purposes. The first was to improve our understanding of the mechanisms involved in the growth of ZnO nanowires by chemical bath deposition, and, in particular, the role of chemical precursors introduced into the bath. Subsequently, morphological studies and crystallization annealing studies of TiO2 and Sb2S3 shells deposited on ZnO nanowires by ALD, SILAR and spray pyrolysis are found to be essential for the preparation of heterostructures based on ZnO nanowires/TiO2/SB2S3 for solar cells. In this kind of cell, the ZnO is the electron conductor, whereas the TiO2 passivates the surface of the ZnO nanowires and protects them. The Sb2S3 absorbs the photons of the solar spectrum and produces excitons for the creation of current.These heterostructures are elaborated for the first time and have never been reported in the literature. A photoconversion efficiency of 2.3% was determined in this manuscript. This value is encouraging for the next studies on these materials and represents the first effective efficiency for this kind of promising heterostructures
Sandana, Eric Vinod. "SYNTHÈSE ET MAÎTRISE DE LA CROISSANCE DE NANOCRISTAUX : APPLICATIONS AUX COMPOSANTS A BASE DE SEMI-CONDUCTEURS A GRANDE BANDE INTERDITE." Phd thesis, Ecole Polytechnique X, 2011. http://pastel.archives-ouvertes.fr/pastel-00640652.
Full textYoussef, Sami. "Elaboration et caractérisation du ZnO et LiTaO3 pour applications microcapteurs." Montpellier 2, 2009. http://www.theses.fr/2009MON20069.
Full textIn this thesis, zinc oxide and lithium tantalite thin films have been deposited by two growth techniques for microsensor applications. This manuscript is then divided in two distinct parts. The first part includes three chapters and consists on the realization of ZnO-based gas microsensor. In chapter I, the properties of ZnO and the technologies used for gas detection are well discussed. In chapter II is detailed the radiofrequency magnetron sputtering that is used to grow ZnO on different substrates. It has been characterized by various methods to enhance its optical and structural properties for optimal gas sensitivity. In chapter III are debated the fabrication sequence for our optical waveguide sensor, sensitivity and selectivity of ZnO thin films to explosive gases: butane and methane. The second part of this work concerns the study of piezoelectric and pyroelectric properties of lithium tantalite, and its applications to differential scanning calorimetry DSC. The chapter I of this part is devoted to the description of LiTaO3 structure and properties. In chapter II we described a MEMS scanning calorimeter with serpentine-shaped platinum resistors for characterizations of microsamples. In this device, the platinum layers are used as heating and sensing element. In chapter III is shown the feasibility of bulk LiTaO3-based demonstrator adapted to differential scanning calorimetry measurements. Finally, in chapter IV, are discussed the characterizations of LiTaO3 thin films elaborated by sol-gel technique on two different substrates: Silicon (100) and Sapphire (001). These thin films will be integrated in the MEMS calorimeter
Labegorre, Jean baptiste. "Synthèse et caractérisation de matériaux oxydes et oxylfures pour applications thermoélectriques." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC272/document.
Full textThe development of new thermoelectric materials with good performance and low cost is necessary to make this technology more accessible and thus achieve a significant environmental impact. The work presented in this thesis deals with the synthesis and the structural and physicochemical characterisation of inexpensive oxides, oxysulfides and sulfides compounds in order to study their thermoelectric properties.The first study investigates the influence of low indium contents on the structure and properties of zinc oxide. The characterization of the samples by transmission electron microscopy shows that the solubility of indium in ZnO is less than 0.5 at%. The bidimensional defects formed from low concentrations of indium greatly reduce the electrical resistivity and the thermal conductivity of the material. In parallel with this work, our interest focused on the thermoelectric performances of the oxysulfide BiCuOS through a substitution of Pb at the Bi site. The aliovalent substitution allows a decrease in the electrical resistivity of the material. However, the later remains too high due to a low solubility of the divalent cation in the BiCuOS phase. The last two chapters are dedicated to the study of sulfides compounds. During this work, the natural kiddcreekite mineral phase (Cu6SnWS8) is synthesized for the first time in a laboratory. The successive steps followed to increase the purity of the product is described while the thermoelectric performance of the material is evaluated. Finally, our attention focused on the compounds MnBi4S7 and FeBi4S7 whose crystalline structure seems compatible with a low lattice thermal conductivity. The measured electrical and thermal transport properties are correlated with the electronic structure and the vibrational properties calculated for the two phases. The compound MnBi4S7 thus appears as a promising n-type semiconductor for thermoelectric applications
Halaby, Macary Mikhael. "Élaboration et caractérisation de matériaux hybrides "nanoparticules Zn0 - cristaux liquides" pour applications aux cellules photovoltaïques." Thesis, Littoral, 2019. http://www.theses.fr/2019DUNK0509.
Full textThis thesis work is a part of the significant growth that is currently taking place in the field of the renewable energy in terms of research and new energy technologies. It is dedicated to the study of new hybrid material "zno particles - liquid crystals" for the applications in "bulk heterojunction" solar cells. The motivation is to increase the donor-acceptor interfaces in hybrid material and to combine the self-organizing and charge transport properties of liquid crystals, in order to improve their performance. A completely automated "time of flight" measuring set-up is developed, for the measurement of the charge carriers mobility in the aforementioned hybrid material. Using the dsc, polarized optical microscopy, uv-visible spectroscopy and "time of flight", we have characterized two calamitic liquid crystals. Two types of charge transport, one ionic, and the other electronic, are highlighted for positive and negative charges with electric field independent mobility and different behaviors with temperature. A process for the elaboration of hybrid materials is developed. The characterization of these materials show the influence of nanoparticles concentrations (0,05 to 38% by volume). The size of the domains in the liquid crystal phases increases with the concentration whereas the isotropic-sma phase transition temperature decreases monotically. Under controlled dispersion of zno nanoparticles in host liquid crystal up to 12% by volume, we have conserved the transport phenomena in hybrid material and study has shown that electronic transport is improved. The characterized hybrid materials have shown their potential application in organic photovoltaic
Balestrieri, Matteo. "Transparent conductive oxides with photon converting properties in view of photovoltaic applications : the cases of rare earth-doped zinc oxide and cerium oxide." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAE019/document.
Full textThe objective of this thesis was to investigate the photon converting properties of rare earths (RE) ions embedded in transparent oxide hosts in view of potential application on silicon solar cells. In particular, the goal was to functionalize thin films that are already used in solar cells such as anti-Reflection coatings or transparent conductive oxides.Two host materials (ZnO and CeO2) have been selected, which are compatible with silicon solar cells.This work shows that RE-Doped transparent oxide films are a viable low-Cost solution for obtaining photon-Converting layers that can be applied on solar cells, but that achieving high efficiencies is much more difficult than it might appear in theory. Nevertheless, very valuable information has been obtained on the effect of the host material on the photon management properties and on the energy transfer mechanisms in these systems. In particular, the energy level diagram of some of the rare earth ions in the specific matrices has been reconstructed
Karam, Chantal. "Elaboration et caractérisation des structures coeur/coquille à base de nanofils de ZnO pour des applications photovoltaïques." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT199.
Full textThe aim of this thesis was to fabricate core / shell structures based on zinc oxide (ZnO) nanowires for photovoltaic applications mainly, and UV sensors as well. ZnO nanowire arrays of controlled size were grown using electrodeposition method (ECD). We also synthesized organized urchins based on ZnO nanowires by combining methods of surface nanostructuring (self-assembly of polystyrene spheres), atomic layer deposition (ALD) and electrodeposition of ZnO (ECD). Several approaches concerning the control of dimensions on these nanowires have been investigated. The diameter, density and morphology of these nanowires were adjusted either by modifying the diameters of spheres or by modulating the experimental parameters during deposition (ALD and / or ECD). Organized monolayers and multilayers of urchins based on ZnO nanowires ranging between 750 -1500 nm in length were obtained in a diameter range between 50-170 nm. The construction of dye solar cells (DSSC) was based on nanowire arrays and organized urchins based on ZnO nanowires coated with thin shells of titanium oxide (TiO2) obtained by atomic layer deposition (ALD). As proof of concept, solar conversion efficiencies of ~ 2% were achieved, bearing in mind that ZnO absorbs only in UV range. These materials have also been used for solar cells construction of type II based on organized urchin-like ZnO nanowires coated with copper oxide (Cu2O) layers of different thicknesses by electrodeposition of Cu2O. The effects of the morphology and the dimension of the organized nanowires and urchin-like ZnO nanowires on light scattering and electronic performance of the devices have been studied. UV sensors were tested using nanowires and urchin-like ZnO nanowires. A significant improvement in the performance and stability in UV detection was observed when using these ZnO nanostructures. This is due to the increase in active area offered by the ZnO nanowires and urchins compared to the performance obtained with ZnO thin films. Finally, a bioelectrode based on polyacrylonitrile nanofibers (PAN) coated with a layer of gold has been prepared for the electrochemical reduction of CO2 into useful biofuels. The PAN/gold electrode was prepared using a homemade synthesis method, based on electrospinning followed by gold sputtering. A significant improvement in the electrochemical activity and the stability of the bioelectrode was observed
Bouibes, Amine. "Exploration de matériaux avancés pour des applications en génie civil." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10112/document.
Full textThe civil engineering progress would not been possible without new materials development. In fact, new materials with efficient properties allowed the construction of modern structures, taller building, longer bridges,…etc. Furthermore, it is essential for the progress continuity of this field in the future. Especially, in the smart construction approach we will need new materials with the very efficient properties. The study of the properties of materials at the molecular level, allow a better understanding of how those materials will function and react on a macro level. It is through such studies that we are able to understand their behaviors under a large number of conditions. In this thesis, we focus our efforts on three types of materials. The first one is zinc carbonate. The second one is Lime, which is widely used in building and public works ; and the last one is zinc oxide, which is an important material for steel construction. The purpose here is to investigate in details the three different materials at various pressures and variable compositions by means of the universal structure prediction method based on ab initio tool. For smithsonite, a number of mechanical properties were evaluated. We mainly show that this system is harder and more rigid than the other carbonates. Besides, the investigation of its electronic properties reveals that the energy band-gap is close enough to some semiconductors. Moreover, two high-pressure phase transitions have been found: the first one at 87 GPa and second one at 121 GPa. Below 87 GPa, ZnCO3 is found to be the most stable structure with R-3c space group (calcite structure); and between 78 GPa and 121 GPa, ZnCO3 has another structure (magnesite phase II) with C2/m space group. Above 121 GPa, we show that new structure with P212121 space group becomes more stable. In addition, by means of variable composition ab initio evolutionary algorithm, we show surprisingly new stable compounds from Ca-O. At ambient pressure CaO2 is predicted as a thermodynamically stable system. This new compound goes from C2/c to I4/mcm space group structure at 18.5GPa. Under increasing pressure, further compounds become stable such as CaO3 which stabilize in P-421m space group structure above 65 GPa. Finally, our studies on ZnO show that ZnO2 becomes thermodynamically stable at pressure above 120 GPa. A phase transition is obtained at 10 GPa for ZnO, which is stable in B4 wurtzite structure at ambient conditions up to 10GPa. Above 10 GPa, ZnO becomes more stable in B1 structure. These results strongly support our predictions since they agree perfectly with available experiment and previous theoretical studies
El, Idrissi Sidi El Bachir. "Elaboration et caracterisation de materiaux destines a des applications solaires : cu::(x)o et zn::(3)p::(2)." Université Louis Pasteur (Strasbourg) (1971-2008), 1987. http://www.theses.fr/1987STR13010.
Full textMorisot, Fanny. "Conception et étude de dispositifs électriques à base de réseaux aléatoires de nanofils de ZnO pour applications biocapteurs." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT097.
Full textNanowires are structures combining a diameter of nanometric dimensions and length of micrometric dimension with interesting features for many fields of application such as electronics, optics and molecular detection. However, their small size makes them difficult and costly to integrate into devices. One way to overcome this issue is to assemble them to form a network of randomly oriented nanowires, also called nanonet, which is of macroscopic scale. This work deals with zinc oxide nanonets, which were successfully integrated into three different types of devices: field-effect transistors, DNA sensors and acetone detectors. First, we present the whole fabrication process, from nanowires synthesis to nanonet fabrication and integration into functional devices. Two integration processes were used. The first one involved direct nanonet integration on micro-hotplates with electrodes, provided by our industrial partner, for gaz sensing applications. The second one was a full microelectronic process, which was developed and tested in this work, for the fabrication of field effect transistors. We then discuss the performance of the different devices developed. The fabricated field effect transistors demonstrated remarkable properties which had never been achieved before in the literature for similar devices. We successfully detected DNA by fluorescence and showed the influence of nanowires density on such a sensor. Finally, the electrical detection of gaseous acetone was carried out over a wide range of conditions from dry atmosphere at room temperature to very humid atmosphere at 360°C. This work shows that ZnO nanonets have interesting properties that offer prospects for applications in fields as varied as electronics or the detection of chemical or biological molecules
Leon, Perez Edgar. "Matrice de nanofils piézoélectriques interconnectés pour des applications capteur haute résolution : défis et solutions technologiques." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAT015/document.
Full textThis thesis project deals with the question of heterogeneous integration of interconnected nanowires on microelectronics chips in a view to MEMS and NEMS type devices. These devices aim to address the global problematic of “More than Moore”, that is the transformation of classical CMOS microelectronics processes to enable the development of new integrated micro and nanocomponents.In particular, over the past few years, a variety of nanomaterial-based devices have arisen, revealing micro-actuators and micro-sensors with new functionalities and/or improved performances, e.g. in terms of resolution, sensitivity, selectivity. Here we will focus on a certain type of nanostructures, Zinc Oxide (ZnO) nanowires, which have mostly been used so far to design devices whose working principle exploits the piezoelectric effect, often judiciously combined with their semiconducting properties. Indeed, when submitted to a mechanical constraint or displacement, piezoelectric nanowires generate an electrical potential (piezopotential). If, in addition to this, nanowires are also semiconducting, the piezopotential can be exploited to control an external current as a function of the mechanical constraint imposed to the nanowire (piezotronic effect). The advantage of using one-dimensional nanostructures lies into the modularity of both their mechanical and piezoelectric properties, in comparison with the bulk material. Moreover, their integration is now possible thanks to growth processes compatible with microelectronic processes (CMOS/MEMS). All these considerations make it possible to design very high performance devices combining the very small dimension of their functional unit elements (hence a high integration density which implies a high spatial resolution) and their sensitivity to nanoscale phenomena.In this project, we will adopt a very technology-oriented vision of the design of vertically-aligned ZnO-piezoelectric-nanowire matrix-type sensors. Relying on theoretical performance predictions and technological choices to solve device design and fabrication issues, this study aims to produce proof-of-concept prototypes of these high performance devices. First of all, the design process is elaborated based on finite element multiphysics models (FEM) of the piezoelectric response of a single bent nanowire, which we upgraded towards complete pixels, representative of an interconnected nanowire within a matrix. Following these considerations, we have imagined means of characterization of the piezoelectric response of a wire, then of a pixel. The implemented characterization experiment highlighted the complexity of carrying out a systematic, calibrated piezoelectric measurement, decorrelated from the environment of the pixel. Adequate technological solutions could then be implemented through the fabrication of elementary pixels suitable for characterization and whose piezoelectric response could be predictively modeled.This technological part of the work encompassed several development stages, including the chemical growth of ZnO nanowires and the design of the electrode matrix contacting the nanowires individually. The former splits into two steps: first choosing a clean-room compatible seed layer which will favor growth on a Silicon chip; secondly developing a selective growth process enabling the localization of nanowires within a predefined matrix of electrodes. The second part of the fabrication work focused on defining and optimizing the technological stack with respect to all the above mentioned considerations, and implementing the technological processes yielding the final targeted matrix
Soumahoro, Ibrahima. "Elaboration et caractérisation des couches mines de ZnO dopées au molybdène et l'ytterbium, pour des applications photovoltaïques." Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAE016.
Full textIn view of improving the cells of the future, we have elaborated respectively doped ZnO thin films by Mo spray pyrolysis method and doped Yb by sputtering. Whatever the technique used all these layers are polycrystalline, transparent with smooth surfaces. In addition, the Hall effect measurements show an n-type conductivity in the case of two systems studied. On thin films of ZnO doped Mo, the electrical properties are potentially interesting for photovoltaic applications as additional dopant in addition to rare earths. As for thin films ZnOYb, PL measurement results have clearly demonstrated an optical coupling between ZnO and Yb with the observation of a photon infrared photon UV incident. This suggests that the concept of "down-shift" is likely to be validated
Xia, Yuanyang. "Hétérostructures polaires et non polaires à base de nitrure de gallium épitaxiées sur ZnO pour applications optoélectroniques." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00923180.
Full textDemes, Thomas. "Croissance, assemblage et intégration collective de nanofils de ZnO : application à la biodétection." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI008/document.
Full textTwo-dimensional randomly oriented zinc oxide (ZnO) nanowire (NW) networks, or nanonets, represent innovative and promising nanostructures for numerous applications. The objective of this thesis is to develop ZnO nanonets for the detection of biological or gaseous molecules, in particular DNA, by using a low cost and scalable procedure. To this end, it is essential to control the different elaboration steps which are: (i) the deposition of ZnO seed layer films on silicon substrates by sol-gel approach, (ii) the growth of ZnO NWs on these seed layer films by hydrothermal synthesis, and (iii) the assembly of these NWs into ZnO nanonets by vacuum filtration. In-depth studies of each of these processes were thus carried out. This work enabled to elaborate reproducible and homogenous ZnO thin films, NWs and nanonets whose morphological properties are precisely controlled over a wide range. Two DNA biofunctionnalization protocols were then developed for the nanonets and led to encouraging results which need however to be further optimized. The nanonets were also integrated into functional devices and the first electrical characterizations provided promising results. In the longer term, this work opens the way to the collective integration of ZnO NWs which would enable the development of a new generation of portable, fast and ultra-sensitive (bio- or gas-) sensors
Garnier, Jérôme. "Elaboration de couches minces d'oxydes transparents et conducteurs par spray cvd assiste par radiation infrarouge pour applications photovoltaÏques." Phd thesis, 2009. http://pastel.archives-ouvertes.fr/pastel-00005629.
Full textBadre, Chantal. "Étude de la réactivité de surface par mesure d'angle de contact : influence de la fonctionnalisation et de la structure. Applications aux films d'oxyde de zinc électrodéposés." Phd thesis, 2007. http://pastel.archives-ouvertes.fr/pastel-00004902.
Full textCibian, Mihaela. "Des complexes métalliques avec des ligands hydroxyamidines/ amidines oxydes (AMOXs) : synthèse, caractérisation et investigation de leurs applications." Thèse, 2015. http://hdl.handle.net/1866/18431.
Full textLa motivation initiale de ce travail provient de l'importance que les composés de coordination ont dans notre vie quotidienne. Leurs propriétés les rendent attrayants pour un large éventail d'applications, dans des domaines allant de la catalyse et de la conversion et stockage de l'énergie solaire jusqu’au domaine des matériaux et des sciences de la vie. Poussée par l'évolution et le progrès général de notre société, la recherche en chimie de coordination moderne évolue vers la complexité au niveau moléculaire, où la Nature représente une source majeure d'inspiration, comme dans le cas de la photosynthèse artificielle et de la chimie métallo-supramoléculaire. Dans le même temps, l'étude des complexes de coordination nourrit la curiosité scientifique et les approches pluridisciplinaires ouvrent de nouveaux mondes fascinants, tout en repoussant les frontières de la connaissance à des niveaux sans précédent. En continuité avec l'étude et le développement de composés de coordination pour des applications spécifiques, le thème central de cette thèse est l'interaction Métal - Ligand et les moyens de la moduler par le design du ligand, afin de générer les propriétés nécessaires pour les applications ciblées. Le design de complexes de coordination est considéré comme un «ensemble de composants modulables» – le ligand: les groupes fonctionnels des atomes donneurs, les substituants et leurs effets électroniques et stériques, le type et la dimension du cycle chélate; l’ion métallique; l'environnement. Les ligands étudiés ici sont les oxydes d’amidines N,N’-disubstitués (AMOXs) (aussi appelés α-aminonitrones ou hydroxyamidines). L'influence du motif de substitution du ligand sur les propriétés des composés est étudiée pour des complexes bis(AMOX) de cobalt(II) et de zinc(II). Les bis(chélates) de cobalt(II) sont plan carré (bas spin) à l'état solide, mais présentent une isomérisation de la structure plan carré (bas spin) vers une structure tétraédrique (haut spin) en solution dans des solvants non-coordinants. L'équilibre d'isomérisation est fortement influencé par le motif de substitution sur le ligand, du fait d’une combinaison de facteurs stériques et électroniques. Une approche théorique (DFT/ TD-DFT) et expérimentale combinée a montré que, dans la famille des chélates bis(AMOX) de zinc(II), le gap optique peut être finement modulé pour de potentielles applications dans des dispositifs optoélectroniques par la modification spécifique des ligands. Un cas spécial de solvatomorphisme a été identifié: des modifications de la géométrie et de l’état de spin sont induites par la présence ou l’absence de liaisons hydrogènes dans un même composé de cobalt(II). L’influence de l'environnement est ainsi illustrée. Les interactions faibles sont les principaux facteurs responsables pour la stabilisation du système vers une combinaison spécifique géométrie - état de spin à l'état fondamental, de façon similaire au contrôle allostérique et aux interactions hôte-invité dans les systèmes biologiques. Des études préliminaires vers des systèmes supramoléculaires à base des ligands AMOX ont été effectuées (assemblées multimétalliques vers des matériaux fonctionnels et des systèmes photocatalytiques pour conversion d'énergie solaire, en particulier la photocatalyse pour la production de H2). J’espère que les résultats et les perspectives présentées dans cette thèse incitent à la poursuite de la chimie de coordination des AMOXs.
The underlying motivation for this work stems from the importance that coordination compounds play in our daily lives. Their properties make them suitable and attractive for a wide range of applications in fields going from catalysis and solar energy conversion/ storage to materials and life sciences. Driven by the general progress of our society, research in modern coordination chemistry evolves toward complexity at the molecular level, with Nature representing a major source of inspiration as shown by artificial photosynthesis and metallosupramolecular chemistry. At the same time, the study of coordination complexes nurtures scientific curiosity, and multidisciplinary approaches are opening fascinating new worlds, while pushing the frontiers of knowledge to unprecedented depths. In line with the study and the development of coordination compounds for specific applications, the central theme of this thesis is the Metal-Ligand interaction and how it can be modulated through ligand design to generate the properties targeted for particular applications. The design of coordination complexes is seen as a ‘collection of adjustable components’ (e.g. the ligand: the donor atoms and their functional groups, the type and the size of the chelating ring, the ring substituents and their electronic and steric effects; the metal-ion; the environment). The ligands under study are the N,N’-disubstituted amidine oxides (AMOXs) (also known as α-aminonitrones/ hydroxyamidines). The influence of the ligand substitution pattern on the properties of the compounds is investigated in series of cobalt(II) and zinc(II) bis(AMOX) complexes. The cobalt(II) bis(chelates) are square-planar (low spin) in the solid state, but show square-planar (low spin) to tetrahedral (high spin) isomerization in solution of non-coordinating solvents. The isomerization equilibrium is highly sensitive to the substitution pattern on the ligand due to a combination of steric and electronic influences. A combined experimental and theoretical approach [DFT and time dependent (TD-DFT)] has shown that in the family of zinc(II) bis(AMOX) chelates, by specific modification of the ligands, the optical band gap can be fine-tuned for potential applications in optoelectronic devices. A special case of hydrogen-bonding-induced geometry and spin change at a cobalt(II) centre within a same cobalt(II) bis(chelate) has been identified. It highlights the influence of the environment on the properties of the complex. Weak interactions are the main factors responsible for biasing the system toward a specific geometry – spin state combination in the ground state, in a similar fashion to allosteric control and host-guest interactions in biological systems. Preliminary studies were conducted toward AMOX-based supramolecular systems: multimetallic assemblies toward functional materials and photocatalytic systems for solar energy-conversion (in particular photocatalysis for H2 production). It is my hope that the above results and the perspectives presented in this work motivate further developments in AMOX coordination chemistry.