To see the other types of publications on this topic, follow the link: Oxygen channels.

Dissertations / Theses on the topic 'Oxygen channels'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Oxygen channels.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Takahashi, Nobuaki. "TRP channels as sensors of cellular redox status." 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/131892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Giacomin, Paul R. "Understanding the mechanism of oxygen sensitivity of SK channels /." Title page and summary only, 2002. http://web4.library.adelaide.edu.au/theses/09SB/09SBg429.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Saam, Jan. "Identification of dynamic oxygen access channels in 12/15-lipoxygenase." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15744.

Full text
Abstract:
Zellen enthalten zahlreiche Enzyme, deren Reaktionen von molekularem Sauerstoff abhängen. Oft sind deren aktive Zentren tief im inneren des Proteins verborgen, was die Frage nach spezifischen Zugangskanälen, die den Sauerstoff gezielt zum Ort der Katalyse leiten, aufwirft. In der vorliegenden Arbeit wird dies am Beispiel der 12/15-Lipoxygenase, als ein typisches Beipiel Sauerstoff verbrauchender Enzyme, untersucht. Die Sauerstoffverteilung innerhalb des Proteins wurde bestimmt und mögliche Routen für den Sauerstoffzugang definiert. Zu diesem Zweck wurden theoretische Untersuchungen eng mit Experimenten verzahnt. Zuerst wurden Molekulardynamik Simulationen des Proteins in Lösung durchgeführt. Aus den Trajektorien konnte die dreidimensionale Verteilung der Freien Enthalpie für Sauerstoff berechnet werden. Die Analyse der günstigsten Pfade in dieser Energielandschaft führte zur Identifikation von vier Sauerstoffkanälen im Protein. Alle Kanäle verbinden die Proteinoberfläche mit einem Gebiet hoher Sauerstoffaffinität am aktiven Zentrum. Diese Region liegt bezüglich des Substrats gegenüber dem Eisenzentrum, wodurch eine strukturelle Erklärung für die Reaktionsspezifität des Enzyms gegeben ist. Der katalytisch bedeutsamste Weg des Sauerstoffs kann durch L367F Austauschmutation blockiert werden, was zu einer stark erhöhten Michaelis-Konstante für Sauerstoff führt. Diese experimentell nachgewiesene Blockade konnte, mit Hilfe entsprechender Molekulardynamik Simulationen, durch eine Umordnung eines Wasserstoffbrücken-Netzwerks von Wassermolekülen innerhalb des Protein im Detail erklärt werden. Die Ergebnisse ermöglichen den Schluss, dass die Hauptroute für Sauerstoff zum aktiven Zentrum des Enzyms einem Kanal folgt, der aus vorübergehend verbundenen Hohlräumen besteht. Hierbei unterliegt das Öffnen und Schließen des Kanals der Dynamik der Proteinseitenketten.
Cells contain numerous enzymes utilizing molecular oxygen for their reactions. Often, their active sites are buried deeply inside the protein which raises the question whether there are specific access channels guiding oxygen to the site of catalysis. In the present thesis this question is investigated choosing 12/15-lipoxygenase as a typical example for such oxygen dependent enzymes. The oxygen distribution within the protein was determined and potential routes for oxygen access were defined. For this purpose an integrated strategy of structural modeling, molecular dynamics simulations, site directed mutagenesis, and kinetic measurements has been applied. First, molecular dynamics simulations of the protein in solution were performed. From the trajectories, the 3-dimensional free-energy distribution for oxygen could be computed. Analyzing energetically favorable paths in the free-energy map led to identification of four oxygen channels in the protein. All channels connect the protein surface with a zone of high oxygen affinity at the active site. This region is localized opposite to the non-heme iron providing a structural explanation for the reaction specificity of this lipoxygenase isoform. The catalytically most relevant path can be obstructed by L367F exchange which leads to a strongly increased Michaelis constant for oxygen. This experimetally proven blocking mechanism can, by virtue of molecular dynamics studies, be explained in detail through a reordering of the hydrogen bonding network of water molecules. As a conclusion, the results provide strong evidence that the main route for oxygen access to the active site of the enzyme follows a channel formed by transiently interconnected cavities whereby the opening and closure is governed by sidechain dynamics.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Jie. "Mechanisms of oxygen sensing by KV3.1b channels expressed in HEK293 cells." Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Idikuda, Vinaykumar. "REGULATION OF HCN CHANNEL FUNCTION BY DIRECT cAMP BINDING AND SINGLET OXYGEN." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5455.

Full text
Abstract:
Hyperpolarization-activated, cyclic-nucleotide gated ion channels (HCN channels) are activated by membrane hyperpolarization and modulated by cyclic nucleotides. HCN channels are important to maintain the resting membrane potential and input resistance in neurons and have important physiological functions in the brain and heart. Four mammalian HCN isoforms, HCN1-4, and the isoform cloned from sea urchin, spHCN, have been extensively studied. Among these, only spHCN channel shows a voltage dependent inactivation. Previous studies have shown that the ligand binding in mHCN2 channel is activity dependent: cAMP binding increases along with channel opening or channels in the open state have higher binding affinity for cAMP. But to date, information pertaining to the ligand binding to an inactivated ion channel or desensitized receptor is lacking. To address this gap, we used fluorescently labelled cAMP analogues in conjunction with patch clamp fluorometry (PCF) to study the ligand binding to the spHCN channel in various conformational states. We show that inactivated spHCN channel shows reduced binding affinity for cAMP, compared to that of the closed or open channel. Parallelly, we noticed significant changes to channel function when a combination of laser and photosensitizer was used to study ligand binding. A reactive oxygen species called singlet oxygen has been confirmed to be the major player in this process. Both photo-dynamically generated and chemically generated singlet oxygen modifies spHCN channel by removing the inactivation. The effect of singlet oxygen on channel can be abolished by the mutation of a key histidine (H462) residue in the ion conducting pore. Taken together, these two projects expanded our understanding about the physicochemical nature of fluorophores from two aspects: (i) the release of photon as a valuable tool to study the conformational dynamics in proteins; (ii) the generation of singlet oxygen as an effective modulator of protein function.
APA, Harvard, Vancouver, ISO, and other styles
6

Ogawa, Nozomi. "Detection of cellular redox status by transient receptor potential channels." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Holdsworth, Clark Thomas. "Vascular ATP-sensitive potassium channels impact spatial and temporal oxygen transport: implications for sulphonylurea therapy." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/20562.

Full text
Abstract:
Doctor of Philosophy
Department of Anatomy and Physiology
Timothy I. Musch
Matching local muscle O[subscript]2-supply to O[subscript]2-demand during the prodigious exercise-induced metabolic challenge is achieved through coordinated mechanisms of vascular control. The unique sensitivity of ATP-sensitive potassium (K[subscript]ATP) channels to cell metabolism indicates the potential to match energetic demand to peripheral O[subscript]2 transport. The aim of this dissertation was to determine the magnitude and kinetics of the K[subscript]ATP channel contribution to vascular control during exercise in health and heart failure. It was hypothesized that K[subscript]ATP channel inhibition via glibenclamide would, in healthy rats, 1) reduce exercising skeletal muscle blood flow and vascular conductance 2) speed the fall of microvascular O[subscript]2 driving pressure (PO[subscript]2mv; set by the O[subscript]2 delivery-O[subscript]2 utilization ratio) during muscle contractions and 3) in heart failure rats, augment the PO[subscript]2mv undershoot and delay the time to reach the contracting steady-state. A total of 55 male Sprague-Dawley rats were used under control and glibenclamide conditions (5 mg kg[superscript]-1). Hindlimb muscle blood flow (radiolabelled microspheres) was determined at rest (n = 6) or during treadmill exercise (n = 6-8; 20, 40 and 60 m min[superscript]-1, 5% incline). Spinotrapezius muscle PO[subscript]2mv (phosphorescence quenching) was measured in 16 heart failure (coronary artery ligation) and 12 healthy rats and during 180 s of 1-Hz twitch contractions (~6 V). The major effects of glibenclamide were, in healthy rats, 1) a reduction in exercising hindlimb skeletal muscle blood flow with the greatest effect in predominantly oxidative muscle fiber types and at higher running speeds 2) an increased prevalence of the undershoot of PO[subscript]2mv steady-state and doubled time to reach the steady-state and 3) in heart failure rats, a reduced baseline PO[subscript]2mv, an augmented undershoot of the steady-state and time to reach steady-state and a reduction in the mean PO[subscript]2mv during contractions. These data suggest that the K[subscript]ATP channel contributes substantially to exercise-induced hyperemia and may contribute to the slowing of VO[subscript]2 kinetics given the spatial and temporal effects of glibenclamide. The K[subscript]ATP channel-mediated protection against a severe O[subscript]2-delivery to O[subscript]2-utilization mismatch at the onset of contractions raises serious concerns for sulphonylurea treatment in diabetes which is likely to cause perturbations of [metabolite] and compromise exercise tolerance.
APA, Harvard, Vancouver, ISO, and other styles
8

Yamamoto, Shinichiro. "Reactive Oxygen Species / Reactive Nitrogen Species-sensitive TRP channels : Molecular Activation Mechanism and Physiological Significance." 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/124503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Oliveira, Vanda Cristina Paiva Tavares de. "Cork structural characteristics and their influence on the oxygen ingress through wine stoppers." Doctoral thesis, ISA-UL, 2016. http://hdl.handle.net/10400.5/12037.

Full text
Abstract:
Doutoramento em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia - UL
Cork structural characteristics and their influence on the oxygen ingress through wine stoppers were studied aiming to contribute to an increased added-value of the natural cork stoppers. The surface porosity features of cork stoppers can differentiate the three main commercial classes used nowadays: the porosity coefficient was 2.4%, 4.0% and 5.5% for premium, good and standard stoppers, respectively. Image analysis also distinguished defects in the cork structure: empty ant gallery; Coroebus undatus F. larvae gallery; and wetcork. Several predictive classification models of stoppers into quality classes were built using the results from cork stoppers surface characterization and a simplified model using the main discriminant features i.e. porosity coefficient and the RGB colour-type variables was presented. X-ray tomography was used as a non-destructive technique to study the internal structure of natural cork stoppers, allowing the visualization of some defects inside the cork stopper. After characterization, the natural cork stoppers were used as closure of bottles and oxygen diffusion measurements were made along time. The kinetics of oxygen transfer was similar and could be adjusted to logarithmic models. On average 35% of the overall oxygen ingress occurred in the first 5 days, 59% in the 1st month and 78% in the first 3 months. Microtomography images (voxel size of 50 µm) allowed the observation of lenticular channels development and geometry, and the quantification of void and high density regions (HDR) fractions. The evidence that the void fraction of lenticular channels in the innermost part of the cork stopper inserted in the bottle was strongly related to the oxygen ingress in the first month after bottling can be used for quality enhancement of natural cork stoppers with incorporation of performance requirements
APA, Harvard, Vancouver, ISO, and other styles
10

Garlid, Anders Olav. "Mitochondrial Reactive Oxygen Species (ROS): Which ROS is Responsible for Cardioprotective Signaling?" PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1641.

Full text
Abstract:
Mitochondria are the major effectors of cardioprotection by procedures that open the mitochondrial ATP-sensitive potassium channel (mitoKATP), including ischemic and pharmacological preconditioning. MitoKATP opening leads to increased reactive oxygen species (ROS), which then activate a mitoKATP-associated PKCε, which phosphorylates mitoKATP and leaves it in a persistent open state (Costa, ADT and Garlid, KD. Am J Physiol 295, H874-82, 2008). Superoxide (O2•-), hydrogen peroxide (H2O2), and hydroxyl radical (HO•) have each been proposed as the signaling ROS but the identity of the ROS responsible for this feedback effect is not known. Superoxide was excluded in earlier work on the basis that it does not activate PKCε and does not induce mitoKATP opening.To further examine the identity of the signaling ROS, respiring rat heart mitochondria were preincubated with ATP and diazoxide to induce the phosphorylation-dependent open state, together with agents that may interrupt feedback activation of mitoKATP by ROS scavenging or by blocking ROS transformations. Swelling assays of the preincubated mitochondria revealed that dimethylsulfoxide (DMSO), dimethylformamide (DMF), deferoxamine, trolox, and bromoenol lactone (BEL) each blocked the ROS-dependent open state but catalase did not interfere with this step. The lack of a catalase effect and the inhibitory effects of agents acting downstream of HO• excludes H2O2 as the endogenous signaling ROS and focuses attention on HO•. In support of the hypothesis that HO• is required, we also found that HO•-scavenging by DMF blocked cardioprotection by both ischemic preconditioning and diazoxide in the Langendorff perfused rat heart. HO• itself cannot act as a signaling molecule, because its lifetime is too short and it reacts immediately with nearest neighbor phospholipids and proteins. Therefore, these findings point to a product of phospholipid peroxidation, such as hydroperoxy-fatty acids. Indeed, this hypothesis was supported by the finding that hydroperoxylinoleic acid (LAOOH) opens the ATP-inhibited mitoKATP in isolated mitochondria. This effect was blocked by the specific PKCε inhibitor peptide εV1-2, showing that LAOOH activates the mitoKATP-associated PKCε. During ischemia, catabolism of mitochondrial phospholipids is accelerated, causing accumulation of plasmalogens and free fatty acids (FA) in the heart by the action of calcium independent phospholipases A2 (iPLA2). We first assessed the role of FAs and hydroxy FAs on mitoKATP opening and cardioprotection. Swelling assays of isolated rat heart mitochondria showed that naturally formed free FAs inhibit mitoKATP opening and that they are more potent inhibitors of the pharmacological open state of mitoKATP than the phosphorylation-dependent open state. That is, sustained mitoKATP opening induced by the phosphorylation-dependent feedback loop is more resistant to FA inhibition than direct mitoKATP opening by a potassium channel opener. Moreover, rat hearts perfused with micromolar concentrations of FA were resistant to cardioprotection by diazoxide or ischemic preconditioning. Racemic bromoenol lactone (BEL), a selective inhibitor of iPLA2, confers protection to otherwise untreated Langendorff perfused hearts by preventing ischemic FA release. To bring this story full circle, BEL blocks protection afforded by preconditioning and postconditioning by preventing the iPLA2-mediated release of FAOOH generated in the conditioned heart. HO• resulting from mitoKATP opening oxidizes polyunsaturated fatty acid components of the membrane phospholipids, resulting in a peroxidized side chain. FAOOH must be released in order to act on the mitochondrial PKCε, and this is achieved by the action of iPLA2. iPLA2 is essential for most modes of cardioprotection because it catalyzes the release of FAOOH. This fully supports the hypothesis that the second messenger of cardioprotective ROS-mediated signaling is hydroperoxy fatty acid (FAOOH), a downstream oxidation product of HO•.
APA, Harvard, Vancouver, ISO, and other styles
11

Singh, John-Luke Benjamin. "Design and Fabrication of Micro-Channels and Numerical Analysis of Droplet Motion Near Microfluidic Return Bends." Thesis, North Dakota State University, 2019. https://hdl.handle.net/10365/31706.

Full text
Abstract:
Three-dimensional spheroid arrays represent in vivo activity better than conventional 2D cell culturing. A high-throughput microfluidic chip may be capable of depositing cells into spheroid arrays, but it is difficult to regulate the path of individual cells for deposition. Droplets that encapsulate cells may aid in facilitating cell delivery and deposition in the return bend of a microfluidic chip. In this study, a low-cost method for fabricating polymer-cast microfluidic chips has been developed for rapid device prototyping. Computational fluid dynamic (CFD) simulations were conducted to quantify how a change in geometry or fluid properties affects the dynamics of a droplet. These simulations have shown that the deformation, velocity, and trajectory of a droplet are altered when varying the geometry and fluid properties of a multiphase microfluidic system. This quantitative data will be beneficial for the future design of a microfluidic chip for cell deposition into 3D spheroid arrays.
APA, Harvard, Vancouver, ISO, and other styles
12

Overton, Jeffrey David. "Influence of chronic hypoxia on the regulation of high energy phosphate concentrations in skeletal muscle." View electronic thesis, 2008. http://dl.uncw.edu/etd/2008-1/r3/overtonj/jeffreyoverton.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kmetz, John George II. "Differential Regulation of TRPV1 Channels in the Murine Coronary Vasculature by H2O2." Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1398336723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Baptista-Hon, Daniel Tomas. "Cellular substrates of iron overload cardiomyopathies." Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/15878.

Full text
Abstract:
Cardiomyopathies and arrhythmias are major causes of death in untreated hereditary haemochromatosis, acute iron poisoning and during secondary iron overload resulting from repeated blood transfusions in β-thalassaemia. Iron overload cardiomyopathies are associated with systolic and diastolic dysfunction, suggesting that Ca2+ homeostasis is impaired. However, the cellular mechanisms of these dysfunctions are unknown. The data presented in this thesis establishes for the first time iron effects on cardiomyocyte Ca2+ handling, as well as the potential cellular substrates responsible for this impairment during iron overload. Exposure of isolated rat ventricular cardiomyocytes to 200μM iron led to biphasic changes in systolic Ca2+ release. Phase 1: an initial reduction of systolic Ca2+ release followed by; Phase 2: increased Ca2+ release with arrhythmogenic spontaneous Ca2+ release, cell contracture and cell death. There is evidence that Fe2+ enters cardiomyocytes via L-type Ca2+ channels (LTCC) and reduces the Ca2+ trigger. The close apposition of LTCCs to cardiac ryanodine receptors (RyR2) suggests RyR2 may be a first target. Indeed RyR2 activity was drastically reduced on exposure to nanomolar [Fe2+] in single channel studies. Together with evidence that Fe2+ may reduce the Ca2+ trigger from LTCC, this is consistent with iron reducing sarcoplasmic reticulum (SR) Ca2+ release during Phase 1. In Phase 2, the presence of spontaneous Ca2+ release events is consistent with SR Ca2+ overload. Indeed, in single rat ventricular cardiomyocytes SR Ca2+ content was found to be increased by 27% during Phase 2. The cellular substrates responsible for this increased SR Ca2+ content were 2-fold: 1) through reduced extrusion via both the Na+ Ca2+ Exchanger (NCX) and Plasmalemmal Ca2+ ATPase (PMCA) and 2) through increased resequestration via the SR Ca2+ ATPase. Iron catalyses the production of reactive oxygen species (ROS) during the Fenton reaction. To investigate whether iron effects might be due to ROS, I used the cell permeant ROS scavenger Tempol. Tempol attenuated Phase 2 effects but Phase 1 effects were not affected. This is consistent with the hypothesis that Phase 1 effects were due to direct effects of Fe2+ affecting LTCC trigger and RyR2 function. The attenuation of Phase 2 effects suggests that ROS damage to key Ca2+ handling mechanisms, such as NCX and PMCA might account for a reduced Ca2+ extrusion and subsequent SR Ca2+ overload.
APA, Harvard, Vancouver, ISO, and other styles
15

Velez-Ortega, Alejandra C. "TRPA1 CHANNELS IN COCHLEAR SUPPORTING CELLS REGULATE HEARING SENSITIVITY AFTER NOISE EXPOSURE." UKnowledge, 2014. http://uknowledge.uky.edu/physiology_etds/20.

Full text
Abstract:
TRPA1 channels are sensors for noxious stimuli in a subset of nociceptive neurons. TRPA1 channels are also expressed in cells of the mammalian inner ear, but their function in this tissue remains unknown given that Trpa1–/– mice exhibit normal hearing, balance and sensory mechanotransduction. Here we show that non-sensory (supporting) cells of the hearing organ in the cochlea detect tissue damage via the activation of TRPA1 channels and subsequently modulate cochlear amplification through active cellshape changes. We found that cochlear supporting cells of wild type but not Trpa1–/– mice generate inward currents and robust long-lasting Ca2+ responses after stimulation with TRPA1 agonists. These Ca2+ responses often propagated between different types of supporting cells and were accompanied by prominent tissue displacements. The most prominent shape changes were observed in pillar cells which here we show possess Ca2+-dependent contractile machinery. Increased oxidative stress following acoustic overstimulation leads to the generation of lipid peroxidation byproducts such as 4-hydroxynonenal (4-HNE) that could directly activate TRPA1. Therefore, we exposed mice to mild noise and found a longer-lasting inhibition of cochlear amplification in wild type than in Trpa1–/– mice. Our results suggest that TRPA1-dependent changes in pillar cell shape can alter the tissue geometry and affect cochlear amplification. We believe this novel mechanism of cochlear regulation may protect or fine-tune the organ of Corti after noise exposure or other cochlear injuries.
APA, Harvard, Vancouver, ISO, and other styles
16

Deng, Wu. "ROLE OF ENDOTHELIN-1 IN THE REGULATION OF THE SWELLING-ACTIVATED Cl- CURRENT IN ATRIAL MYOCYTES." VCU Scholars Compass, 2009. http://scholarscompass.vcu.edu/etd/12.

Full text
Abstract:
Swelling-activated Cl- current (ICl,swell) is an outwardly rectifying Cl- current that influences cardiac electric activities and acts as a potential effector of mechanoelectrical feedback that antagonizes the effects of stretch-activated cation channels. Persistent activation of ICl,swell has been observed in multiple models of cardiovascular diseases. Previously we showed that angiotensin II (AngII) signaling and reactive oxygen species (ROS) produced by NADPH oxidase (NOX) are involved in the activation of ICl, swell by both beta1-integrin stretch and osmotic swelling. Because endothelin-1 (ET-1) is a potential downstream mediator of AngII and ETA receptor blockade abrogates AngII-induced ROS generation, we studied how ET-1 signaling regulates ICl,swell and the relationship between AngII and ET-1 signaling. Under isosmotic conditions, ET-1 elicited an outwardly rectifying Cl- current that was fully blocked by the highly selective ICl,swell inhibitor DCPIB and by osmotic shrinkage. Selective ETA blockade (BQ123), but not ETB blockade (BQ788), fully suppressed the ET-1-induced current. ET-1-induced ICl,swell was abolished by blockade of EGFR kinase (AG1478) and PI-3K inhibitors (LY294002 and wortmannin), which also suppress beta1-integrin stretch- and swelling-induced ICl,swell. ET-1-induced ICl,swell was abrogated by ebselen, a membrane-permeant glutathione peroxidase mimetic that dismutates H2O2 to H2O, suggesting that ROS were required intermediates in ET-1-induced activation of ICl,swell. Both NOX and mitochondria are important sources of ROS in cardiomyocytes. Blocking NOX with apocynin or mitochondrial complex I with rotenone both completely suppressed ET-1-induced ROS generation and activation of ICl,swell, indicating that ROS from both NOX and mitochondria were required to activate ICl,swell, and complete block by inhibitors of either ROS source suggests mitochondrial and NOX must act in series rather than in parallel. ICl,swell elicited by antimycin A, which stimulates superoxide production by mitochondrial complex III, was insensitive to NOX inhibitor apocynin and the NOX fusion peptide inhibitor gp91ds-tat. Activation of ICl,swell induced by diazoxide, which stimulates mitochondrial ROS production by opening mitochondrial KATP channels, was not affected by gp91ds-tat. These data suggests that mitochondrial ROS is downstream from NOX in the regulation of ICl,swell. Mitochondrial ROS production that is enhanced by NOX ROS is likely to be responsible for the activation of ICl,swell by ET-1. In order to determine the role of ERK in the proposed signaling pathway that regulates ICl,swell, we examined the effect of ERK inhibitors (PD 98059 and U0216) on the activation of ICl,swell elicited by ET-1, EGF, and H2O2. ERK inhibitors partially blocked ET-1-induced ICl,swell but fully inhibited activation of ICl,swell in response to EGF. However, ERK inhibitors did not affect ICl,swell elicited by exogenous H2O2. We also established the the relationship of ET-1 to AngII and osmotic swelling in the regulation of ET-1 ICl,swell. ETA blockade abolished ICl,swell elicited by both AngII and osmotic swelling, whereas AT1 blockade did not effect ET-1-induced ICl,swell, suggesting that ET-1 signaling is downstream from AngII and osmotic swelling. HL-1 cell is a murine atrial cell line that retain phenotypic characteristics of adult cardiomyocytes. We showed that osmotic swelling and ET-1 turned on DCPIB-sensitive outwardly rectifying Cl- current in HL-1 cells with both physiological and symmetrical Cl- gradients. The swelling-induced current was suppressed by gp91ds-tat and rotenone but insensitive to apocynin. Blockade of ETA receptor (BQ123) and NOX (gp91ds-tat) completely inhibited ET-1-induced ICl,swell in HL-1 cells. These data indicate that ICl,swell is present in HL-1 cell and regulated by similar mechanisms as in native cells. Finally, we confirmed the production of ROS by ET-1 signaling by flow cytometry of HL-1 cells using the nominally H2O2-selective fluorescent probe C H2DCFDA-AM. Exposure to ET-1 increased ROS production, as did H2O2, a positive control. ET-1-induced ROS production was fully suppressed by both gp91ds-tat and rotenone. HL-1 cell ROS production also was stimulated by the mitochondrial complex III inhibitor antimycin A, and antimycin A-induced ROS production was blocked by rotenone but not by gp91ds-tat. These data suggest that ET-1 ETA receptor signaling elicits ICl,swell by sequentially stimulating ROS production by NOX and mitochondria. ETA receptor signaling is down stream from AngII in the osmotic swelling-induced activation of ICl,swell and is upstream from EGFR kinase and PI-3K. Endothelin signaling is likely to be an important means of activating ROS production and ICl,swell in a variety of cardiovascular diseases.
APA, Harvard, Vancouver, ISO, and other styles
17

Boztosun, Ismail. "Coupled-channels calculations for the scattering of deformed light heavy-ions : a challenge to the standard approach." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yang, Yang. "Vascular KATP Channel Modulation by S-Glutathionylation: A Novel Mechanism for Cellular Response to Oxidative Stress." Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/biology_diss/97.

Full text
Abstract:
The KATP channels play an important role in the membrane excitability and vascular tone regulation. Previous studies indicate that the function of KATP channels is disrupted in oxidative stress seen in a variety of cardiovascular diseases, while the underlying mechanism remains unclear. Here, we demonstrate S-glutathionylation to be a modulation mechanism underlying the oxidant-mediated vascular KATP channel inhibition, the molecular basis for the channel inhibition and the alleviation of the channel inhibition by vasoactive intestinal peptide (VIP). We found that an exposure of isolated mesenteric rings to H2O2 impaired the KATP channel-mediated vascular dilation. In whole-cell recordings and inside-out patches, micromolar H2O2 or diamide caused a strong inhibition of the vascular KATP channel (Kir6.1/SUR2B) in the presence, but not in the absence, of glutathione (GSH), indicating S-glutathionylation. By co-expressions of Kir6.1 or Kir6.2 with SUR2B subunits, we found that the oxidant sensitivity of the KATP channel relied on the Kir6.1 subunit. Systematic mutational analysis revealed three cysteine residues (Cys43, Cys120 and Cys176) to be important. Among them, Cys176 was prominent, contributing to >80% oxidant sensitivity. Biochemical pull-down assay with biotinylated glutathione ethyl ester (BioGEE) showed that mutations of Cys176 impaired the oxidant-induced incorporation of GSH to the Kir6.1 subunit. Simulation modeling of Kir6.1 S-glutathionylation revealed that after incorporation to residue 176, the GSH moiety occupied a space between slide helix and two transmembrane helices. This prevented the necessary conformational change of the inner helix for channel gating, and retained the channel in its closed state. VIP is a potent vasodilator, and is shown to have protective role against oxidative stress. We found that the channel was strongly augmented by VIP and the channel activation relied on PKA phosphorylation. These results therefore indicate that 1) the vascular KATP channel is strongly inhibited in oxidative stress, 2) S-glutathionylation underlies the oxidant-mediated KATP channel inhibition, 3) Cys176 in the Kir6.1 subunit is the major site for S-glutathionylation, and 4) the Kir6.1/SUR2B channel is activated in a PKA-dependent manner by VIP that has been previously shown to alleviate oxidative stress.
APA, Harvard, Vancouver, ISO, and other styles
19

Facundo, Héberty di Tarso Fernandes. "Efeitos redox e protetores do pré-condicionamento isquêmico e da abertura do canal mitocondrial de potássio sensível a ATP contra morte celular por isquemia e reperfusão cardíaca." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-27052008-091351/.

Full text
Abstract:
Eventos isquêmicos seguidos por reperfusão levam ao dano celular e mitocondrial devido à abertura do poro de transição de permeabilidade mitocondrial (TPM). Todavia, o pré-condicionamento evita o dano celular por isquemia e reperfusão. Esse efeito protetor é semelhante ao obtido pela abertura do canal mitocondrial de potássio sensível a ATP (mitoKATP). Aqui, nós mostramos os mecanismos de sinalização que ativam o mitoKATP durante o pré-condicionamento, o papel redox destes canais e seu conseqüente mecanismo protetor. Usando células cardíacas HL-1, nós demonstramos que aumentos em espécies reativas de oxigênio (EROs) observadas durante o pré-condicionamento não foram revertidos por antagonistas do mitoKATP, que significativamente evitaram a proteção pelo pré-condicionamento. Isso sugere que essas espécies são formadas anteriormente à abertura do canal. Consistente com essa hipótese, a adição de catalase a corações perfundidos de rato e a células HL-1 promove reversão dos efeitos benéficos do pré-condicionamento, mas não do diazóxido (um agonista do mitoKATP). Por outro lado, 2-mercaptopropionil glicina preveniu a cardioproteção em ambos os casos, sugerindo que este composto deve apresentar outros efeitos além de antioxidante. De fato, verificamos que agentes redutores tiólicos interferem na ativação do mitoKATP mediada pelo diazóxido em mitocôndrias isoladas de coração de rato. Examinando como o mitoKATP pode ser ativado durante o pré-condicionamento, constatamos que EROs endógenas e exógenas fortemente ativaram o mitoKATP, sugerindo que o moderado aumento nas EROs durante o pré-condicionamento pode ativar esse canal. Uma vez ativado, o canal preveniu as condições (captação de Ca2+ e formação de EROs) que favorecem a ocorrência de TPM em situação de isquemia. A atividade deste canal também leva à diminuição de EROs gerados fisiologicamente ou durante períodos de isquemia e reperfusão, evitando o dano celular conseqüente. Este fato não envolveu nenhum aumento nos sistemas de remoção de oxidantes. Por outro lado, a inibição da TPM, usando ciclosporina A, preveniu o estresse oxidativo somente durante a reperfusão, mas protegeu as células de maneira indistinguível da abertura do mitoKATP. Juntos, nossos resultados sugerem que o mitoKATP age como um sensor para as EROs que diminui a sua geração em resposta a níveis aumentados de oxidantes. Em conseqüência, estes canais regulam o balanço redox em condições fisiológicas e previnem o estresse oxidativo em condições patológicas, inibindo com isso a ocorrência de TPM e morte celular isquêmica.
Ischemia followed by reperfusion results in impairment of cellular and mitochondrial functionality due to opening of mitochondrial permeability transition (MPT) pores. Nevertheless, preconditioning rescues cells from ischemic damage. Mitochondrial ATP-sensitive K+ channel (mitoKATP) opening also prevents cardiac ischemic cell death. Here we show the signaling mechanisms that activate mitoKATP during preconditioning, the redox role of these channels and consequent protective mechanisms. Using cardiac HL-1 cells, we found that increases in reactive oxygen species (ROS) observed during preconditioning were not inhibited by mitoKATP antagonists, although these drugs significantly avoided the protection afforded by preconditioning, suggesting their activation occurrs upstream of channel activity. Consistent with this, catalase addition to perfused rat hearts and HL-1 cells reversed the beneficial effects of preconditioning, but not of diazoxide (a mitoKATP agonist). On the other hand, 2-mercaptopropionylglycine prevented cardioprotection in both cases, suggesting this compound may present effects other than scavenging ROS. Indeed, thiol reducing agents impaired diazoxide-mediated activation of mitoKATP in isolated rat heart mitochondria. We found that endogenous or exogenous ROS strongly enhanced mitoKATP activity, suggesting that moderate increments in ROS release during preconditioning may activate mitoKATP. Furthermore, mitoKATP prevented conditions (Ca2+ uptake and ROS formation) that favor the opening of MPT pores under ischemic conditions. MitoKATP opening decreased ROS generation physiologically and during both ischemia and reperfusion, consequently avoiding cellular damage. This prevention does not involve an increase in oxidant removal systems. On the other hand, the inhibition of MPT, using cyclosporin A, prevented oxidative stress only during simulated reperfusion, but protected cells in a manner indistinguishable from mitoKATP opening. Collectively, our results suggest that mitoKATP acts as a ROS sensor that decreases mitochondrial ROS generation in response to enhanced local levels of oxidants. As a result, these channels regulate mitochondrial redox state under physiological conditions and prevent oxidative stress under pathological conditions, inhibiting MPT opening and ischemic cardiac damage.
APA, Harvard, Vancouver, ISO, and other styles
20

Miller, Paula. "Oxygen sensing by hTREK1, a twin-pore-domain potassium channel." Thesis, University of Leeds, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Chretien, Chloé. "Un nouvel acteur dans la détection hypothalamique du glucose : les canaux Transient Receptor Potential Canonical (TRPC)." Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS027/document.

Full text
Abstract:
L’hyperglycémie est détectée et intégrée au niveau de l’hypothalamus médio-basal (MBH) qui inhibe la prise alimentaire et déclenche la sécrétion d’insuline. Le MBH renferme des neurones spécialisés gluco-sensibles (GS) qui détectent directement ou indirectement des variations de la concentration extracellulaire en glucose. Dans une première étude, nous suggérons que la détection indirecte du glucose par les neurones GS hypothalamiques repose sur la libération d’endozépines par les astrocytes, un gliotransmetteur connu pour inhiber la prise alimentaire en réponse à l’hyperglycémie. Nous travaux montrent que les endozépines activent spécifiquement les neurones à pro-opiomélanocortine (POMC) du MBH pour générer leur effet anorexigène. Dans une seconde étude, nous montrons que la détection directe de l’hyperglycémie implique les neurones hypothalamiques dits « high gluco-excited » (HGE). Grâce à des approches pharmacologiques et génétiques, nous mettons en évidence que les canaux redox sensibles Transient Receptor Potential Canonical 3 et 4 (TRPC3/4) sont fondamentaux pour la détection du glucose par les neurones HGE in vitro, la stimulation de la sécrétion d’insuline et la diminution de la prise alimentaire en réponse à l’hyperglycémie cérébrale in vivo. De plus, nos travaux démontrent que les canaux TRPC3 du MBH jouent un rôle clef dans le contrôle de l’homéostasie énergétique. Les travaux de cette thèse permettent de mettre en évidence deux nouveaux mécanismes de détection hypothalamique de l’hyperglycémie : l’un reposant sur l’implication des canaux TRPC3/4 dans les neurones HGE et l’autre proposant les endozépines astrocytaires comme relai du signal « glucose » aux neurones POMC
Hyperglycemia is detected and integrated by the mediobasal hypothalamus (MBH) which, in turn, inhibits food intake and triggers insulin secretion. The MBH houses specialized glucose-sensitive (GS) neurons, which directly or indirectly modulate their electrical activity in response to changes in glucose level. In a first study, we hypothesized that indirect detection of glucose by MBH GS neurons involves the secretion of endozepine by astrocytes, a gliotransmitter known to inhibit food intake in response to hyperglycemia. The present work shows that endozepines selectively activate anorexigenic MBH pro-opiomelanotortine (POMC) neurons. In the second study, we show that the direct detection of increased glucose level involves hypothalamic glucose-excited (HGE) neurons. Using pharmacological and genetic approaches, we demonstrate that the redox-sensitive Transient Receptor Potential Canonical 3 et 4 (TRPC3/4) channels are involved in MBH HGE response to glucose in vitro and increased insulin secretion and decreased food intake in response to cerebral hyperglycemia in vivo. We also obtained evidences that MBH TRPC3 channel is a critical new player for energy homeostasis. This thesis work identifies two new mechanisms involved in hypothalamic detection of hyperglycemia: the first based on the involvement of TRPC3/4 channels in HGE neurons and the second highlighting the astroglial endozepines as a relay of the “glucose” signal to POMC neurons
APA, Harvard, Vancouver, ISO, and other styles
22

Grünker, Ronny, Irena Senkovska, Ralf Biedermann, Nicole Klein, Martin R. Lohe, Philipp Müller, and Stefan Kaskel. "A highly porous flexible Metal–Organic Framework with corundum topology." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-138599.

Full text
Abstract:
A flexible Metal–Organic Framework Zn4O(BenzTB)3/2 (DUT-13) was obtained by combination of a tetratopic linker and Zn4O6+ as connector. The material has a corundum topology and shows the highest pore volume among flexible MOFs
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
APA, Harvard, Vancouver, ISO, and other styles
23

Oden, David S. "Immunohistochemistry of the Gills of the Channel Catfish Ictalurus Punctatus: Cells and Neurochemicals That May Be Involved in the Control of Cardioventilatory Reflexes." Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc407757/.

Full text
Abstract:
In teleost fishes the neurochemicals involved in sensing and responding to hypoxia are unresolved. Serotonergic branchial neuroepithelial cells (NECs) are putative O2 chemoreceptors believed to be homologous to the neural crest (NC) derived APUD (amine-precursor uptake and decarboxylation) pulmonary NECs and carotid body type-1 glomus cells. Branchial NECs contain serotonin (5-HT), thought to be central to the induction of the hypoxic cardioventilatory reflexes. However, application of 5-HT in vivo does not elicit cardioventilatory reflexes similar to those elicited by hypoxia. But previous in vitro neural recordings from glossopharyngeal (IX) afferents innervating O2 chemoreceptors in the trout gill show the same discharge response to hypoxic conditions as does that of acetylcholine (ACh) application. This evidence strongly supports the cholinergic hypothesis of chemoreceptor impulse origin rather than a serotonergic-induced impulse origin model. We therefore hypothesized that NECs contain ACh among other neurochemicals in cells belonging to the APUD series. Although serotonergic branchial NECs did not colocalize with ACh using immunohistochemical methods, several populations of ACh and/or tyrosine hydroxylase (TH) (catecholaminergic) positive, dopamine (DA) negative, cells were found throughout the second gill arch of the channel catfish Ictalurus punctatus. In addition, the NC derivation marker zn-12 labelled the HNK-1-like epitope (Human natural killer) expressed by lamellar pillar cells’ collagen column-associated pillar cell adhesion molecules (CC-PCAMs), evidence confirming their hypothesized NC origin.
APA, Harvard, Vancouver, ISO, and other styles
24

Grünker, Ronny, Irena Senkovska, Ralf Biedermann, Nicole Klein, Martin R. Lohe, Philipp Müller, and Stefan Kaskel. "A highly porous flexible Metal–Organic Framework with corundum topology." Royal Society of Chemistry, 2011. https://tud.qucosa.de/id/qucosa%3A27762.

Full text
Abstract:
A flexible Metal–Organic Framework Zn4O(BenzTB)3/2 (DUT-13) was obtained by combination of a tetratopic linker and Zn4O6+ as connector. The material has a corundum topology and shows the highest pore volume among flexible MOFs.
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
APA, Harvard, Vancouver, ISO, and other styles
25

Boyle, Alexa M. "Role of Microglial Proton Channel Hv1 in Paraquat-Induced Neuroinflammation." Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent1532970730744641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Robbins, John A. "Stable isotopes, marine paleoclimates, and human subsistence on California's Channel Islands." Ann Arbor, Mich. : ProQuest, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1442835.

Full text
Abstract:
Thesis (M.S. in Geology)--S.M.U., 2007.
Title from PDF title page (viewed Mar. 18, 2008). Source: Masters Abstracts International, Volume: 45-05, page: 2387. Adviser: Robert Gregory. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
27

Fortune, Shelby E. "Evaluation of automated, manual and constant aeration practices in managing of dissolved oxygen for channel catfish farming in earthen ponds." Master's thesis, Mississippi State : Mississippi State University, 2008. http://library.msstate.edu/etd/show.asp?etd=etd-07182008-143119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kaizik, Stephan Martin. "Analysis of mouse models of insulin secretion disorders." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:4d44b68a-a0a0-4c92-8809-00ddbfe3e636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Eskandani, Zahra. "Canaux symétriques à base de cyclodextrines amphiphiles : polymérisation divergente d'oxirane." Thesis, Evry-Val d'Essonne, 2011. http://www.theses.fr/2011EVRY0002/document.

Full text
Abstract:
Dans ce travail, nous présentons l’obtention de canaux permanents synthétiques, à base de cyclodextrines amphiphiles, en utilisant une méthode de polymérisation divergente d’oxiranes. Des modifications sélectives de cyclodextrines sont développées de manière à générer de nouveaux amorceurs de polymérisation anionique d’oxyde d’éthylène. Dans les conditions de synthèse utilisées, la démonstration du contrôle de la polymérisation est réalisée et l’obtention de molécules à 14 branches de POE, de longueur variable, est montrée. Parmi différentes applications envisageables, nous développons ici la possibilité d’utiliser ces molécules en étoile pour former des canaux ioniques permanents avec des temps de résidence de l’ordre de l’heure, ouvrant la voie par exemple à la translocation de molécules et de macromolécules
In this work, we present the design of artificial permanent cyclodextrin-based channels, obtained by divergent polymerization. Selective modifications of cyclodextrins have been developed to generate original initiators of ethylene oxide ring-opening polymerization. Considering the experimental conditions used, the demonstration of controlled polymerization was performed, leading to molecules with 14 PEO arms having various molar masses. Among various applications, we focused on the possibility to use this new class of star-polymer architectures as permanent ionic channels exhibiting long residence time (hour scale), paving the way to translocation of molecules and macromolecules for example
APA, Harvard, Vancouver, ISO, and other styles
30

Lee, Patrick. "The effect of calcium-channel blockade on oxygen uptake kinetics during moderate and heavy intensity exercise in young and old adults." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ58052.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Jew, Nicholas. "Paleocoastal Resource Use and Human Sedentism in Island Environments: A Case Study from California's Northern Channel Islands." Thesis, University of Oregon, 2013. http://hdl.handle.net/1794/13245.

Full text
Abstract:
The peopling of the Americas, including the possibility that maritime peoples followed a coastal route from Northeast Asia into the New World, is a topic of major interest in archaeology. Paleocoastal sites on California`s Northern Channel Islands (NCI), dating between ~13,000 and 8000 years ago, may support this coastal migration theory. Until recently, however, we knew little about Paleocoastal technologies, settlement, and lifeways on the islands. Combining traditional archaeological approaches with experimental and archaeometric techniques, I examine Paleocoastal settlement and resource use on San Miguel and Santa Rosa islands. Recently discovered Paleocoastal sites have produced sophisticated chipped stone technologies, with bifacially-flaked points and crescents of extraordinary craftsmanship. Exploring lithic raw material procurement strategies, I demonstrate a Paleocoastal preference for island cherts from sources centered on western Santarosae. Using experimental and archaeometric techniques, I show that Paleocoastal peoples systematically employed heat-treatment to manufacture finely crafted bifaces from island cherts. Using stable oxygen isotope (δ18O) analyses of marine shells from Paleocoastal sites, I examine paleo-sea surface temperatures, seasonality of shellfish collecting, and human sedentism. Evaluating whether such occupations were seasonal or year-round, I tested different sampling strategies for California mussel shells, showing that a method used by many California archaeologists provides erroneous seasonality interpretations for ~35 percent of sampled shells. Using a more intensive sampling strategy, I demonstrate that some Paleocoastal sites were used seasonally, but three substantial middens dating to 8200, 9000, and 10,000 cal BP produced evidence for shell harvesting during all four seasons. This suggests that the NCI were occupied more or less permanently and year-round by at least 10,000 years ago. My research suggests that Paleocoastal peoples had a strong commitment to maritime and island lifeways starting at least 12,000 years ago. From that time until ~8000 years ago, Paleocoastal peoples relied primarily on island resources despite their close proximity to the mainland. The presence of a relatively large, permanent, and distinctive Paleocoastal population on the NCI may also support the coastal migration theory and an even deeper antiquity of human settlement and sedentism on the NCI. This dissertation includes previously published and unpublished co-authored material.
APA, Harvard, Vancouver, ISO, and other styles
32

Borgo, Lucelia. "Caracterização e possível papel da modulação oxidativa da parede celular em alterações na sensibilidade de células de tabaco cv. BY-2 a pH baixo durante a retomada do ciclo celular." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/64/64133/tde-29072011-094106/.

Full text
Abstract:
A acidez do solo é um dos principais fatores limitantes à produção vegetal. Apesar da toxicidade por alumínio ter sido extensamente investigada, pouca atenção tem sido dada ao estresse causado pelo baixo pH em si. Existem diferenças marcantes entre células quanto à sensibilidade ao pH baixo que dependem do seu estado de crescimento e desenvolvimento celular e que devem ser exploradas para se entender o que determina a sensibilidade e tolerância a pH baixo. Em alguns casos, a suscetibilidade a pH baixo está relacionada a desarranjos na parede de células em crescimento, chegando a causar o rompimento da célula, como já foi demonstrado em pêlos radiculares em expansão. Por outro lado, o metabolismo oxidativo e a geração de espécies reativas de oxigênio (ROS) na parede podem influenciar neste processo por romper ou criar ligações dentro ou entre cadeias de polissacarídeos, modulando assim a extensibilidade da parede celular. Em células de tabaco (Nicotiana tabacum) cv. BY-2, há um aumento acentuado na sensibilidade ao pH baixo no final da fase lag da cultura, que ocorrre entre 12 e 24 h de cultivo. Os objetivos deste trabalho foram: a) Investigar se a mudança na sensibilidade pH baixo ocorre durante a retomada do ciclo celular e determinar, com o uso de inibidores do ciclo celular, o período do ciclo em que isto ocorre; b) verificar se o aumento da sensibilidade a pH baixo está relacionado com a expansão celular ou com alterações no potencial osmótico da célula; c) examinar o efeito da aplicação de H2O2 ou ascorbato sobre a resposta de células sensíveis a pH baixo; d) testar a hipótese de que a sensibilidade a pH baixo pode ser revertida por meio de um choque hipo-osmótico prévio; e) avaliar o possível papel da modulação oxidativa da parede celular na reversão de sensibilidade das células a pH baixo expostas ao choque hipo-osmótico. A retomada do ciclo celular é necessária para que ocorra a alteração de sensibilidade a pH baixo, pois a remoção de auxina (2,4-D) ou a adição de bloqueadores de canais de K+ impediu ou atrasou, respectivamente, a alteração na sensibilidade a pH baixo. O uso de inibidores do ciclo celular demonstrou que as células de BY-2 se tornam mais sensíveis a pH baixo durante o final da fase G1 mas antes do ponto de checagem da transição G1/S do ciclo celular. A aplicação de H2O2, diminuiu a suscetibilidade das células a pH baixo, ao contrário da aplicação de ascorbato. Foi demonstrado que a aplicação prévia de tratamento hipo-osmótico por 60 min reverteu a sensibilidade de células a pH baixo. A aplicação de inibidores de NAPDH oxidase da membrana plasmática e de peroxidases revelou a participação destas enzimas na reversão de sensibilidade das células a pH baixo, indicando a possibilidade de geração de ROS e de modulação oxidativa da parede. Embora já tenha sido descrito que ocorre uma explosão oxidativa com choque hipo-osmótico, ainda não havia sido demonstrado a conseqüência disto. Este trabalho fornece indícios de que uma explosão oxidativa poderia modificar a parede tornando-a mais resistente e a célula menos suscetível a pH baixo
Soil acidity is a major factor limiting plant growth worldwide. Although aluminum toxicity, which occurs only at low pH, has been extensively studied, little attention has been given to stress caused by low pH. There are marked differences in the sensitivity of cells to low pH which are contingent on the growth and developmental stage of the cells. These differences should be explored to further the understanding of the factors governing sensitivity and tolerance to low pH. In at least some cases, the susceptibility of cells to low pH is related to derangements in the wall of growing cells, which can cause ruptures or bursting of the cells, as has been clearly demonstrated in expanding root hairs. On the other hand, the oxidative metabolism and generation of reactive oxygen species (ROS) can modulate cell wall extensibility by breaking or making bonds within and between cell wall polymers. In tobacco (Nicotiana tabacum) cv. BY-2 cells, there is a sharp increase in sensitivity to low pH at the end of the lag phase of the cell culture, which occurs between 12 and 24 h of subculture. The objectives of this study were: a) determine if the changes in sensitivity to low pH occurred during the restart of the cell cycle and, by employing cell cycle inhibitors, at which points of the cycle does this occur; b) examine if the changes in sensitivity to low pH are related to cell expansion or changes in osmotic potential of the cell; c) examine how the application of H2O2 or ascorbate affects the response of cells to low pH; d) test the hypothesis that sensitivity of cells to low pH can be reverted by the previous application of a hypo-osmotic shock; e) evaluate the possible role of oxidative modulation of the cell wall in hypo-osmotic-induced reversal of the sensitivity of cells to low pH. The restart of the cell cycle was shown to be necessary for the change in sensitivity to low pH occur, since the absence of auxin (2,4-D) or the addition of K+ channel blockers prevented or delayed this change, respectively. The use of cell cycle inhibitors demonstrated that BY-2 cells become sensitive to low pH at the end of G1 but before the G1/S transition restriction point of the cell cycle. Exogenous H2O2, but not ascorbate, reduced the effect of low pH on sensitive cells. Sensitive cells submitted to 60 min hypo-osmotic treatment became insensitive to low pH. This reversal of sensitivity depended on the activity of plasma membrane NADPH oxidase and peroxidase, as evidenced by the use of DPI and SHAM, inhibitors of these enzymes, respectively. This suggests that ROS is generated and that oxidative modifications of the cell wall occur. Although hypo-osmotic treatments have been shown to generate an oxidative burst, its purpose or implication has not yet been shown. This study provides evidence that an oxidative burst might modify and strengthen the cell wall, making cells less susceptible to low pH
APA, Harvard, Vancouver, ISO, and other styles
33

Lindstrot, Rasmus [Verfasser]. "Exploitation of the MERIS oxygen A band channel for the retrieval of cloud-top pressure and the correction of instrumental stray light / Rasmus Lindstrot." Berlin : Freie Universität Berlin, 2009. http://d-nb.info/102395673X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zhu, Huanfeng. "Experimental and Theoretical Aspects of Electrode Electrolyte Interfaces." Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1259680393.

Full text
Abstract:
Thesis(Ph.D.)--Case Western Reserve University, 2010
Title from PDF (viewed on 2009-12-30) Department of Chemistry Includes abstract Includes bibliographical references and appendices Available online via the OhioLINK ETD Center
APA, Harvard, Vancouver, ISO, and other styles
35

Boysan, Mustafa Emre. "Analysis Of Regenerative Cooling In Liquid Propellant Rocket Engines." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12610190/index.pdf.

Full text
Abstract:
High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines. For high-pressure and high-thrust rocket engines, regenerative cooling is the most preferred cooling method. In regenerative cooling, a coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Traditionally, approximately square cross sectional channels have been used. However, recent studies have shown that by increasing the coolant channel height-to-width aspect ratio and changing the cross sectional area in non-critical regions for heat flux, the rocket combustion chamber gas side wall temperature can be reduced significantly without an increase in the coolant pressure drop. In this study, the regenerative cooling of a liquid propellant rocket engine has been numerically simulated. The engine has been modeled to operate on a LOX/Kerosene mixture at a chamber pressure of 60 bar with 300 kN thrust and kerosene is considered as the coolant. A numerical investigation was performed to determine the effect of different aspect ratio cooling channels and different number of cooling channels on gas-side wall and coolant temperature and pressure drop in cooling channel.
APA, Harvard, Vancouver, ISO, and other styles
36

Selvin, David. "Regulation of Myoplasmic Ca2+ During Fatigue in KATP Channel Deficient FDB Muscle Fibres." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/26174.

Full text
Abstract:
It is known that muscles that lack KATP channel activity generate much greater unstimulated [Ca2+]i and force than normal muscles during fatigue. The increase in unstimulated force in KATP channel deficient muscles is abolished by a partial inhibition of L-type Ca2+ channels, suggesting that it is due to a Ca2+ influx through L-type Ca2+ channels and a subsequent increased myoplasmic Ca2+. However, there is also evidence that the increase in resting force is abolished by NAC, a ROS scavenger. The objective of this study was to reconcile these observations by studying the hypothesis that “the increase in resting [Ca2+]i during fatigue in KATP channel deficient muscles starts with an excess Ca2+ influx through L-type Ca2+ channels, followed by an excess ROS production that causes a further increase in resting [Ca2+]i”. To test the hypothesis, single FDB fibres were fatigued with one tetanic contraction/sec for 180 sec. KATP channel deficient fibres were obtained i) by exposing wild type muscle fibers to glibenclamide, a KATP channel blocker and ii) by using fibres from Kir6.2-/- mice, which are null mice for the Kir6.2 gene that encodes for the protein forming the channel pore. Verapamil, a L-type Ca2+ channel blocker, applied at 1 μM, significantly reduced resting [Ca2+]i during fatigue in glibenclamide-exposed wild type fibres. NAC (1 mM) also reduced resting [Ca2+]i in glibenclamide-exposed muscles. The results suggest that the increase in resting [Ca2+]i during fatigue in KATP channel deficient FDB fibres is due to an influx through L-type Ca2+ channels, and an excess ROS production.
APA, Harvard, Vancouver, ISO, and other styles
37

Filbrun, Jesse Everett. "An Ecological Approach to Feed Management in Fish Rearing Ponds." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366038927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bonnel, Morgane. "Nouvelle génération de capteurs chimiques optiques : étude d'une architecture microstructurée fluorescente guide d'onde canal / réseaux de diffraction élaborée par voie sol-gel." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI096.

Full text
Abstract:
Une application phare des capteurs chimiques optiques miniaturisés est la surveillance en temps réel des cultures cellulaires dans le domaine biomédical. Le principe de ces capteurs repose essentiellement sur des variations du signal de fluorescence lorsqu’un fluorophore, incorporé dans une matrice perméable aux espèces gazeuses ou ioniques et excité à une longueur d’onde adéquate, est mis en contact avec un analyte, e.g. l’oxygène dissous (OD) en milieu aqueux. Leur intégration sous la forme de dispositifs miniaturisés repose sur le dépôt d’une matrice en couche mince dopée avec le fluorophore. Si cette configuration est parfaitement adaptée à des dispositifs miniaturisés, elle souffre de restrictions en termes de limite de détection en raison de la faible quantité de fluorophores incorporés dans la couche mince et de la faible fraction de lumière émise redirigée vers le photo-détecteur. La thèse vise à proposer une nouvelle configuration de capteur basée sur la fabrication par voie sol-gel de guides d’onde canaux dopés avec un fluorophore et munis de coupleurs diffractant. Ce travail met particulièrement en évidence le potentiel d'une résine sol-gel à base de TiO2 à indice de réfraction élevé et qui peut être gravée en une seule étape photolithographique (insolation sélective / développement) pour former un motif donné. Nous présentons tout d'abord le processus d’élaboration de l’architecture micro-structurée composée de réseaux de diffraction gravés sur des guides d'ondes canaux. Les deux composantes de cette architecture ont été optimisées sur la base de caractérisations et de modélisations opto-géométriques. L’efficacité du couplage lumineux dans le guide canal à l’aide de réseaux de diffraction est ensuite présentée et discutée, ainsi que des études mettant en évidence la possibilité de récolter un signal de fluorescence se propageant dans le guide. Enfin, l’intégration du dispositif dans un système microfluidique a permis de réaliser des premières mesures de fluorescence selon une procédure appropriée à l’application visée, i.e. être capable in fine de mesurer des taux d’OD variables dans différents fluides via des mesures de fluorescence en mode guidé.Mots clés : guide d’onde canal, réseaux de diffraction, sol-gel, oxygène dissous, photolithographie, fluorescence
A flagship application of miniaturized chemical optical sensors is the real-time monitoring of cell cultures in the biomedical field. The principle of these sensors is based on variations of the fluorescence signal when a fluorophore, encapsulated in a matrix permeable to gaseous or ionic species and excited to a suitable wavelength, is contacted with an analyte, e.g. dissolved oxygen (DO) in an aqueous medium. Their integration in the form of miniaturized devices is based on the deposition of a thin-layer matrix doped with the fluorophore. While this configuration is perfectly suited to miniaturized devices, it suffers from limitations in terms of detection limit due to the small amount of fluorophores incorporated in the thin-film matrix and to the small fraction of light emitted redirected toward the photodetector. The thesis aims at proposing a new sensor configuration based on the sol-gel fabrication of fluorophore-doped channel waveguides equipped with diffracting couplers. This work particularly highlights the potential of a high refractive index titanium oxide based sol-gel photoresist that can be imprinted through a single photolithography step (selective insolation / development) to form a given pattern. We firstly present the elaboration process of the micro-structured architecture composed of diffraction gratings imprinted on channel waveguides. Both components of this architecture have been optimized based on opto-geometrical characterizations and modeling. The efficiency of light coupling in the channel waveguide using diffraction gratings is then presented and discussed, as well as studies showing the possibility to collect a fluorescence signal propagating in the waveguide. Finally, the integration of the device into a microfluidic system made it possible to carry out first fluorescence measurements according to a procedure appropriate to the intended application, i.e. to be able in fine to measure variable DO levels in different fluids via fluorescence measurements in guided configuration.Keywords: channel waveguide, diffraction gratings, sol-gel, dissolved oxygen, photolithography, fluorescence
APA, Harvard, Vancouver, ISO, and other styles
39

Phan, Phong Thanh. "Development of a multi-distance, multi-channel broadband near-infrared spectroscopy system to investigate the spatial variation in cellular oxygen metabolism in the healthy and injured adult human brains." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10042965/.

Full text
Abstract:
This PhD thesis describes the progressive development of a multi-channel, multi-distance broadband NIRS system designed to measure the concentration changes in oxygenated haemoglobin (HbO2), deoxygenated haemoglobin (HHb), and especially the oxidation state of cytochrome-c-oxidase (oxCCO) across multiple regions of the adult human brain. The system was developed using an iterative approach, through two major iterations. At each iteration, in vivo tests in healthy adult volunteers were performed to test the system capability. The first iteration was the pseudo broadband diffuse optical tomography system, achieved by physically moving one source fibre and eight detector fibres across multiple positions in a fixed 3D printed probe holder. A functional activation task involving the visual cortex was used as an in vivo test of this approach. The second iteration was the full multi-channel, multi-distance broadband NIRS system, achieved by increasing the number of source and detector fibres and integrating a time-multiplexing mechanism for the sources. The capability of this system was tested using functional activation tasks involving both the visual and frontal cortices. The final version of the system was then used in the neurointensive care unit to monitor the frontal regions of patients with acute brain injury, demonstrating the capability for monitoring the temporal and spatial variations in cerebral haemodynamics and oxygen metabolism. The multi-channel, multi-distance broadband NIRS measurements acquired from various functional activation studies and the clinical study have provided evidence for the existence of spatially dependent changes in [oxCCO] signal. More importantly, they show that the spatial variation in the changes in [oxCCO] can be monitored using a multi-channel broadband NIRS approach. The measurements collected during various stages of system development have allowed the implementation of the oxCCO image reconstruction algorithm, reconstructing 3D tomographic images of oxCCO for the first time. The combined developments in hardware engineering, data acquisition, clinical studies and image reconstruction open up a whole new avenue for the investigation of cerebral oxygen metabolism in the healthy and injured adult human brain.
APA, Harvard, Vancouver, ISO, and other styles
40

Cappelli, Holly. "TRPV4 Mechanotransduction in Vascular Growth and Integrity." Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1487764322127302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Fornazari, Maynara. "Propriedades redox de canais de potássio mitocondriais ATP-sensíveis em cérebro de seu efeito neuroprotetor em excitotoxicidade." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-27112008-144745/.

Full text
Abstract:
Muitos estudos demonstram que a abertura de canais de K+ mitocondriais sensíveis à ATP (mitoKATP) previnem contra danos promovidos por isquemia/reperfusão em coração. Em geral, esta proteção envolve mudanças no estado redox mitocondrial. Em cérebro, sabe-se que agonistas farmacológicos de mitoKATP também protegem em modelo de isquemia/reperfusão. Entretanto, os mecanismos envolvidos na prevenção de danos em cérebro ainda não estão claros. O objetivo principal deste trabalho é compreender os efeitos de canais de K+ mitocondriais ATP-sensíveis em tecido cerebral e os mecanismos pelos quais a sua ativação pode proteger contra danos promovidos por excitotoxicidade, uma das principais conseqüências de um evento isquêmico em cérebro. Neste contexto, demonstramos a proteção pelo mitoKATP em modelo de excitotoxicidade induzida pela ativação direta de receptores NMDA, utilizando cultura de células granulosas de cerebelo. Paralelamente a essa proteção, verificamos que a ativação de mitoKATP reduz a geração de espécies reativas de oxigênio (ROS). Em mitocôndrias isoladas, observamos que ROS geradas pela mitocôndria ativam mitoKATP cerebral, resultando em um aumento da captação de K+ para a matriz, medida através da técnica de inchamento mitocondrial. Em condições de baixa geração de ROS, a adição de H2O2 exógeno ativa o inchamento mitocondrial em resposta à entrada de K+ de modo prevenido por catalase, assim, confirmando que a atividade desses canais é redox-sensível. A ativação de mitoKATP por agonistas farmacológicos, como diazóxido, também é maior na presença de alta geração de ROS, conforme indicado por uma leve diminuição no potencial de membrana mitocondrial. Interessantemente, a adição de um redutor tiólico, 2-mercaptopropionilglicina (MPG) previne a ativação de mitoKATP. A ativação de mitoKATP não alterou a capacidade de captar Ca2+ pela mitocôndria, demonstrando que este não é o mecanismo pelo qual esses canais previnem morte celular excitotóxica. Não foram observados efeitos desses canais em modelo de excitotoxicidade in vivo e em modelo de doença neurodegenerativa, acidose metilmalônica. Juntos, nossos resultados demonstram que mitoKATP cerebrais agem como sensores de ROS mitocondrial, que quando ativados reduzem a liberação de ROS por um leve desacoplamento, prevenindo morte neuronal por excitotoxicidade NMDA-induzida
Several studies have shown that mitochondrial ATP-sensitive K+ channel (mitoKATP) opening prevents ischemia/reperfusion injuries in heart, in a manner involving changes in redox state. In brain, mitoKATP agonists also protect against ischemia/reperfusion. However, the exactly mechanism that mitoKATP protects the brain is still unclear. The purpose of this work is to understand the effects of mitochondrial ATP-sensitive K+ channels in brain and how this channel can protect against excitotoxic cell death, the main consequence of a cerebral ischemia. In this context, we demonstrate that mitoKATP protects against excitotoxicity promoted by NMDA receptor activation in cultured cerebellar granule cells. In paralell, we verified that mitoKATP activation also decreases reactive oxygen species (ROS). In isolated mitochondria, we observed that mitochondrially-generated ROS can activate brain mitoKATP, resulting in enhanced K+ uptake into the matrix, measured as swelling of the organelle. Under conditions in which mitochondrial ROS release is low, exogenous H2O2 activated swelling secondary to K+ entrance, in a manner prevented by catalase, confirming that the activity of this channel is redox-sensitive. Activation of mitoKATP channels by the pharmacological agonist diazoxide was also improved when endogenous mitochondrial ROS release was enhanced, as indicated by mild decreases in mitochondrial membrane potentials. Interessantly, mitoKATP activation was preveted by the thiol reductant 2-mercaptopropionylglycine (MPG). Mitochondrial Ca2+ uptake was not modified by opening mitoKATP, suggesting that this is not the mechanism through which this channel prevents excitotoxic cell death. In an in vivo excitotoxicity model and also neurodegenerative disease model, methylmalonic acidemia, the effects of mitoKATP agonists were not observed. Together, our results demonstrate that brain mitoKATP acts as a mitochondrial ROS sensor, which, when activated, prevents ROS release by mildly uncoupling respiration from oxidative phosphorylation, decreasing excitotoxic cell death
APA, Harvard, Vancouver, ISO, and other styles
42

Hartwig, Jason W. "Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1396562473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lamire, Mohammed. "Adaptation de groupements tetraedriques xo4 aux edifices octaedriques : etude structurale des deformations de la charpente et des possibilites d'insertion cationique." Caen, 1987. http://www.theses.fr/1987CAEN2035.

Full text
Abstract:
Plusieurs types structuraux ont servi de base aux investigations. Dans chaque cas, un compose nouveau a ete synthetise et sa structure etablie par diffraction rx : pwo::(5), bronze monophosphate a tunnels pentagonaux; na::(x)p::(4)w::(14)o::(50), bronze monophosphate a tunnels hexagonaux; ba::(2)p::(8)w::(32)o::(112), bronze diphosphate a tunnels hexagonaux; rb::(x)p::(8)w::(8)o::(40), bronze diphosphate a tunnels octagonaux et deux formes de mo::(4)p::(6)si::(2)o::(25), silicophosphate. La description des coordinences, les calculs de potentiels de sites et l'ecoulement de ces proprietes au sein des cages et des tunnels permettent de prevoir les possibilites d'accueil par insertion cationique
APA, Harvard, Vancouver, ISO, and other styles
44

Djillani, Alaeddine. "Caractérisation des canaux calciques dans les polynucléaires neutrophiles : rôle dans la phagocytose et la production des radicaux libres oxygénés." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-01069097.

Full text
Abstract:
Les polynucléaires neutrophiles représentent 50-70% des leucocytes sanguins et possèdent un rôle majeur dans la défense de l'organisme contre les pathogènes. Le Ca2+ est un second messager qui joue un rôle primordial dans le chimiotactisme, la phagocytose, la dégranulation et la production de formes réactives de l'oxygène (FRO) afin de neutraliser l'agent pathogène. Dans ces cellules, l'influx calcique de type SOCE est essentiel pour l'homéostasie calcique. Il est peu étudié en raison du manque d'outils pharmacologiques spécifiques d'où l'importance dans un premier temps de chercher de nouvelles molécules. Les cellules T Jurkat dont le SOCE est largement caractérisé servent de modèle pour la caractérisation initiale de ces molécules. Le 2-APB est parmi les molécules les plus largement utilisées dans la caractérisation du SOCE en raison de sa double activité sur le SOCE avec une potentialisation à [1-10 μM] et une inhibition à [> 20 μM]. En revanche, ce produit manque de spécificité et agit sur d'autres cibles cellulaires comme les récepteurs à l'inositol (1,4,5)-trisphosphate (InsP3Rs). La 1ère étape est de sélectionner à partir d'analogues commerciaux du 2-APB (Methoxy-APB, Dimethoxy-APB, Cyclic-APB, Benzothienyl-APB, Thienyl-APB et MDEB), des composés plus spécifiques et également plus efficaces que la molécule mère. Deux molécules se sont distinguées : le MDEB comme uniquement potentialisant du SOCE et le Benzothienyl-APB comme un puissant inhibiteur. En revanche, tous les analogues du 2-APB inhibent les InsP3Rs à l'exception du MDEB qui semble plus spécifique du SOCE. L'effet du MDEB sur le courant calcique, ICRAC, a été étudié grâce à la technique du patch-clamp. Il augmente d'environ 4 fois l'amplitude de ICRAC par rapport à celle enregistrée dans les cellules contrôle. Par ailleurs, le MDEB ralentie l'inactivation rapide de ICRAC due au Ca2+. Sur le plan physiologique, le MDEB à des concentrations croissantes inhibe la synthèse de l'IL-2 dans les cellules Jurkat stimulées et ceci malgré son effet potentialisant du SOCE. Cette activité est liée à son effet pro-apoptotique dans les cellules Jurkat stimulées. Le MDEB et le Benzothienyl-APB caractérisés dans la 1ère partie nous ont servi d'outils potentiels afin d'étudier le SOCE des cellules PLB-985 différenciées en cellules proches de neutrophiles. Le SOCE a été induit soit par un traitement des cellules avec la thapsigargine (Tg) soit de manière physiologique avec les peptides fMLF et le WKYMVm deux chimioattractants, ligands des récepteurs aux peptides formylés FPR et FPRL1 respectivement. En plus, le SOCE induit par la Tg est modulable par le 2-APB, potentialisé par le MDEB et inhibé par le Benzothienyl-APB. La phagocytose des levures par les cellules PLB-985 différenciées ainsi que la production de FRO intraphagosomales ont été inhibées par le MDEB et le Benzothienyl-APB. Les FRO extracellulaires ont été également inhibées par Benzothienyl-APB en revanche à cause de la forte interférence du MDEB avec la technique de mesure nous n'avons pas pu étudier ses activités. En conclusion, le MDEB et le Benzothienyl-APB sont de nouveaux outils pharmacologiques potentialisant ou inhibant le SOCE des leucocytes, qui nous permettront dans l'avenir une meilleure compréhension de l'entrée calcique et ses rôles dans ces cellules.
APA, Harvard, Vancouver, ISO, and other styles
45

Moussaud, Simon. "Etude de l'implication des cellules microgliales et de l'α-synucleine dans la maladie neurodégénérative de Parkinson." Phd thesis, Université de Bourgogne, 2011. http://tel.archives-ouvertes.fr/tel-00668186.

Full text
Abstract:
Les maladies neurodégénératives liées à l'âge, telle celle de Parkinson, sont un problème majeur de santé publique. Cependant, la maladie de Parkinson reste incurable et les traitements sont très limités. En effet, les causes de la maladie restent encore mal comprises et la recherche se concentre sur ses mécanismes moléculaires. Dans cette étude, nous nous sommes intéressés à deux phénomènes anormaux se produisant dans la maladie de Parkinson : l'agrégation de l'α-synucléine et l'activation des cellules microgliales. Pour étudier la polymérisation de l'α-synucléine, nous avons établi de nouvelles méthodes permettant la production in vitro de différents types d'oligomères d'α-synucléine. Grâce à des méthodes biophysiques de pointe, nous avons caractérisé ces différents oligomères à l'échelle moléculaire. Puis nous avons étudié leurs effets toxiques sur les neurones. Ensuite, nous nous sommes intéressés à l'activation des microglies et en particulier à leurs canaux potassiques et aux changements liés au vieillissement. Nous avons identifié les canaux Kv1.3 et Kir2.1 et montré qu'ils étaient impliqués dans l'activation des microglies. En parallèle, nous avons établi une méthode originale qui permet l'isolation et la culture de microglies primaires issues de cerveaux adultes. En comparaison à celles de nouveaux-nés, les microglies adultes montrent des différences subtiles mais cruciales qui soutiennent l'hypothèse de changements liés au vieillissement. Globalement, nos résultats suggèrent qu'il est possible de développer de nouvelles approches thérapeutiques contre la maladie de Parkinson en modulant l'action des microglies ou en bloquant l'oligomérisation de l' α-synucléine.
APA, Harvard, Vancouver, ISO, and other styles
46

"Reactive oxygen species-induced cytosolic Ca²⁺ signaling in endothelial cells and involvement of TRPM2." 2012. http://library.cuhk.edu.hk/record=b5549592.

Full text
Abstract:
活性氧在內皮細胞生理發展比如細胞生長增殖和病理中起到非常重要的作用。在病理條件下,活性氧在血管功能失調和重構起到關鍵作用。氧化應激現在被認為存在於多種形式的心血管疾病中。諸多證據表明著活性氧誘導的心血管系統中很多功能異常之前會伴隨有細胞內鈣離子濃度的上升。
在本論文的第一個部分,我比較了活性氧在大血管(主動脈)和小血管(腸系膜動脈)的內皮細胞裡引起的鈣應激的相似和差異之處。在這兩種細胞中,活性氧均可引起細胞內鈣離子濃度的上升。這種鈣離子濃度增加可被磷酸酯酶C (PLC) 的抑製劑U73122或者磷酸肌醇受體 (IP₃R) 抑製劑 (Xestospongin C, XeC)大幅度的減弱。此外,用過氧化氫預處理後的細胞會降低細胞對ATP的鈣應激反應。這種鈣應激反應的抑制可能是由於過氧化氫引發的鈣庫流失。令人關注的是,腸系膜動脈的內皮細胞對過氧化氫的作用更為敏感。次黃嘌呤 (hypoxanthine; HX) 加上黃嘌呤(xanthine; XO) 也能引起這兩種內皮細胞鈣離子濃度的上升,而這種鈣離子的增加源於超氧陰離子而不是氫氧離子。在腸系膜動脈的內皮細胞中,過氧化氫在此事件中起到的作用明顯比在主動脈細胞大。總之,過氧化氫可以引起大血管和小血管的內皮細胞裡磷酸酯酶C-磷酸肌醇受體依賴的鈣應激反應。而這種鈣應激後的鈣庫耗竭會對ATP引起的鈣應激起作用。綜上所述,小血管的內皮細胞的鈣應激比大血管的內皮細胞對過氧化氫更為敏感。
基於以上的結果,在第二部分的內容中,我們以培植的微血管內皮細胞系(H5V)為小血管內皮細胞的模型,研究了TRPM2通道在過氧化氫誘導的的鈣應激和凋亡中的作用。TRPM2是表達在動物是血管內皮組織中的氧化敏感的和陽離子無選擇性通道。我們開發了TRPM2通道的抑制性抗體 (TM2E3),這種抗體可以結合到TRPM2通道的離子孔道的E3區域。對H5V細胞進行TM2E3的預處理後,可以降低細胞對過氧化氫刺激下的鈣離子的增加。用TRPM2特異的短發卡核糖核酸 (shRNA)也有同樣的抑制反應。我們用了3種方法來檢測過氧化氫誘導的細胞凋亡:四甲基偶氮唑盐(MTT)檢測,脫氧核糖核酸凋亡片段的檢測和4,6-联脒-2-苯基吲哚(DAPI) 核染色。基於以上的試驗結果,TM2E3 和TRPM2特異的shRNA都表現出了對過氧化氫引起的細胞凋亡的保護作用。相反,在細胞中過表達TRPM2會導致過氧化氫引起的鈣離子濃度上升的增加和細胞凋亡程度的加重。 這些發現強有力的證明了TRPM2 介導了過氧化氫引起的鈣離子濃度的上升和細胞凋亡。此外,我們還研究了TRPM2激活後的下游事件:半胱氨酸蛋白酶-3,-8和9是否參與到這個過程。我的數據表明過氧化氫誘導細胞凋亡是通過內源和外源通路導致半胱氨酸酶-3激活,而TRPM2在這個過程中起到了重要的決定作用。總括而言,TRPM2 介導了過氧化氫誘導的內皮細胞凋亡,下調內源性的TRPM2的表達會保護血管內皮細胞。
Reactive Oxygen Species (ROS) play a key role in normal physiological processes such as cell proliferation and growth, as well as in pathological processes. Under pathological conditions ROS contribute to vascular dysfunction and remodeling through oxidative damage. Oxidative stress is now thought to underlie many cardiovascular diseases. Accumulating evidence also demonstrate that many ROS-induced functional abnormalities in the cardiovascular system are preceded by an elevation of intracellular Ca²⁺.
In the first part, I compared the Ca²⁺ responses to ROS between mouse endothelial cells derived from large-sized artey aortas (aortic ECs), and small-sized mesenteric arteries (MAECs). Application of hydrogen peroxide (H₂O₂) caused an increase in cytosolic Ca²⁺ levels ([Ca²⁺]i) in both cell types. The [Ca²⁺]i rises diminished in the presence of U73122, a phospholipase C inhibitor, or Xestospongin C (XeC), an inhibitor for inositol-1,4,5-trisphosphate (IP₃) receptors. In addition, treatment of endothelial cells with H₂O₂ reduced the Ca²⁺ responses to subsequent challenge of ATP. The decreased Ca²⁺ responses to ATP were resulted from a pre-depletion of intracellular Ca²⁺ stores by H₂O₂. Interestingly, we also found that Ca²⁺ store depletion was more sensitive to H₂O₂ treatment in endothelial cells derived from mesenteric arteries than those of derived from aortas. Hypoxanthine-xanthine oxidase (HX-XO) was also found to induce [Ca²⁺]i rises in both types of endothelial cells, the effect of which was mediated by superoxide anions and H₂O₂ but not by hydroxyl radicals. H₂O₂ made a greater contribution to HX-XO-induced [Ca²⁺]i rises in endothelial cells from mesenteric arteries than those from aortas. In summary, H₂O₂ could induce store Ca²⁺ release via phospholipase C-IP₃ pathway in endothelial cells. Emptying of intracellular Ca²⁺ stores contributed to the reduced Ca²⁺ responses to subsequent ATP challenge. Furthermore, the Ca²⁺ responses in endothelial cells of small-sized arteries were more sensitive to H₂O₂ than those of large-sized arteries.
In the second part, I used murine heart microvessel endothelial cell line H5V as a model of endothelial cells from small-sized arteries to investigate the role of Melastatin-like transient receptor potential channel 2 (TRPM2) channels in H₂O₂-induced Ca²⁺ responses and apoptosis. TRPM2 is an oxidant-sensitive cationic non-selective channel that is expressed in mammalian vascular endothelium. A TRPM2 blocking antibody channel (TM2E3), which targets the E3 region near the ion permeation pore of TRPM2, was developed. Treatment of H5V cells with TM2E3 reduced the Ca²⁺ responses to H₂O₂. Suppressing TRPM2 expression using TRPM2-specific short hairpin RNA (shRNA) had similar inhibitory effect in H₂O₂-induced Ca²⁺ responses. H₂O₂-induced apoptotic cell death in H5V cells was examined using MTT assay, DNA ladder formation analysis, and DAPI-based nuclear DNA condensation assay. Based on these assays, TM2E3 and TRPM2-specific shRNA both showed protective effect on H₂O₂-induced apoptotic cell death. In contrast, overexpression of TRPM2 in H5V cells increased the Ca²⁺ responses to H₂O₂ and aggravated the apoptotic cell death in response to H₂O₂. These findings strongly suggest that the TRPM2 channel mediates Ca²⁺ overload in response to H₂O₂ and contributes to oxidant-induced apoptotic cell death in vascular endothelial cells. I also examined the downstream cascades of TRPM2 activation and explored whether caspase-3, -8 and -9 were involved in this process. My data indicates that H₂O₂-induced cell apoptosis through both intrinsic and extrinsic apoptotic pathways, leading to activation of caspases-3. Furthermore, TRPM2 played an essential role in the process. Together, my data suggest that TRPM2 mediates H₂O₂-induces endothelial cell death and that down-regulating endogenous TRPM2 could be a means to protect the vascular endothelial cells from apoptotic cell death.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Sun, Lei.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2012.
Includes bibliographical references (leaves 101-114).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstract also in Chinese.
Declaration of Originality --- p.I
Abstract --- p.II
論文摘要 --- p.IV
Acknowledgments --- p.VI
Abbreviations and Units --- p.VII
Table of Contents --- p.IX
Chapter Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Reactive oxygen species and Reactive nitrogen species --- p.1
Chapter 1.1.1 --- What is oxidative stress? --- p.1
Chapter 1.1.2 --- Types of ROS --- p.2
Chapter 1.1.2.1 --- Hydroxyl radical (*OH) --- p.2
Chapter 1.1.2.2 --- Hydrogen peroxide (H₂O₂) --- p.3
Chapter 1.1.2.3 --- Superoxide (O₂*⁻) --- p.4
Chapter 1.1.2.4 --- Nitric oxide (NO) --- p.5
Chapter 1.1.3 --- ROS-producing systems --- p.6
Chapter 1.1.3.1 --- NAD(P)H oxidase --- p.6
Chapter 1.1.3.2 --- Xanthine oxidase (XO) --- p.7
Chapter 1.1.3.3 --- The mitochondrial respiratory chain --- p.8
Chapter 1.1.3.4 --- Uncoupled endothelial NO synthase --- p.8
Chapter 1.1.4 --- Antioxidant defense mechanisms in the cardiovascular systems --- p.9
Chapter 1.1.4.1 --- SOD --- p.9
Chapter 1.1.4.2 --- Catalase --- p.10
Chapter 1.1.4.3 --- Glutathione peroxidase (GPx) --- p.10
Chapter 1.1.4.4 --- Small molecules --- p.11
Chapter 1.1.5 --- Role of oxidative stress in human diseases --- p.12
Chapter 1.1.6 --- Endothelium dysfunction in oxidative stress-relating human diseases --- p.12
Chapter 1.1.7 --- Role of Ca²⁺ in oxidative stress-relating human diseases --- p.14
Chapter 1.1.8 --- Differential effects of ROS on endothelial calcium signaling --- p.15
Chapter 1.1.8.1 --- Multiple Oxidative Stress-induced Ca²⁺ signaling pathway --- p.16
Chapter 1.1.9 --- Effects of ROS on Agonist-induced endothelial calcium signaling --- p.19
Chapter 1.1.10 --- Role of H₂O₂ as EDHF --- p.20
Chapter 1.1.11 --- Differential effect of ROS on cells derived from large-sized and small-sized artries --- p.21
Chapter 1.2 --- The transient receptor potential (TRP) Channels --- p.21
Chapter 1.2.1 --- TRP Channel structure --- p.22
Chapter 1.2.2 --- TRP Channel function --- p.23
Chapter 1.2.3 --- TRPM subfamily --- p.23
Chapter 1.2.3.1 --- TRPM2 Property and Structure --- p.24
Chapter 1.2.3.2 --- TRPM2 Expression --- p.25
Chapter 1.2.3.3 --- TRPM2 Activator --- p.25
Chapter 1.2.3.4 --- TRPM2 Physiological and pathophysiological function --- p.28
Chapter Chapter 2 --- Objectives of the Present Study --- p.35
Chapter Chapter 3 --- Materials and methods --- p.37
Chapter 3.1 --- Ethics statement --- p.37
Chapter 3.2 --- Materials --- p.37
Chapter 3.3 --- Methods --- p.38
Chapter 3.3.1 --- Cell culture --- p.38
Chapter 3.3.1.1 --- Primary Cell Culture --- p.38
Chapter 3.3.1.2 --- H5V endothelial cell line --- p.39
Chapter 3.3.1.3 --- Human embryonic kidney 293 (HEK293) cells --- p.39
Chapter 3.3.4. --- TRPM2-specific shRNA, TRPM2 and transfection --- p.39
Chapter 3.3.5 --- Western blotting --- p.40
Chapter 3.3.6 --- [Ca²⁺]i Studies --- p.43
Chapter 3.3.6.1 --- Fluo-4/AM- Measuring intracellular [Ca²⁺]i --- p.43
Chapter 3.3.6.2 --- Fura-2/AM-Measuring intracellular [Ca²⁺]i --- p.44
Chapter 3.3.6.3 --- Mag-fluo-4-Measuring Ca²⁺ Content in Intracellular Ca²⁺ Stores --- p.45
Chapter 3.3.7 --- IP₃ measurement --- p.45
Chapter 3.3.8 --- Electrophysiology --- p.46
Chapter 3.3.9 --- TRPM2 blocking antibody (TM2E3) and Pre-immune IgG Generation --- p.46
Chapter 3.3.10 --- DNA fragmentation assay --- p.47
Chapter 3.3.11 --- DAPI Staining --- p.48
Chapter 3.3.12 --- MTT assay --- p.48
Chapter 3.3.13 --- Statistical analysis --- p.49
Chapter Chapter 4 --- Effect of Hydrogen Peroxide and Superoxide Anions on Cytosolic Ca²⁺: Comparison of Endothelial Cells from Large-sized and Small-sized Arteries --- p.50
Chapter 4.1 --- Introduction --- p.50
Chapter 4.2 --- Materials and methods --- p.52
Chapter 4.2.1 --- Primary Cell Culture --- p.52
Chapter 4.2.2 --- [Ca²⁺]i Measurement --- p.52
Chapter 4.2.3 --- Measuring Ca²⁺ Content in Intracellular Ca²⁺ Stores --- p.52
Chapter 4.2.4 --- IP₃ measurement --- p.53
Chapter 4.2.5 --- Data Analysis --- p.53
Chapter 4.3 --- Results --- p.53
Chapter 4.3.1 --- Both Ca²⁺ entry and store Ca²⁺ release contributed to H₂O₂-induced [Ca²⁺]i rises.. --- p.53
Chapter 4.3.2 --- H₂O₂ enhanced IP₃ production and store Ca²⁺ release --- p.54
Chapter 4.3.3 --- H₂O₂ reduced the Ca²⁺ responses to ATP in a H₂O₂ concentration and incubation time dependent manner --- p.54
Chapter 4.3.4 --- H₂O₂ induced Ca²⁺ store depletion --- p.55
Chapter 4.3.5 --- Ca²⁺ responses to ATP in the absence of H₂O₂ --- p.56
Chapter 4.3.6 --- Non-involvement of hydroxyl radical --- p.56
Chapter 4.3.7 --- HX-XO-induced [Ca²⁺]i rises were caused by superoxide anion and hydrogen peroxide --- p.56
Chapter 4.4 --- Discussion --- p.68
Chapter Chapter 5 --- Role of TRPM2 in H₂O₂-induced cell apoptosis in endothelial cells --- p.72
Chapter 5.1 --- Introduction --- p.72
Chapter 5.2 --- Materials and Methods --- p.73
Chapter 5.2.1 --- Cell Culture --- p.74
Chapter 5.2.2 --- [Ca²⁺]i measurement --- p.74
Chapter 5.2.3 --- DNA fragmentation assay --- p.74
Chapter 5.2.4 --- MTT assay --- p.74
Chapter 5.2.5 --- TRPM2-specific shRNA, TRPM2 and transfection --- p.75
Chapter 5.2.6 --- Electrophysiology --- p.75
Chapter 5.2.7 --- Western blotting --- p.75
Chapter 5.2.8 --- DAPI Staining --- p.76
Chapter 5.2.9 --- Data analysis --- p.76
Chapter 5.3 --- Results --- p.76
Chapter 5.3.1 --- Involvement of TRPM2 channels in H₂O₂-induced Ca²⁺ influx in H5V cells --- p.76
Chapter 5.3.2 --- Involvement of TRPM2 channels in H₂O₂-elicited whole-cell current change in H5V cells --- p.77
Chapter 5.3.3 --- Role of TRPM2 channels in H₂O₂-induced apoptotic cell death in H5V cells --- p.78
Chapter 5.3.4 --- Involvement of caspases in H₂O₂-induced apoptotic cell death --- p.79
Chapter 5.3.5 --- Involvement of TRPM2 in TNF-α-induced cell death in H5V cells --- p.79
Chapter 5.3 --- Discussion --- p.90
Chapter Chapter 6 --- General Conclusions, Disscussion and Future work --- p.94
Chapter 6.1 --- General Conclusions --- p.94
Chapter 6.2 --- Discussion --- p.95
Chapter 6.2.1. --- Comparative study --- p.95
Chapter 6.2.2. --- IP₃ receptor (IP₃R) --- p.95
Chapter 6.2.3. --- TM2E3-Specific blocking antibody of TRPM2 --- p.95
Chapter 6.2.4. --- Pathological effect of H₂O₂ at high concentration --- p.96
Chapter 6.2.5 --- Non-change on Basal [Ca²⁺]i --- p.97
Chapter 6.3. --- Future work --- p.98
References --- p.101
APA, Harvard, Vancouver, ISO, and other styles
47

Saam, Jan [Verfasser]. "Identification of dynamic oxygen access channels in 12/15-lipoxygenase : molecular dynamics simulations and free energy landscapes / von Jan Saam." 2008. http://d-nb.info/989226980/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hung-PingChan and 詹弘凭. "Analysis of flame acceleration and deflagration-to-detonation transition in narrow channels filled with ethylene/oxygen mixtures using high-speed schlieren visualization." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/6t6aa8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Murawski, Emily M. "Assessment of Cerebellar and Hippocampal Morphology and Biochemical Parameters in the Compound Heterozygous, Tottering/leaner Mouse." 2009. http://hdl.handle.net/1969.1/ETD-TAMU-2009-12-7380.

Full text
Abstract:
Due to two different mutations in the gene that encodes the a1A subunit of voltage-activated CaV 2.1 calcium ion channels, the compound heterozygous tottering/leaner (tg/tgla) mouse exhibits numerous neurological deficits. Human disorders that arise from mutations in this voltage dependent calcium channel are familial hemiplegic migraine, episodic ataxia-2, and spinocerebellar ataxia 6. The tg/tgla mouse exhibits ataxia, movement disorders and memory impairment, suggesting that both the cerebellum and hippocampus are affected. To gain greater understanding of the many neurological abnormalities that are exhibited by the 90-120 day old tg/tgla mouse the following aspects were investigated: 1) the morphology of the cerebellum and hippocampus, 2) proliferation and death in cells of the hippocampal dentate gyrus and 3) changes in basic biochemical parameters in granule cells of the cerebellum and hippocampus. This study revealed no volume abnormalities within the hippocampus of the mutant mice, but a decrease in cell density with the pyramidal layer of CA3 and the hilus of the dentate gyrus. Cell size in the CA3 region was unaffected, but cell size in the hilus of the dentate gyrus did not exhibit the gender difference seen in the wild type mouse. The cerebellum showed a decrease in volume without any decrease in cerebellar cellular density. Cell proliferation and differentiation in the subgranular zone of the hippocampal dentate gyrus remained normal. This region also revealed a decrease in cell death in the tg/tgla mice. Basal intracellular calcium levels in granule cells show no difference within the hippocampus, but an increase in the tg/tgla male cerebellum compared to the wild type male cerebellum. There was no significant difference in granule cell mitochondrial membrane potential within the wild type and mutant animals in either the hippocampus or cerebellum. The rate of reactive oxygen species (ROS) production in granule cells revealed no variation within the hippocampus or cerebellum. The amount of ROS was decreased in cerebellar granule cells, but not granule cells of the hippocampus. Inducing ROS showed no alteration in production or amount of ROS produced in the hippocampus, but did show a ceiling in the amount of ROS produced, but not rate of production, in the cerebellum.
APA, Harvard, Vancouver, ISO, and other styles
50

Tung, Chien-Hung, and 董建宏. "Gettering Effect Induced by Oxygen-Deficient Titanium Oxide in InZnO and InGaZnO Channel Systems." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/23905966884446457032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography