Journal articles on the topic 'Oxygen Evolution Reaction (OER)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Oxygen Evolution Reaction (OER).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Elbaz, Lior, and Wenjamin Moschkowitsch. "Electrocatalyzing Oxygen Evolution Reaction with Nifeooh Aerogels." ECS Meeting Abstracts MA2022-02, no. 44 (October 9, 2022): 1680. http://dx.doi.org/10.1149/ma2022-02441680mtgabs.
Full textLin, Shiru, Haoxiang Xu, Yekun Wang, Xiao Cheng Zeng, and Zhongfang Chen. "Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning." Journal of Materials Chemistry A 8, no. 11 (2020): 5663–70. http://dx.doi.org/10.1039/c9ta13404b.
Full textWu, Hengbo, Jie Wang, Wei Jin, and Zexing Wu. "Recent development of two-dimensional metal–organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis." Nanoscale 12, no. 36 (2020): 18497–522. http://dx.doi.org/10.1039/d0nr04458j.
Full textWan, Xin, Yingjie Song, Hua Zhou, and Mingfei Shao. "Layered Double Hydroxides for Oxygen Evolution Reaction towards Efficient Hydrogen Generation." Energy Material Advances 2022 (September 7, 2022): 1–17. http://dx.doi.org/10.34133/2022/9842610.
Full textMorales, Dulce M., Mariya A. Kazakova, Maximilian Purcel, Justus Masa, and Wolfgang Schuhmann. "The sum is more than its parts: stability of MnFe oxide nanoparticles supported on oxygen-functionalized multi-walled carbon nanotubes at alternating oxygen reduction reaction and oxygen evolution reaction conditions." Journal of Solid State Electrochemistry 24, no. 11-12 (June 1, 2020): 2901–6. http://dx.doi.org/10.1007/s10008-020-04667-2.
Full textJeon, Jaeeun, Kyoung Ryeol Park, Kang Min Kim, Daehyeon Ko, HyukSu Han, Nuri Oh, Sunghwan Yeo, Chisung Ahn, and Sungwook Mhin. "CoFeS2@CoS2 Nanocubes Entangled with CNT for Efficient Bifunctional Performance for Oxygen Evolution and Oxygen Reduction Reactions." Nanomaterials 12, no. 6 (March 16, 2022): 983. http://dx.doi.org/10.3390/nano12060983.
Full textÖztürk, Secil, Yu-Xuan Xiao, Dennis Dietrich, Beatriz Giesen, Juri Barthel, Jie Ying, Xiao-Yu Yang, and Christoph Janiak. "Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions." Beilstein Journal of Nanotechnology 11 (May 11, 2020): 770–81. http://dx.doi.org/10.3762/bjnano.11.62.
Full textYao, Bin, Youzhou He, Song Wang, Hongfei Sun, and Xingyan Liu. "Recent Advances in Porphyrin-Based Systems for Electrochemical Oxygen Evolution Reaction." International Journal of Molecular Sciences 23, no. 11 (May 27, 2022): 6036. http://dx.doi.org/10.3390/ijms23116036.
Full textRahman, Sheikh Tareq, Kyong Yop Rhee, and Soo-Jin Park. "Nanostructured multifunctional electrocatalysts for efficient energy conversion systems: Recent perspectives." Nanotechnology Reviews 10, no. 1 (January 1, 2021): 137–57. http://dx.doi.org/10.1515/ntrev-2021-0008.
Full textSui, Chenxi, Kai Chen, Liming Zhao, Li Zhou, and Qu-Quan Wang. "MoS2-modified porous gas diffusion layer with air–solid–liquid interface for efficient electrocatalytic water splitting." Nanoscale 10, no. 32 (2018): 15324–31. http://dx.doi.org/10.1039/c8nr04082f.
Full textLi, Nancy, Thomas P. Keane, Samuel S. Veroneau, Ryan G. Hadt, Dugan Hayes, Lin X. Chen, and Daniel G. Nocera. "Template-stabilized oxidic nickel oxygen evolution catalysts." Proceedings of the National Academy of Sciences 117, no. 28 (July 7, 2020): 16187–92. http://dx.doi.org/10.1073/pnas.2001529117.
Full textLhermitte, Charles R., J. Garret Verwer, and Bart M. Bartlett. "Improving the stability and selectivity for the oxygen-evolution reaction on semiconducting WO3 photoelectrodes with a solid-state FeOOH catalyst." Journal of Materials Chemistry A 4, no. 8 (2016): 2960–68. http://dx.doi.org/10.1039/c5ta04747a.
Full textZhang, Pengfei, Hongmei Qiu, Huicong Li, Jiangang He, Yingying Xu, and Rongming Wang. "Nonmetallic Active Sites on Nickel Phosphide in Oxygen Evolution Reaction." Nanomaterials 12, no. 7 (March 29, 2022): 1130. http://dx.doi.org/10.3390/nano12071130.
Full textPriamushko, Tatiana, Rémy Guillet-Nicolas, and Freddy Kleitz. "Mesoporous Nanocast Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions." Inorganics 7, no. 8 (August 11, 2019): 98. http://dx.doi.org/10.3390/inorganics7080098.
Full textFontanesi, Claudio, Massimo Innocenti, Walter Giurlani, Mirko Gazzotti, Marco Bonechi, and Andrea Stefani. "Electrodeposited Ni for the Oxygen Evolution Reaction (OER)." ECS Meeting Abstracts MA2020-02, no. 18 (November 23, 2020): 1529. http://dx.doi.org/10.1149/ma2020-02181529mtgabs.
Full textKim, Jeheon, Tomohiro Fukushima, Ruifeng Zhou, and Kei Murakoshi. "Revealing High Oxygen Evolution Catalytic Activity of Fluorine-Doped Carbon in Alkaline Media." Materials 12, no. 2 (January 10, 2019): 211. http://dx.doi.org/10.3390/ma12020211.
Full textGhanashyam, Gyawali, and Hae Kyung Jeong. "Size Effects of MoS2 on Hydrogen and Oxygen Evolution Reaction." Journal of Electrochemical Science and Technology 13, no. 1 (February 28, 2022): 120–27. http://dx.doi.org/10.33961/jecst.2021.00710.
Full textPutra, Ridwan P., Ihsan Budi Rachman, Hideyuki Horino, and Izabela I. Rzeznicka. "Bifunctional Catalytic Activity of γ-NiOOH toward Oxygen Reduction and Oxygen Evolution Reactions in Alkaline Solutions." Oxygen 2, no. 4 (October 13, 2022): 479–92. http://dx.doi.org/10.3390/oxygen2040031.
Full textBian, Yaru, Hao Wang, Zhi Gao, Jintang Hu, Dong Liu, and Liming Dai. "A facile approach to high-performance trifunctional electrocatalysts by substrate-enhanced electroless deposition of Pt/NiO/Ni on carbon nanotubes." Nanoscale 12, no. 27 (2020): 14615–25. http://dx.doi.org/10.1039/d0nr03378b.
Full textSingh, Aditya Narayan, Amir Hajibabaei, Muhammad Hanif Diorizky, Qiankai Ba, and Kyung-Wan Nam. "Remarkably Enhanced Lattice Oxygen Participation in Perovskites to Boost Oxygen Evolution Reaction." Nanomaterials 13, no. 5 (February 27, 2023): 905. http://dx.doi.org/10.3390/nano13050905.
Full textChen, Junxue, Sijia Li, Zizheng Qu, Zhonglin Li, Ding Wang, Jialong Shen, and Yibing Li. "Study on Oxygen Evolution Reaction Performance of Jarosite/C Composites." Materials 15, no. 2 (January 17, 2022): 668. http://dx.doi.org/10.3390/ma15020668.
Full textCheng, J., P. Ganesan, Z. Wang, M. Zhang, G. Zhang, N. Maeda, J. Matsuda, M. Yamauchi, B. Chi, and N. Nakashima. "Bifunctional electrochemical properties of La0.8Sr0.2Co0.8M0.2O3−δ (M = Ni, Fe, Mn, and Cu): efficient elemental doping based on a structural and pH-dependent study." Materials Advances 3, no. 1 (2022): 272–81. http://dx.doi.org/10.1039/d1ma00632k.
Full textBadreldin, Ahmed, Aya E. Abusrafa, and Ahmed Abdel-Wahab. "Oxygen-deficient perovskites for oxygen evolution reaction in alkaline media: a review." Emergent Materials 3, no. 5 (September 21, 2020): 567–90. http://dx.doi.org/10.1007/s42247-020-00123-z.
Full textHam, Kahyun, Sukhwa Hong, Sinwoo Kang, Kangwoo Cho, and Jaeyoung Lee. "Active Site Formation in Oxygen Deficient Cobalt Antimonate for Oxygen Evolution Reaction in Alkaline Media." ECS Meeting Abstracts MA2022-01, no. 34 (July 7, 2022): 1389. http://dx.doi.org/10.1149/ma2022-01341389mtgabs.
Full textTang, Huang, Deshuai Yang, Mengfei Lu, Shaoxi Kong, Yanghui Hou, Duanduan Liu, Depei Liu, et al. "Spin unlocking oxygen evolution reaction on antiperovskite nitrides." Journal of Materials Chemistry A 9, no. 45 (2021): 25435–44. http://dx.doi.org/10.1039/d1ta07561f.
Full textHong, Yu-Rim, Sungwook Mhin, Jiseok Kwon, Won-Sik Han, Taeseup Song, and HyukSu Han. "Synthesis of transition metal sulfide and reduced graphene oxide hybrids as efficient electrocatalysts for oxygen evolution reactions." Royal Society Open Science 5, no. 9 (September 2018): 180927. http://dx.doi.org/10.1098/rsos.180927.
Full textWang, Hongxia, Kelvin H. L. Zhang, Jan P. Hofmann, Victor A. de la Peña O'Shea, and Freddy E. Oropeza. "The electronic structure of transition metal oxides for oxygen evolution reaction." Journal of Materials Chemistry A 9, no. 35 (2021): 19465–88. http://dx.doi.org/10.1039/d1ta03732c.
Full textZheng, Xingqun, Ling Zhang, Wei He, Li Li, and Shun Lu. "Heteroatom-Doped Nickel Sulfide for Efficient Electrochemical Oxygen Evolution Reaction." Energies 16, no. 2 (January 12, 2023): 881. http://dx.doi.org/10.3390/en16020881.
Full textAltaf, Amna, Manzar Sohail, Ayman Nafady, Rashid G. Siddique, Syed Shoaib Ahmad Shah, and Tayyaba Najam. "Facile Synthesis of PdO.TiO2 Nanocomposite for Photoelectrochemical Oxygen Evolution Reaction." Molecules 28, no. 2 (January 6, 2023): 572. http://dx.doi.org/10.3390/molecules28020572.
Full textQu, Huiying, Xiwen He, Yibo Wang, and Shuai Hou. "Electrocatalysis for the Oxygen Evolution Reaction in Acidic Media: Progress and Challenges." Applied Sciences 11, no. 10 (May 11, 2021): 4320. http://dx.doi.org/10.3390/app11104320.
Full textChoi, Yusong, Tae-Young Ahn, Ji-Youn Kim, Eun Hye Lee, and Hye-Ryeon Yu. "Massively synthesizable nickel-doped 1T-MoS2 nanosheet catalyst as an efficient tri-functional catalyst." RSC Advances 13, no. 26 (2023): 18122–27. http://dx.doi.org/10.1039/d3ra03016d.
Full textTang, Yongfu, Hongbin Yang, Jiaojiao Sun, Meirong Xia, Wenfeng Guo, Like Yu, Jitong Yan, Jia Zheng, Limin Chang, and Faming Gao. "Phase-pure pentlandite Ni4.3Co4.7S8 binary sulfide as an efficient bifunctional electrocatalyst for oxygen evolution and hydrogen evolution." Nanoscale 10, no. 22 (2018): 10459–66. http://dx.doi.org/10.1039/c8nr02402b.
Full textDogutan, Dilek K., D. Kwabena Bediako, Daniel J. Graham, Christopher M. Lemon, and Daniel G. Nocera. "Proton-coupled electron transfer chemistry of hangman macrocycles: Hydrogen and oxygen evolution reactions." Journal of Porphyrins and Phthalocyanines 19, no. 01-03 (January 2015): 1–8. http://dx.doi.org/10.1142/s1088424614501016.
Full textHe, Junying, Yuqin Zou, and Shuangyin Wang. "Defective glycerolatocobalt(ii) for enhancing the oxygen evolution reaction." Chemical Communications 55, no. 85 (2019): 12861–64. http://dx.doi.org/10.1039/c9cc06607a.
Full textIkezawa, Atsunori, Kotaro Seki, and Hajime Arai. "Rational Placement of Catalysts for Oxygen Reduction and Evolution Reactions Based on the Reaction Sites in Porous Gas Diffusion Electrodes." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 522. http://dx.doi.org/10.1149/ma2022-024522mtgabs.
Full textLi, Xiang, Hao Wang, Zhiming Cui, Yutao Li, Sen Xin, Jianshi Zhou, Youwen Long, Changqing Jin, and John B. Goodenough. "Exceptional oxygen evolution reactivities on CaCoO3 and SrCoO3." Science Advances 5, no. 8 (August 2019): eaav6262. http://dx.doi.org/10.1126/sciadv.aav6262.
Full textKim, Yohan, Seongmin Kim, Minyoung Shim, Yusik Oh, Kug-Seung Lee, Yousung Jung, and Hye Ryung Byon. "Alteration of Oxygen Evolution Mechanisms in Layered LiCoO2 Structures By Intercalation of Alkali Metal Ions." ECS Meeting Abstracts MA2022-01, no. 34 (July 7, 2022): 1356. http://dx.doi.org/10.1149/ma2022-01341356mtgabs.
Full textSingh, Harish, Manashi Nath, and Wipula Priya Rasika Liyanage. "Metal Selenide Anchored Carbon Nanotube for Boosted Oxygen Evolution Reaction." ECS Meeting Abstracts MA2022-01, no. 7 (July 7, 2022): 631. http://dx.doi.org/10.1149/ma2022-017631mtgabs.
Full textJiang, Bo, Jeonghun Kim, Yanna Guo, Kevin C. W. Wu, Saad M. Alshehri, Tansir Ahamad, Norah Alhokbany, Joel Henzie, and Yusuke Yamachi. "Efficient oxygen evolution on mesoporous IrOx nanosheets." Catalysis Science & Technology 9, no. 14 (2019): 3697–702. http://dx.doi.org/10.1039/c9cy00302a.
Full textYang, Xiaohang, Zhen Feng, and Zhanyong Guo. "Theoretical Investigation on the Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reactions Performances of Two-Dimensional Metal-Organic Frameworks Fe3(C2X)12 (X = NH, O, S)." Molecules 27, no. 5 (February 24, 2022): 1528. http://dx.doi.org/10.3390/molecules27051528.
Full textGond, Ritambhara, Sai Pranav Vanam, and Prabeer Barpanda. "Na2MnP2O7 polymorphs as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions." Chemical Communications 55, no. 77 (2019): 11595–98. http://dx.doi.org/10.1039/c9cc04680a.
Full textShi, Qiurong, Chengzhou Zhu, Dan Du, and Yuehe Lin. "Robust noble metal-based electrocatalysts for oxygen evolution reaction." Chemical Society Reviews 48, no. 12 (2019): 3181–92. http://dx.doi.org/10.1039/c8cs00671g.
Full textKim, Myeong-Geun, and Sung Jong Yoo. "Surface Reconstruction of Iridium Nanoparticles for Enhanced Oxygen Evolution Reaction in Alkaline Medium." ECS Meeting Abstracts MA2022-01, no. 34 (July 7, 2022): 1400. http://dx.doi.org/10.1149/ma2022-01341400mtgabs.
Full textBathula, Chinna, Abhishek Meena, Sankar Sekar, Aditya Narayan Singh, Ritesh Soni, Adel El-Marghany, Ramasubba Reddy Palem, and Hyun-Seok Kim. "Self-Assembly of Copper Oxide Interfaced MnO2 for Oxygen Evolution Reaction." Nanomaterials 13, no. 16 (August 13, 2023): 2329. http://dx.doi.org/10.3390/nano13162329.
Full textMiao, Bo-Qiang, Yi-Ming Liu, Tian-Jiao Wang, Yu Ding, and Yu Chen. "One-dimensional cobalt oxide nanotubes with rich defect for oxygen evolution reaction." Nanotechnology 33, no. 7 (November 25, 2021): 075401. http://dx.doi.org/10.1088/1361-6528/ac3702.
Full textSalvatore, D. A., B. Peña, K. E. Dettelbach, and C. P. Berlinguette. "Photodeposited ruthenium dioxide films for oxygen evolution reaction electrocatalysis." Journal of Materials Chemistry A 5, no. 4 (2017): 1575–80. http://dx.doi.org/10.1039/c6ta09094j.
Full textZhang, Xiaoyun, Yuxin Liu, Xiaoshuang Ma, Xiaojin Liu, Renyun Zhang, and Yuqiao Wang. "Metal–Support Interaction of Carbon–Based Electrocatalysts for Oxygen Evolution Reaction." Nanoenergy Advances 3, no. 1 (March 2, 2023): 48–72. http://dx.doi.org/10.3390/nanoenergyadv3010004.
Full textChoi, Yun-Hyuk. "VO2 as a Highly Efficient Electrocatalyst for the Oxygen Evolution Reaction." Nanomaterials 12, no. 6 (March 12, 2022): 939. http://dx.doi.org/10.3390/nano12060939.
Full textWu, Libo, Luo Yu, Xin Xiao, Fanghao Zhang, Shaowei Song, Shuo Chen, and Zhifeng Ren. "Recent Advances in Self-Supported Layered Double Hydroxides for Oxygen Evolution Reaction." Research 2020 (February 19, 2020): 1–17. http://dx.doi.org/10.34133/2020/3976278.
Full textXu, Xiaopei, Haoxiang Xu, and Daojian Cheng. "Design of high-performance MoS2 edge supported single-metal atom bifunctional catalysts for overall water splitting via a simple equation." Nanoscale 11, no. 42 (2019): 20228–37. http://dx.doi.org/10.1039/c9nr06083a.
Full text