Journal articles on the topic 'Oxygen storage capacity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Oxygen storage capacity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hou, Limin, Qingbo Yu, Kun Wang, Tuo Wang, Fan Yang, and Shuo Zhang. "Oxygen storage capacity of substituted YBaCo4O7+δ oxygen carriers." Journal of Thermal Analysis and Calorimetry 137, no. 1 (November 22, 2018): 317–25. http://dx.doi.org/10.1007/s10973-018-7903-6.
Full textKhossusi, T., R. Douglas, and G. McCullough. "Measurement of oxygen storage capacity in automotive catalysts." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 217, no. 8 (August 1, 2003): 727–33. http://dx.doi.org/10.1243/09544070360692113.
Full textKudyakova, V. S., B. V. Politov, A. V. Chukin, A. A. Markov, A. Yu Suntsov, and V. L. Kozhevnikov. "Phase stability and oxygen storage capacity of PrBaMn2O6–." Materials Letters 269 (June 2020): 127650. http://dx.doi.org/10.1016/j.matlet.2020.127650.
Full textMamontov, E., R. Brezny, M. Koranne, and T. Egami. "Nanoscale Heterogeneities and Oxygen Storage Capacity of Ce0.5Zr0.5O2." Journal of Physical Chemistry B 107, no. 47 (November 2003): 13007–14. http://dx.doi.org/10.1021/jp030662l.
Full textSu, E. C., C. N. Montreuil, and W. G. Rothschild. "Oxygen storage capacity of monolith three-way catalysts." Applied Catalysis 17, no. 1 (July 1985): 75–86. http://dx.doi.org/10.1016/s0166-9834(00)82704-9.
Full textHANEDA, Masaaki, Takeshi MIKI, Noriyoshi KAKUTA, Akifumi UENO, Syuji TATEISHI, Shinji MATSUURA, and Masayasu SATO. "Oxygen storage capacity of alumina-supported Rh/CeO2 catalyst." NIPPON KAGAKU KAISHI, no. 8 (1990): 820–23. http://dx.doi.org/10.1246/nikkashi.1990.820.
Full textMachida, Masato, Kiyotaka Kawamura, Kazuhiro Ito, and Keita Ikeue. "Large-Capacity Oxygen Storage by Lanthanide Oxysulfate/Oxysulfide Systems." Chemistry of Materials 17, no. 6 (March 2005): 1487–92. http://dx.doi.org/10.1021/cm0479640.
Full textMeiqing, Shen, Wang Xinquan, An Yuan, Weng Duan, Zhao Minwei, and Wang Jun. "Dynamic Oxygen Storage Capacity Measurements on Ceria-Based Material." Journal of Rare Earths 25, no. 1 (February 2007): 48–52. http://dx.doi.org/10.1016/s1002-0721(07)60043-x.
Full textShi, Z. M. "Cordierite-CeO2 Composite Ceramic: A Novel Catalytic Support Material for Purification of Vehicle Exhausts." Key Engineering Materials 280-283 (February 2007): 1075–78. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.1075.
Full textBeppu, Kosuke, Saburo Hosokawa, Kentaro Teramura, and Tsunehiro Tanaka. "Oxygen storage capacity of Sr3Fe2O7−δ having high structural stability." Journal of Materials Chemistry A 3, no. 25 (2015): 13540–45. http://dx.doi.org/10.1039/c5ta01588j.
Full textPorsin, A. V., E. A. Alikin, and V. I. Bukhtiyarov. "A low-temperature method for measuring oxygen storage capacity of ceria-containing oxides." Catalysis Science & Technology 6, no. 15 (2016): 5891–98. http://dx.doi.org/10.1039/c6cy00283h.
Full textSATO, Katsuya, Seizo YAMAGUCHI, Takashi NEMIZU, Satoru FUJITA, Kenzi SUZUKI, and Toshiaki MORI. "Calcium Aluminosilicates as a New Material with Oxygen Storage Capacity." Journal of the Ceramic Society of Japan 115, no. 1342 (2007): 370–73. http://dx.doi.org/10.2109/jcersj.115.370.
Full textHATTORI, Masatomo, and Masakuni OZAWA. "Oxygen Storage Capacity and Morphology of Alumina-Supported Ceria Catalyst." Journal of the Society of Materials Science, Japan 58, no. 6 (2009): 505–9. http://dx.doi.org/10.2472/jsms.58.505.
Full textShi, Z. M., Y. Liu, W. Y. Yang, K. M. Liang, F. Pan, and S. R. Gu. "Evaluation of cordierite–ceria composite ceramics with oxygen storage capacity." Journal of the European Ceramic Society 22, no. 8 (August 2002): 1251–56. http://dx.doi.org/10.1016/s0955-2219(01)00432-0.
Full textMaache, R., R. Brahmi, L. Pirault-Roy, S. Ojala, and M. Bensitel. "Oxygen Storage Capacity of Pt–CeO2 and Pt–Ce0.5Zr0.5O2 Catalysts." Topics in Catalysis 56, no. 9-10 (April 16, 2013): 658–61. http://dx.doi.org/10.1007/s11244-013-0019-0.
Full textDutta, Gargi, Umesh V. Waghmare, Tinku Baidya, M. S. Hegde, K. R. Priolkar, and P. R. Sarode. "Reducibility of Ce1-xZrxO2: Origin of Enhanced Oxygen Storage Capacity." Catalysis Letters 108, no. 3-4 (May 2006): 165–72. http://dx.doi.org/10.1007/s10562-006-0040-z.
Full textOhba, Nobuko, Takuro Yokoya, Seiji Kajita, and Kensuke Takechi. "Search for high-capacity oxygen storage materials by materials informatics." RSC Advances 9, no. 71 (2019): 41811–16. http://dx.doi.org/10.1039/c9ra09886k.
Full textYoshida, Mizuki, Makoto Hamanaka, Qiang Dong, Shu Yin, and Tsugio Sato. "Synthesis of morphology controlled SnO2 and its oxygen storage capacity." Journal of Alloys and Compounds 646 (October 2015): 271–76. http://dx.doi.org/10.1016/j.jallcom.2015.04.235.
Full textWang, Dianyuan, Yijin Kang, Vicky Doan-Nguyen, Jun Chen, Rainer Küngas, Noah L. Wieder, Kevin Bakhmutsky, Raymond J. Gorte, and Christopher B. Murray. "Synthesis and Oxygen Storage Capacity of Two-Dimensional Ceria Nanocrystals." Angewandte Chemie International Edition 50, no. 19 (April 7, 2011): 4378–81. http://dx.doi.org/10.1002/anie.201101043.
Full textIshikawa, Yoshifumi, Maiki Takeda, Susumu Tsukimoto, Koji S. Nakayama, and Naoki Asao. "Cerium Oxide Nanorods with Unprecedented Low-Temperature Oxygen Storage Capacity." Advanced Materials 28, no. 7 (December 11, 2015): 1467–71. http://dx.doi.org/10.1002/adma.201504101.
Full textWang, Dianyuan, Yijin Kang, Vicky Doan-Nguyen, Jun Chen, Rainer Küngas, Noah L. Wieder, Kevin Bakhmutsky, Raymond J. Gorte, and Christopher B. Murray. "Synthesis and Oxygen Storage Capacity of Two-Dimensional Ceria Nanocrystals." Angewandte Chemie 123, no. 19 (April 7, 2011): 4470–73. http://dx.doi.org/10.1002/ange.201101043.
Full textHester, Sarah, Katja Bettina Ferenz, Susanne Eitner, and Klaus Langer. "Development of a Lyophilization Process for Long-Term Storage of Albumin-Based Perfluorodecalin-Filled Artificial Oxygen Carriers." Pharmaceutics 13, no. 4 (April 20, 2021): 584. http://dx.doi.org/10.3390/pharmaceutics13040584.
Full textWang, Qi, Jin Gong, Qingqing Bai, Yuling Qin, Xiaobo Zhou, Mingmin Wu, Haiwei Ji, and Li Wu. "Hemoglobin coated oxygen storage metal–organic framework as a promising artificial oxygen carrier." Journal of Materials Chemistry B 9, no. 19 (2021): 4002–5. http://dx.doi.org/10.1039/d1tb00328c.
Full textInglut, Collin, Kyle Kausch, Alan Gray, and Matthew Landrigan. "Rejuvenation of Stored Red Blood Cells Increases Oxygen Release Capacity." Blood 128, no. 22 (December 2, 2016): 4808. http://dx.doi.org/10.1182/blood.v128.22.4808.4808.
Full textHuang, Xiubing, Chengsheng Ni, Guixia Zhao, and John T. S. Irvine. "Oxygen storage capacity and thermal stability of the CuMnO2–CeO2 composite system." Journal of Materials Chemistry A 3, no. 24 (2015): 12958–64. http://dx.doi.org/10.1039/c5ta01361e.
Full textKlimkowicz, Alicja, Takao Hashizume, Kacper Cichy, Sayaka Tamura, Konrad Świerczek, Akito Takasaki, Teruki Motohashi, and Bogdan Dabrowski. "Oxygen separation from air by the combined temperature swing and pressure swing processes using oxygen storage materials Y1−x(Tb/Ce)xMnO3+δ." Journal of Materials Science 55, no. 33 (August 31, 2020): 15653–66. http://dx.doi.org/10.1007/s10853-020-05158-5.
Full textJang, Hyun-Seok, Chang Yeon Lee, Jun Woo Jeon, Won Taek Jung, Won G. Hong, Sang Moon Lee, Haejin Kim, Junyoung Mun, and Byung Hoon Kim. "Effect of Oxygen for Enhancing the Gas Storage Performance of Activated Green Carbon." Energies 13, no. 15 (July 30, 2020): 3893. http://dx.doi.org/10.3390/en13153893.
Full textZhang, Yan, Yunbo Yu, and Hong He. "Oxygen vacancies on nanosized ceria govern the NOxstorage capacity of NSR catalysts." Catalysis Science & Technology 6, no. 11 (2016): 3950–62. http://dx.doi.org/10.1039/c5cy01660f.
Full textOuyang, Jing, and Huaming Yang. "Investigation of the Oxygen Exchange Property and Oxygen Storage Capacity of CexZr1−xO2 Nanocrystals." Journal of Physical Chemistry C 113, no. 17 (April 6, 2009): 6921–28. http://dx.doi.org/10.1021/jp808075t.
Full textSajeevan, Ajin C., and V. Sajith. "A Study on Oxygen Storage Capacity of Zirconium-Cerium-Oxide Nanoparticles." Advanced Materials Research 685 (April 2013): 123–27. http://dx.doi.org/10.4028/www.scientific.net/amr.685.123.
Full textRenuka, N. K., N. Harsha, and T. Divya. "Supercharged ceria quantum dots with exceptionally high oxygen buffer action." RSC Advances 5, no. 49 (2015): 38837–41. http://dx.doi.org/10.1039/c5ra01161b.
Full textTaniguchi, Ayano, Yoshitaka Kumabe, Kai Kan, Masataka Ohtani, and Kazuya Kobiro. "Ce3+-enriched spherical porous ceria with an enhanced oxygen storage capacity." RSC Advances 11, no. 10 (2021): 5609–17. http://dx.doi.org/10.1039/d0ra10186a.
Full textLiu, Li-li, Mei Zhang, Min Guo, and Xi-dong Wang. "Hydrothermal Preparation and Oxygen Storage Capacity of Nano CeO2-based Materials." Chinese Journal of Chemical Physics 20, no. 6 (December 2007): 711–16. http://dx.doi.org/10.1088/1674-0068/20/06/711-716.
Full textKullgren, Jolla, Kersti Hermansson, and Peter Broqvist. "Supercharged Low-Temperature Oxygen Storage Capacity of Ceria at the Nanoscale." Journal of Physical Chemistry Letters 4, no. 4 (February 5, 2013): 604–8. http://dx.doi.org/10.1021/jz3020524.
Full textKai, Li, Wang Xuezhong, Zhou Zexing, Wu Xiaodong, and Weng Duan. "Oxygen Storage Capacity of Pt-, Pd-, Rh/CeO2-Based Oxide Catalyst." Journal of Rare Earths 25, no. 1 (February 2007): 6–10. http://dx.doi.org/10.1016/s1002-0721(07)60034-9.
Full textRAN, Rui, Duan WENG, Xiaodong WU, Jun FAN, Lei WANG, and Xiaodi WU. "Structure and oxygen storage capacity of Pr-doped Ce0.26Zr0.74O2 mixed oxides." Journal of Rare Earths 29, no. 11 (November 2011): 1053–59. http://dx.doi.org/10.1016/s1002-0721(10)60597-2.
Full textDescorme, Claude, Rachid Taha, Najat Mouaddib-Moral, and Daniel Duprez. "Oxygen storage capacity measurements of three-way catalysts under transient conditions." Applied Catalysis A: General 223, no. 1-2 (January 10, 2002): 287–99. http://dx.doi.org/10.1016/s0926-860x(01)00765-7.
Full textParkkima, Outi, Hisao Yamauchi, and Maarit Karppinen. "Oxygen Storage Capacity and Phase Stability of Variously Substituted YBaCo4O7+δ." Chemistry of Materials 25, no. 4 (February 7, 2013): 599–604. http://dx.doi.org/10.1021/cm3038729.
Full textAbdollahzadeh-Ghom, Sara, Cyrus Zamani, Teresa Andreu, Mauro Epifani, and J. R. Morante. "Improvement of oxygen storage capacity using mesoporous ceria–zirconia solid solutions." Applied Catalysis B: Environmental 108-109 (October 2011): 32–38. http://dx.doi.org/10.1016/j.apcatb.2011.07.038.
Full textZhang, Jing, Hitoshi Kumagai, Kae Yamamura, Satoshi Ohara, Seiichi Takami, Akira Morikawa, Hirofumi Shinjoh, Kenji Kaneko, Tadafumi Adschiri, and Akihiko Suda. "Extra-Low-Temperature Oxygen Storage Capacity of CeO2Nanocrystals with Cubic Facets." Nano Letters 11, no. 2 (February 9, 2011): 361–64. http://dx.doi.org/10.1021/nl102738n.
Full textRan, Rui, Xiaodong Wu, Duan Weng, and Jun Fan. "Oxygen storage capacity and structural properties of Ni-doped LaMnO3 perovskites." Journal of Alloys and Compounds 577 (November 2013): 288–94. http://dx.doi.org/10.1016/j.jallcom.2013.05.041.
Full textXu, Yaohui, Liangjuan Gao, Quanhui Hou, Pingkeng Wu, Yunxuan Zhou, and Zhao Ding. "Enhanced Oxygen Storage Capacity of Porous CeO2 by Rare Earth Doping." Molecules 28, no. 16 (August 10, 2023): 6005. http://dx.doi.org/10.3390/molecules28166005.
Full textHANEDA, Masaaki, Takanori MIZUSHIMA, Noriyoshi KAKUTA, and Akifumi UENO. "Oxygen Storage Capacity(OSC) and Active Oxygen Species of Alumina-Supported Nonstoichiometric Cerium Oxide Catalysts." NIPPON KAGAKU KAISHI, no. 3 (1997): 169–79. http://dx.doi.org/10.1246/nikkashi.1997.169.
Full textŚwierczek, Konrad, Alicja Klimkowicz, Anna Niemczyk, Anna Olszewska, Tomasz Rząsa, Janina Molenda, and Akito Takasaki. "Oxygen storage-related properties of substituted BaLnMn2O5+δ A-site ordered manganites." Functional Materials Letters 07, no. 06 (December 2014): 1440004. http://dx.doi.org/10.1142/s1793604714400049.
Full textKlimkowicz, Alicja, Kacper Cichy, Omar Chmaissem, Bogdan Dabrowski, Bisham Poudel, Konrad Świerczek, Keith M. Taddei, and Akito Takasaki. "Reversible oxygen intercalation in hexagonal Y0.7Tb0.3MnO3+δ: toward oxygen production by temperature-swing absorption in air." Journal of Materials Chemistry A 7, no. 6 (2019): 2608–18. http://dx.doi.org/10.1039/c8ta09235d.
Full textLi, Sheng, Yingxue Cui, Rong Kang, Bobo Zou, Dickon H. L. Ng, Sherif A. El-Khodary, Xianhu Liu, Jingxia Qiu, Jiabiao Lian, and Huaming Li. "Oxygen vacancies boosted the electrochemical kinetics of Nb2O5−x for superior lithium storage." Chemical Communications 57, no. 66 (2021): 8182–85. http://dx.doi.org/10.1039/d1cc02299g.
Full textOzawa, Masakuni, Masaaki Haneda, and Masatomo Hattori. "Effect of heat treatment on oxygen storage capacity and oxygen release kinetics of alumina-supported ceria." IOP Conference Series: Materials Science and Engineering 18, no. 18 (April 1, 2011): 182010. http://dx.doi.org/10.1088/1757-899x/18/18/182010.
Full textMasias, K. L. Stamm, T. C. Peck, and P. T. Fanson. "Thermally robust core–shell material for automotive 3-way catalysis having oxygen storage capacity." RSC Advances 5, no. 60 (2015): 48851–55. http://dx.doi.org/10.1039/c5ra06989k.
Full textMamontov, E., T. Egami, R. Brezny, M. Koranne, and S. Tyagi. "Lattice Defects and Oxygen Storage Capacity of Nanocrystalline Ceria and Ceria-Zirconia." Journal of Physical Chemistry B 104, no. 47 (November 2000): 11110–16. http://dx.doi.org/10.1021/jp0023011.
Full textHervieu, M., A. Guesdon, J. Bourgeois, E. Elkaïm, M. Poienar, F. Damay, J. Rouquette, A. Maignan, and C. Martin. "Oxygen storage capacity and structural flexibility of LuFe2O4+x (0≤x≤0.5)." Nature Materials 13, no. 1 (November 24, 2013): 74–80. http://dx.doi.org/10.1038/nmat3809.
Full text