Academic literature on the topic 'Oxygenator'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oxygenator.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Oxygenator"
Zakhary, Bishoy, Jayne Sheldrake, and Vincent Pellegrino. "Extracorporeal membrane oxygenation and V/Q ratios: an ex vivo analysis of CO2 clearance within the Maquet Quadrox-iD oxygenator." Perfusion 35, no. 1_suppl (May 2020): 29–33. http://dx.doi.org/10.1177/0267659120906767.
Full textRatnaningsih, Enny, Putu T. P. Aryanti, Nurul F. Himma, Anita K. Wardani, K. Khoiruddin, Grandprix T. M. Kadja, Nicholaus Prasetya, and I. Gede Wenten. "Membrane Oxygenator for Extracorporeal Blood Oxygenation." Journal of Engineering and Technological Sciences 53, no. 5 (October 4, 2021): 210502. http://dx.doi.org/10.5614/j.eng.technol.sci.2021.53.5.2.
Full textMellgren, K., M. Skogby, Å. Järnås, LG Friberg, H. Wadenvik, and G. Mellgren. "Platelet activation and degradation in an experimental extracorporeal system. A comparison between a silicone membrane and a hollow-fibre oxygenator." Perfusion 11, no. 5 (September 1996): 383–88. http://dx.doi.org/10.1177/026765919601100505.
Full textHendrix, Rik H. J., Eva R. Kurniawati, Sanne F. C. Schins, Jos G. Maessen, and Patrick W. Weerwind. "Dynamic oxygenator blood volume during prolonged extracorporeal life support." PLOS ONE 17, no. 2 (February 2, 2022): e0263360. http://dx.doi.org/10.1371/journal.pone.0263360.
Full textPhilipp, Alois, Christoph Wiesenack, Renate Behr, Franz X. Schmid, and Dietrich E. Birnbaum. "High risk of intraoperative awareness during cardiopulmonary bypass with isoflurane administration via diffusion membrane oxygenators." Perfusion 17, no. 3 (May 2002): 175–78. http://dx.doi.org/10.1191/0267659102pf566oa.
Full textCies, Jeffrey J., Wayne S. Moore, Nadji Giliam, Tracy Low, Daniel Marino, Jillian Deacon, Adela Enache, and Arun Chopra. "Oxygenator impact on voriconazole in extracorporeal membrane oxygenation circuits." Perfusion 35, no. 6 (July 6, 2020): 529–33. http://dx.doi.org/10.1177/0267659120937906.
Full textPearson, Derek T., Michael P. Holden, Stefan J. Poslad, Alan Murray, and Philip S. Waterhouse. "A clinical evaluation of the performance characteristics of one membrane and five bubble oxygenators: gas transfer and gaseous microemboli production." Perfusion 1, no. 1 (January 1986): 15–27. http://dx.doi.org/10.1177/026765918600100103.
Full textPearson, D. T., and B. McArdle. "Haemocompatibility of membrane and bubble oxygenators." Perfusion 4, no. 1 (January 1989): 9–24. http://dx.doi.org/10.1177/026765918900400103.
Full textAittomäki, Juha. "Monitoring of CO2 exchange during cardiopulmonary bypass: the effect of oxygenator design on the applicability of capnometry." Perfusion 8, no. 4 (July 1993): 337–44. http://dx.doi.org/10.1177/026765919300800409.
Full textWalczak, Richard, D. Scott Lawson, David Kaemmer, Craig McRobb, Patty McDermott, Greg Smigla, Ian Shearer, Andrew Lodge, and James Jaggers. "Evaluation of a preprimed microporous hollow-fiber membrane for rapid response neonatal extracorporeal membrane oxygenation." Perfusion 20, no. 5 (September 2005): 269–75. http://dx.doi.org/10.1191/0267659105pf819oa.
Full textDissertations / Theses on the topic "Oxygenator"
Elson, Wesley De Vere. "Development of an intravenous oxygenator." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86494.
Full textENGLISH ABSTRACT: Patients in critical care with lung injuries need to be assisted with regards to breathing function, but current methods are not applicable for all situations. The most common method, Extracorporeal Membrane Oxygenation (ECMO) is an expensive procedure and requires trained staff to operate the equipment at all times. Lung injury may lead to the inability of the lungs to be perfused and the blood oxygenated by tracheal intubation, whereas mechanical ventilators can injure the lungs further. Especially at risk are preterm neonates, where congenital disorders or complications during birth render ECMO the only viable option. Respiratory Assist Catheters (RACs) could be used as an alternative because they do not place extra stress on the lungs, are easy to implement, cost-effective and are available for immediate use in clinical settings or in first aid situations. The development of such a device requires knowledge of possible oxygenation methods as well as the risks involved in implementing such a device. The possibility of oxygenating the blood via microbubbles by means of a RAC is promising due to the high gas transfer rates common in bubble oxygenators. It is the aim of this study to develop a prototype that could function as a RAC and to evaluate the feasibility of oxygenation by using microbubbles. The method used to design a prototype included selection of various materials and finalization of a design to be tested. The tests selected were in vivo tests and ex vivo tests using animal models to investigate the dissolution times of the microbubbles, as well as the physiological effects of an intravenously placed device. Measurements of oxygen saturation of the blood in arterial blood (SaO2), venous blood (SvO2) and pulmonary pressure allowed the oxygen transfer rates and risks involved to be evaluated, and also gave an indication regarding the formation dynamics of microbubbles in the blood. An in vitro test was also performed with the aim of determining the rate of dissolving of oxygen, and hence to give an indication regarding microbubble dissolution times. Mathematical simulations based on the dissolution rate of oxygen in venous blood confirmed the abovementioned results. The tests and simulations were analysed in order to evaluate the feasibility of intravenously oxygenating the blood using microbubbles. Approximate bubble dissolution times were an indicator of the feasibility of the concept and showed that very large bubble dissolution times renders intravenous bubble oxygenation unfeasible. These large dissolution times also lessen the possibility of implementing bubble oxygenation in an intravenous device.
AFRIKAANSE OPSOMMING: Pasiënte wat a.g.v. longbeserings in hoë-sorg behandel word het hulp nodig om asem te haal, maar bestaande metodes werk nie in alle omstandighede nie. Die mees algemene metode is ekstrakorporeale membraan suurstofverbinding (Extracorporeal Membrane Oxygenation (ECMO)), maar hierdie metode is duur en het voltyds opgeleide personeel nodig om dit te beheer. Longbeserings kan lei tot die onvermoë van die longe om bloed te ontvang en ook dat die bloed suurstof kry d.m.v. trageale intubasie. Meganiese ventilators kan die longe verder beskadig. Vroeggebore babas word blootgestel aan risiko’s veral waar oorerflike afwykings/steurnisse aanwesig is of komplikasies tydens geboorte en dus die EMCO die enigste lewensvatbare opsie maak. Kateters wat asemhaling aanhelp (Respiratory Assist Catheters (RACs)) kan as alternatief gebruik word aangesien dit nie ekstra spanning op die longe plaas nie, maklik is om te implementeer, koste-effektief is en beskikbaar is vir onmiddellike gebruik in kliniese omstandighede of in noodhulpsituasies. Die ontwikkeling van hierdie tipe toestel vereis kennis van moontlike suurstofverbindingsmetodes en ook die risiko’s verbonde aan die implementering van die toestel. Die moontlikheid om die bloed van suurstof te voorsien d.m.v. mikroborrels deur die RAC lyk belowend a.g.v. die hoë gasoordrag-koers wat algemeen is by borrel suurstofverbinders. Hierdie studie het ten doel om ʼn prototipe te ontwikkel wat kan dien as ʼn RAC en ook om die lewensvatbaarheid van suurstofverbinding met mikroborrels te bepaal. Die metode wat gebruik is om die prototipe te ontwerp sluit in die kies van verskeie materiale en die finalisering van die ontwerp wat getoets moet word. Die geselekteerde in vivo en ex vivo toetse is afgeneem deur gebruik te maak van dier-modelle om sodoende ondersoek in te stel na die oplossing van die mikroborrels en ook die fisiologiese gevolge van die toestel wat binne die aar geplaas is. Metings van die suurstofversadiging van bloed in slagaarbloed (SaO2), aarbloed (SvO2) en pulmonêre druk het toegelaat dat die koers en risiko’s verbonde aan suurstofoordrag geëvalueer word. Hierdie metings gee ook ’n aanduiding van die vormingsdinamika van die mikroborrels in die bloed. ’n In vitro toets is gedoen met die doel om die koers te bepaal van die oplossing van suurstof, en dus ’n aanduiding te gee van die tyd verbonde aan die oplossing van die mikroborrels. Wiskundige simulasies gebaseer op die oplossingskoers van suurstof in are het die bogenoemde toetse bevestig. Die toetse en simulasies is geanaliseer om die lewensvatbaarheid te bepaal om suurstof binne-aars te verskaf deur mikroborrels. Geskatte tye waarteen die borrels oplos is as aanduiding gebruik vir die lewensvatbaarheid van die konsep en ook die moontlike inwerkingstelling van die binne-aarse toestel.
Clark, Michael Louis. "Comparison of Water Quality, Rainbow Trout Production, and Economics in Oxygenated and Aerated Raceways." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/9851.
Full textMaster of Science
Möhrlen, Christian Martin. "Extrakorporaler kardiopulmonaler Bypass bei Ratten unter Benutzung eines Hohlfaser-Oxygenator /." Bern : [s.n.], 2006. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.
Full textCausey, Laura Elizabeth. "Intravenous oxygenator : enhancement of surface properties to minimize bubble size." FIU Digital Commons, 2008. http://digitalcommons.fiu.edu/etd/2089.
Full textKoochaki, Z. B. "Modelling of CO2̲ removal from blood by combined dialyser/oxygenator divices." Thesis, University of Strathclyde, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382397.
Full textDemarest, Caitlin T. "Prolonging the Useful Lifetime of Artificial Lungs." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/870.
Full textPeel, James Robert Anthony. "The mass transfer and hydrodynamics of a gas-liquid centrifugal de-oxygenator." Thesis, University of Newcastle Upon Tyne, 2005. http://hdl.handle.net/10443/785.
Full textRathbone, Daniel Rodion. "A low volume oxygenator for open well Liver-on-a-Chip tissue culture." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120193.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 139-142).
MicroPhysiological Systems (MPS) show significant promise in speeding drug development and advancing basic research. They may serve better than animal models for obtaining accurate human response data and thereby reducing failed clinical trials. The CN Bio LiverChip is one such commercial MPS device which cultures liver cells on a perforated polystyrene scaffold and actively circulates cell culture medium through them. Reducing the total circulating volume is desirable to increase the concentration of difficult-to-detect compounds, improve autocrine signaling, and achieve more physiologically relevant drug decay times. However, achieving adequate oxygenation at lower volumes is challenging due to surface tension effects. This thesis describes an open-well, flow-through MPS platform with a low-volume oxygenator, at a total circulating volume of approximately 500 [mu]L. The oxygenator uses the interior corner of a hydrophilic spiral to constrain the circulating fluid and to create a thin fluid region, which decreases the diffusion depth relative to exposed surface area, thereby improving oxygenation. The oxygenator performs equivalently to the LiverChip at a fraction of the volume, and features a downward slope that prevents fluid from accumulating in the oxygenator, which could deplete the cell culture well. The fluidic configuration and other design considerations are described, as well as hardware testing results and improved methods for preventing fluid from bypassing the scaffold. This project was supported by NIH grant number UH3-TR000496.
by Daniel Rodion Rathbone.
S.M.
Razieh, Ali R. "The development of a self-tuning control system for POâ†2 regulation in a membrane oxygenator." Thesis, University of Strathclyde, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293317.
Full textDunningham, Helen. "Modelling lung and tissue gas transfer using a membrane oxygenator circuit : determining the effects of a volatile anaesthetic agent and a haemoglobin substitute on oxygen, carbon dioxide and nitric oxide diffusion." Thesis, Anglia Ruskin University, 2011. http://arro.anglia.ac.uk/211595/.
Full textBooks on the topic "Oxygenator"
Sheldon, Lisa Kennedy. Oxygenation. 2nd ed. Sudbury, MA: Jones and Bartlett Publishers, 2007.
Find full textBarceló, Damià, ed. Fuel Oxygenates. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72641-8.
Full textShinomiya, Nariyoshi, and Yasufumi Asai, eds. Hyperbaric Oxygenation Therapy. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-7836-2.
Full textDiaz, Arthur F., and Donna L. Drogos, eds. Oxygenates in Gasoline. Washington, DC: American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2002-0799.
Full textMaurer, Dominik. Hyperbare Oxygenation und Tauchmedizin. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-11713-9.
Full textMaurer, Dominik. Hyperbare Oxygenation bei Wundheilungsstörungen. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-11735-1.
Full textSibbald, William J., Konrad F. W. Messmer, and Mitchell P. Fink, eds. Tissue Oxygenation in Acute Medicine. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58268-4.
Full textMaurer, Dominik. Hyperbare Oxygenation in der Infektiologie. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-11711-5.
Full textPiening, Carol. Oxygenated gasoline program implementation guidelines. Olympia, Wash. (P.O. Box 47600, Olympia 98504-7600): Washington State Dept. of Ecology, Air Quality Program, 1992.
Find full textBook chapters on the topic "Oxygenator"
Wartzek, T., M. Walter, T. Schmitz-Rode, S. Kowalewski, R. Rossaint, and S. Leonhardt. "In Vivo Validation of an Automatic Controlled Extracorporeal Membrane Oxygenator." In IFMBE Proceedings, 118–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03885-3_34.
Full textWenger, Robert K., and J. D. Mortensen. "The Intravascular Oxygenator, IVOX®: Augmentation of Blood-Gas Transfer." In Cardiopulmonary Bypass, 450–58. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2484-6_30.
Full textHouston, Ralph J. F., Fellery de Lange, and Cor J. Kalkman. "A New Miniature Fiber Oxygenator for Small Animal Cardiopulmonary Bypass." In Advances in Experimental Medicine and Biology, 313–16. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-6125-2_44.
Full textDe Bois, William, and Karl H. Krieger. "The Influence of Oxygenator Type and Priming Volume on Blood Requirements." In Blood Conservation in Cardiac Surgery, 327–53. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2180-7_12.
Full textBarlas, Semih, Emin Tireli, Haldun Tekinalp, Enver Dayioğlu, Leyla Sevgenay, and Cemil Barlas. "Effects of Oxygenator and Pumping Devices on Blood Parameters in Open Heart Surgery." In Advances in Experimental Medicine and Biology, 617–23. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0333-6_79.
Full textRodewald, Georg, Allen E. Willner, and Michael Borenstein. "Type of Oxygenator, Type of Arterial Filter, and Bypass Time, in Relation to Outcome." In Impact of Cardiac Surgery on the Quality of Life, 297–307. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0647-4_37.
Full textDewanjee, M. K., G. M. Palatianos, M. Kapadvanjwala, S. Novak, D. Sarkar, L. Hsu, S. Ezuddin, A. N. Serafini, and G. N. Sfakianakis. "Platelet-Emboli from Arterial Filter and Oxygenator: Major Source of Embolic Complications During Cardiopulmonary Bypass (CPB)." In Radiolabeled Blood Elements, 107–13. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2462-5_15.
Full textNishida, Hiroshi, Masahiro Endo, Hitoshi Koyanagi, Katsuyuki Kuwana, and Hikaru Nakanishi. "Development and Clinical Application of Silicon-Coated, Leak-Free Oxygenator with a Built-in Hemoconcentration Function." In Heart Replacement, 382–88. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-65921-1_57.
Full textBochenek, Andrzej, Z. Religa, J. Wojnar, A. Wnuk-Wojnar, M. Zembala, J. Hołlowiecki, and A. Bochenek. "A Clinical Study on Platelet Preservation in Coronary Artery Bypass Surgery During Cardiopulmonary Bypass Without Oxygenator." In Blood Use in Cardiac Surgery, 37–40. Heidelberg: Steinkopff, 1991. http://dx.doi.org/10.1007/978-3-662-06119-0_5.
Full textSmith, P. L., C. Blauth, S. Newman, J. Arnold, F. Siddons, and K. M. Taylor. "Cerebral Microembolism and Neuropsychological Outcome Following Coronary Artery Bypass Surgery (CABS) with Either a Membrane or Bubble Oxygenator." In Impact of Cardiac Surgery on the Quality of Life, 337–42. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0647-4_41.
Full textConference papers on the topic "Oxygenator"
Keshavamurthy, N. Akshay, G. Anjan Kumar, J. J. Jijesh, Amal D. Nalr, and R. R. Arun Gangatkar. "Wireless Oxygenator." In 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, 2018. http://dx.doi.org/10.1109/rteict42901.2018.9012241.
Full textLam, Raymond H. W., Min-Cheol Kim, and Todd Thorsen. "A Microfluidic Oxygenator for Biological Cell Culture." In TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2007. http://dx.doi.org/10.1109/sensor.2007.4300676.
Full textIsoyama, Takashi, Koki Ariyoshi, Kyosuke Nii, Itsuro Saito, Kazuyoshi Fukunaga, Yusuke Inoue, Toshiya Ono, et al. "Emergency life support system aiming preprimed oxygenator." In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6610852.
Full textElson, W., C. Scheffer, K. H. Dellimore, P. R. Fourie, and A. R. Coetzee. "Development of an intravenous oxygenator using microbubbles." In 2014 Cairo International Biomedical Engineering Conference (CIBEC). IEEE, 2014. http://dx.doi.org/10.1109/cibec.2014.7020920.
Full textEberhart, Robert C. "Reflections on Quantitative Gamma Imaging of Cell-Surface Interactions." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53388.
Full textCornelissen, Christian, Sarah Menzel, Lena Thiebes, Michael Dreher, and Stefan Jockenhoevel. "EndOxy – Long-term endothelial cell coating of oxygenator membranes." In ERS International Congress 2017 abstracts. European Respiratory Society, 2017. http://dx.doi.org/10.1183/1393003.congress-2017.pa2107.
Full textGuzmán, Amador M., and Cristina H. Amon. "Mass Transfer Performance Evaluations of an Intravenous Membrane Oxygenator." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0810.
Full textWilfart, Florentin M., Ainsley McFadgen, Blaine Kent, Kenneth Gardiner, and Michael K. Schmidt. "Delivery of Vapors on Cardiopulmonary Bypass using Different Oxygenator Membranes." In Biomedical Engineering. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.723-091.
Full textCornelissen, Christian, Nicole Finocchiaro, Michael Dreher, and Stefan Jockenhoevel. "ENDOXY – First ISO compliant test of an endothelialized oxygenator model." In Annual Congress 2015. European Respiratory Society, 2015. http://dx.doi.org/10.1183/13993003.congress-2015.pa2137.
Full textRochow, Niels, Wen-I. Wu, Emily Chan, Dipen Nagpal, Gerhard Fusch, P. Ravi Selvaganapathy, Shelley Monkman, and Christoph Fusch. "Integrated microfluidic oxygenator bundles for blood gas exchange in premature infants." In 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2012. http://dx.doi.org/10.1109/memsys.2012.6170345.
Full textReports on the topic "Oxygenator"
Kamil Klier, Richard G. Herman, Alessandra Beretta, Maria A. Burcham, Qun Sun, Yeping Cai, and Biswanath Roy. Oxygenates vs. synthesis gas. Office of Scientific and Technical Information (OSTI), April 1999. http://dx.doi.org/10.2172/750374.
Full textPiao, Daqing, and Qing Zhu. Monitoring Cancer Oxygenation Changes Induced by Ultrasound. Fort Belvoir, VA: Defense Technical Information Center, July 2004. http://dx.doi.org/10.21236/ada428189.
Full textSkliar, Mikhail. Oxygenation-Enhanced Radiation Therapy of Breast Tumors. Fort Belvoir, VA: Defense Technical Information Center, November 2011. http://dx.doi.org/10.21236/ada558802.
Full textNaegeli, David W., Stan Moulton, Edwin C. Owens, and Edwin A. Frame. Oxygenates for Advanced Petroleum-Based Diesel Fuels. Fort Belvoir, VA: Defense Technical Information Center, February 2001. http://dx.doi.org/10.21236/ada465522.
Full textRofer, C. K., and G. E. Streit. Oxidation of hydrocarbons and oxygenates in supercritical water. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5534703.
Full textBalachandran, U., J. T. Dusek, S. M. Sweeney, R. L. Mieville, P. S. Maiya, M. S. Kleefisch, S. Pei, T. P. Kobylinski, and A. C. Bose. Dense ceramic membranes for partial oxygenation of methane. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10166252.
Full textKim, Hubert, and Xuhui Liu. Diagnosis of Compartment Syndrome Based on Tissue Oxygenation. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada590422.
Full textKim, Hubert. Diagnosis of Compartment Syndrome Based on Tissue Oxygenation. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada573821.
Full textYanowitz, J., E. Christensen, and R. L. McCormick. Utilization of Renewable Oxygenates as Gasoline Blending Components. Office of Scientific and Technical Information (OSTI), August 2011. http://dx.doi.org/10.2172/1024518.
Full textKim, Hubert, and Xuhui Liu. Diagnosis of Compartment Syndrome Based on Tissue Oxygenation. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada613670.
Full text