Academic literature on the topic 'P^2q'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'P^2q.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "P^2q"

1

Hernández Iglesias, Mauro Fernando. "Singularidad de la polar de una curva plana irreducible en K(2p,2q,2pq+d)." Pesquimat 22, no. 1 (2019): 1–8. http://dx.doi.org/10.15381/pes.v22i1.15758.

Full text
Abstract:
Veremos que existe un abierto de Zariski en el conjunto de curvas planas irreducibles con exponentes característicos 2p; 2q y 2q+d, dado por K(2p; 2q; 2q+d) con mcd{p,q} = 1 y d impar, donde la polar es no degenerada, su topología es constante y determinada apenas por p y q.
APA, Harvard, Vancouver, ISO, and other styles
2

Tadee, Suton, and Apirat Siraworakun. "Nonexistence of Positive Integer Solutions of the Diophantine Equation p^x + (p + 2q)^ y = z^2 , where p, q and p + 2q are Prime Numbers." European Journal of Pure and Applied Mathematics 16, no. 2 (2023): 724–35. http://dx.doi.org/10.29020/nybg.ejpam.v16i2.4702.

Full text
Abstract:
The Diophantine equation p^x + (p + 2q)^y = z^2 , where p, q and p + 2q are prime numbers, is studied widely. Many authors give q as an explicit prime number and investigate the positive integer solutions and some conditions for non-existence of positive integer solutions. In this work, we gather some conditions for odd prime numbers p and q for showing that the Diophantine equation p^x + (p + 2q)^y = z^2 has no positive integer solution. Moreover, many examples of Diophantine equations with no positive integer solution are illustrated.
APA, Harvard, Vancouver, ISO, and other styles
3

Yaying, Taja, Bipan Hazarika, and S. A. Mohiuddine. "Domain of Padovan q-difference matrix in sequence spaces lp and l∞." Filomat 36, no. 3 (2022): 905–19. http://dx.doi.org/10.2298/fil2203905y.

Full text
Abstract:
In this study, we construct the difference sequence spaces lp (P?2q) = (lp)P?2q, 1 ? p ? ?, where P = (?rs) is an infinite matrix of Padovan numbers %s defined by ?rs = {?s/?r+5-2 0 ? s ? r, 0 s > r. and ?2q is a q-difference operator of second order. We obtain some inclusion relations, topological properties, Schauder basis and ?-, ?- and ?-duals of the newly defined space. We characterize certain matrix classes from the space lp (P?2q) to any one of the space l1, c0, c or l?. We examine some geometric properties and give certain estimation for von-Neumann Jordan constant and James constan
APA, Harvard, Vancouver, ISO, and other styles
4

Asbullah, Muhammad Asyraf, Normahirah Nek Abd Rahman, uhammad Rezal Kamel Ariffin, Siti Hasana Sapar, and Faridah Yunos. "CRYPTANALYSIS OF RSA KEY EQUATION OF N=p^2q FOR SMALL |2q – p| USING CONTINUED FRACTION." Malaysian Journal of Science 39, no. 1 (2020): 72–80. http://dx.doi.org/10.22452/mjs.vol39no1.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Arifin, Muchammad Choerul, and Iwan Ernanto. "IDEMPOTENT ELEMENTS IN MATRIX RING OF ORDER 2 OVER POLYNOMIAL RING $\mathbb{Z}_{p^2q}[x]$." Journal of Fundamental Mathematics and Applications (JFMA) 6, no. 2 (2023): 136–47. http://dx.doi.org/10.14710/jfma.v6i2.19307.

Full text
Abstract:
An idempotent element in the algebraic structure of a ring is an element that, when multiplied by itself, yields an outcome that remains unchanged and identical to the original element. Any ring with a unity element generally has two idempotent elements, 0 and 1, these particular idempotent elements are commonly referred to as the trivial idempotent elements However, in the case of rings $\mathbb{Z}_n$ and $\mathbb{Z}_n[x]$ it is possible to have non-trivial idempotent elements. In this paper, we will investigate the idempotent elements in the polynomial ring $\mathbb{Z}_{p^2q}[x]$ with $p,q$
APA, Harvard, Vancouver, ISO, and other styles
6

Basher, Mohamed. "Even vertex odd mean labeling of uniform theta graphs." Proyecciones (Antofagasta) 43, no. 1 (2024): 153–62. http://dx.doi.org/10.22199/issn.0717-6279-4894.

Full text
Abstract:
Let $G$ be a graph with $p$ vertices and $q$ edges. A total graph labeling $ f:V(G)\bigcup E(G)\rightarrow \{0,1,2,3,...,2q\}$ is called even vertex odd mean labeling of a graph $G$ if the vertices of the graph $G$ label by distinct even integers from the set $\{0,2,...,2q\}$ and the labels of the edges are defined as the mean of the labels of its end vertices and these labels are $2q-1$ distinct odd integers from the set $\{1,3,5,...,2q-1\}$. In this paper we investigate the even vertex odd mean labeling of uniform theta graphs.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhao, Xin, та Wenming Zou. "On a class of critical elliptic systems in ℝ4". Advances in Nonlinear Analysis 10, № 1 (2020): 548–68. http://dx.doi.org/10.1515/anona-2020-0136.

Full text
Abstract:
Abstract In the present paper, we consider the following classes of elliptic systems with Sobolev critical growth: $$\begin{array}{} \displaystyle \begin{cases} -{\it\Delta} u+\lambda_1u=\mu_1 u^3+\beta uv^2+\frac{2q}{p} y u^{\frac{2q}{p}-1}v^2\quad &\hbox{in}\;{\it\Omega}, \\ -{\it\Delta} v+\lambda_2v=\mu_2 v^3+\beta u^2v+2 y u^{\frac{2q}{p}}v\quad&\hbox{in}\;{\it\Omega}, \\ u,v \gt 0&\hbox{in}\;{\it\Omega}, \\ u,v=0&\hbox{on}\;\partial{\it\Omega}, \end{cases} \end{array}$$ where Ω ⊂ ℝ4 is a smooth bounded domain with smooth boundary ∂Ω; p, q are positive coprime integers with
APA, Harvard, Vancouver, ISO, and other styles
8

ALZER, HORST. "ON AN INTEGRAL INEQUALITY OF R. BELLMAN." Tamkang Journal of Mathematics 22, no. 2 (1991): 187–91. http://dx.doi.org/10.5556/j.tkjm.22.1991.4597.

Full text
Abstract:

 
 
 We prove: if $u$ and $v$ are non-negative, concave functions defined on $[0, 1]$ satisfying 
 \[\int_0^1 (u(x))^{2p} dx =\int_0^1 (v(x))^{2q} dx=1, \quad p>0, \quad q>0,\]
 then
 \[\int_0^1(u(x))^p (v(x))^q dx\ge\frac{2\sqrt{(2p+1)(2q+1)}}{(p+1)(q+1)}-1.\]
 
 
APA, Harvard, Vancouver, ISO, and other styles
9

Kalita, N., and A. J. Dutta. "Spectral analysis of second order quantum difference operator over the sequence space lp (1 < p < ∞)." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 118, no. 2 (2025): 122–36. https://doi.org/10.31489/2025m2/122-136.

Full text
Abstract:
In this article, we study the spectrum, fine spectrum and boundedness property of second order quantum difference operator ∆2q (0 &lt; q &lt; 1) over the class of sequence lp (1 &lt; p &lt; ∞), the pth summable sequence space. The second order quantum difference operator ∆2q is a lower triangular triple band matrix ∆2q(1,−(1+ q),q). We also determine the approximate point spectrum, defect spectrum, compression spectrum, and Goldberg classification of the operator on the class of sequence. We obtained the results by solving an infinite system of linear equations and computing the inverse of a l
APA, Harvard, Vancouver, ISO, and other styles
10

Kamaraj, T., and J. Thangakani. "Edge even and edge odd graceful labelings of Paley Graphs." Journal of Physics: Conference Series 1770, no. 1 (2021): 012068. http://dx.doi.org/10.1088/1742-6596/1770/1/012068.

Full text
Abstract:
Abstract Edge even graceful labeling is a novel graceful labelling, introduced in 2017 by Elsonbaty and Daoud. A graph G with p vertices and q edges is called an edge even graceful if there is a bijection f: E(G) → {2, 4,. . ., 2q} such that, when each vertex is assigned the sum of the labels of all edges incident to it mod 2k, where k = max (p, q), the resulting vertex labels are distinct. A labeling of G is called edge odd graceful labeling, if there exists a bijection f from the set of edges E(G) to the set {1,3,5,…,2q-1} such that the induced the map f* from the set of vertices V(G) to {0,
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "P^2q"

1

CAMPEDEL, ELENA. "Hopf-Galois Structures and Skew Braces of order p^2q." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/378739.

Full text
Abstract:
Nella mia tesi enumero le strutture Hopf-Galois su estensioni di Galois di ordine p^2q. Questo sarà fatto, mediante l'uso delle funzioni gamma, contando i sottogruppi regolari dell'olomorfo di gruppi di ordine p^2q. Questi ultimi oggetti sono anche connessi con le skew braces, e fornisco anche il numero di classi di isomorfismo di skew braces di ordine p^2q.<br>In my thesis I enumerate the Hopf-Galois structures on Galois extensions of order p^2q. This will be done, using the gamma functions, by enumerating the regular subgroups of the holomorph of groups G of order p^2q. The last objects are
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "P^2q"

1

Sousa, A. D. R. de, J. C. Carneiro, L. Faria, and M. V. Pabon. "Sobre o número de cruzamentos do grafo de Kneser K(n,2)." In Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/etc.2022.222905.

Full text
Abstract:
O número de cruzamentos $\nu(G)$ de um grafo $G=(V,E)$ é o menor número de cruzamentos em um desenho $D(G)$ no plano de $G$. Dada uma reta $r$, chamada espinha, $p\geq 1$, e $S_1,\ldots,S_p$ serem $p$ semiplanos distintos limitados por $r$, um desenho de $G=(V,E)$ em $p$-páginas tem os vértices de $V$ desenhados em $r$ e cada aresta de $G$ é desenhada em um $S_1,\ldots,S_p$. O número de cruzamentos em $p$-páginas $\nu_p(G)$ de $G$ é o menor número de cruzamentos em um desenho de $G$ em $p$ páginas. Nós provamos que se $n=2q\geq 6$, então $\frac{n^8} {2^{13}} - 9\frac{n^7}{2^{13}} - \frac{n^6}{
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!