Academic literature on the topic 'P-adic logarithmic forms'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'P-adic logarithmic forms.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "P-adic logarithmic forms"

1

Yu, Kunrui. "p-adic logarithmic forms and group varieties II." Acta Arithmetica 89, no. 4 (1999): 337–78. http://dx.doi.org/10.4064/aa-89-4-337-378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

YU, KUNRUI. "P-adic logarithmic forms and group varieties I." Journal für die reine und angewandte Mathematik (Crelles Journal) 1998, no. 502 (1998): 29–92. http://dx.doi.org/10.1515/crll.1998.090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

GROSSEKLONNE, E. "Sheaves of bounded p-adic logarithmic differential forms." Annales Scientifiques de l’École Normale Supérieure 40, no. 3 (2007): 351–86. http://dx.doi.org/10.1016/j.ansens.2007.04.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Iovita, Adrian, and Michael Spiess. "Logarithmic differential forms on p -adic symmetric spaces." Duke Mathematical Journal 110, no. 2 (2001): 253–78. http://dx.doi.org/10.1215/s0012-7094-01-11023-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yu, Kunrui. "p-adic logarithmic forms and a problem of Erdős." Acta Mathematica 211, no. 2 (2013): 315–82. http://dx.doi.org/10.1007/s11511-013-0106-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

LE, DANIEL, SHELLY MANBER, and SHRENIK SHAH. "ON p-ADIC PROPERTIES OF TWISTED TRACES OF SINGULAR MODULI." International Journal of Number Theory 06, no. 03 (2010): 625–53. http://dx.doi.org/10.1142/s1793042110003101.

Full text
Abstract:
We prove that logarithmic derivatives of certain twisted Hilbert class polynomials are holomorphic modular forms modulo p of filtration p + 1. We derive p-adic information about twisted Hecke traces and Hilbert class polynomials. In this framework, we formulate a precise criterion for p-divisibility of class numbers of imaginary quadratic fields in terms of the existence of certain cusp forms modulo p. We explain the existence of infinite classes of congruent twisted Hecke traces with fixed discriminant in terms of the factorization of the associated Hilbert class polynomial modulo p. Finally, we provide a new proof of a theorem of Ogg classifying those p for which all supersingular j-invariants modulo p lie in Fp.
APA, Harvard, Vancouver, ISO, and other styles
7

Yu, Kunrui. "Linear forms in p-adic logarithms." Acta Arithmetica 53, no. 2 (1989): 107–86. http://dx.doi.org/10.4064/aa-53-2-107-186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lauder, Alan G. B. "Computations with classical and p-adic modular forms." LMS Journal of Computation and Mathematics 14 (August 1, 2011): 214–31. http://dx.doi.org/10.1112/s1461157011000155.

Full text
Abstract:
AbstractWe present p-adic algorithms for computing Hecke polynomials and Hecke eigenforms associated to spaces of classical modular forms, using the theory of overconvergent modular forms. The algorithms have a running time which grows linearly with the logarithm of the weight and are well suited to investigating the dimension variation of certain p-adically defined spaces of classical modular forms.
APA, Harvard, Vancouver, ISO, and other styles
9

BUGEAUD, YANN. "Linear forms in p-adic logarithms and the Diophantine equation formula here." Mathematical Proceedings of the Cambridge Philosophical Society 127, no. 3 (1999): 373–81. http://dx.doi.org/10.1017/s0305004199003692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

HIRATA-KOHNO, Noriko, and Rina TAKADA. "LINEAR FORMS IN TWO ELLIPTIC LOGARITHMS IN THE p-ADIC CASE." Kyushu Journal of Mathematics 64, no. 2 (2010): 239–60. http://dx.doi.org/10.2206/kyushujm.64.239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography