To see the other types of publications on this topic, follow the link: P-i-n-structure.

Journal articles on the topic 'P-i-n-structure'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'P-i-n-structure.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yan, H., and H. X. Jiang. "Band structure of compensated n-i-p-i superlattices." Physical Review B 37, no. 11 (1988): 6425–28. http://dx.doi.org/10.1103/physrevb.37.6425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ventra, M. Di, G. Grosso, G. Pastori Parravicini, and C. Piermarocchi. "Electronic structure of n - i - p - i Si superlattices." Journal of Physics: Condensed Matter 9, no. 50 (1997): L657—L661. http://dx.doi.org/10.1088/0953-8984/9/50/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lukin, K. A., H. A. Cerdeira, and A. A. Colavita. "Current oscillations in avalanche particle detectors with p-n-i-p-n-structure." IEEE Transactions on Electron Devices 43, no. 3 (1996): 473–78. http://dx.doi.org/10.1109/16.485663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Yung-Feng, Wei-Cheng Chen, Ricky W. Chuang, Yan-Kuin Su, and Huo-Lieh Tsai. "GaInNAs p–i–n Photodetectors with Multiquantum Wells Structure." Japanese Journal of Applied Physics 47, no. 4 (2008): 2982–86. http://dx.doi.org/10.1143/jjap.47.2982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Parnes, Michael, and Orest Vendik. "p-i-n diode phase shifter in waveguide structure." Microwave and Optical Technology Letters 57, no. 7 (2015): 1666–71. http://dx.doi.org/10.1002/mop.29157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dura, Laura, Anke Spannenberg та Torsten Beweries. "Crystal structure of tricarbonyl(N-diphenylphosphanyl-N,N′-diisopropyl-P-phenylphosphonous diamide-κ2P,P′)cobalt(I) tetracarbonylcobaltate(−I) toluene 0.25-solvate". Acta Crystallographica Section E Structure Reports Online 70, № 12 (2014): 533–35. http://dx.doi.org/10.1107/s1600536814024908.

Full text
Abstract:
The asymmetric unit of the title compound, [Co(C24H30N2P2)(CO)3][Co(CO)4]·0.25C7H8, consists of two crystallographically independent cations with similar conformations, two anions, and one-half of a toluene molecule disordered about an inversion centre. In the cations, a Co/P/N/P four-membered slightly bent metallacycle is the key structural element. The pendant NH group is not coordinated to the CoIatom, which displays a distorted trigonal–bipyramidal coordination geometry. Weak interionic hydrogen bonds are observed between the NH groups and a carbonyl group of the tetrahedral [Co(CO)4]−anio
APA, Harvard, Vancouver, ISO, and other styles
7

Keil, Ulrich D., Stefan Malzer, Klaus Schmidt, Gottfried H. Döhler, and Jeff N. Miller. "Photoreflectance spectra of a GaAs/AlGaAs type I hetero-n-i-p-i structure." Superlattices and Microstructures 11, no. 1 (1992): 41–46. http://dx.doi.org/10.1016/0749-6036(92)90359-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Martynenko, S. O., and A. I. Tereshchenko. "Dependence of Photoreceiver Parameters on p-i-n Diode Structure." Telecommunications and Radio Engineering 52, no. 11 (1998): 51–56. http://dx.doi.org/10.1615/telecomradeng.v52.i11.110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xu, Yao, Wei Chen, Wenjun Zhang, Jingchao Xu, and Xianwei Zeng. "Inverted “p-i-n” structure perovskite solar cells." SCIENTIA SINICA Chimica 46, no. 4 (2016): 342–56. http://dx.doi.org/10.1360/n032016-00024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, F., K. Hinzer, C. Ni Allen, et al. "Quantum dot p-i-n structure in an electric field." Superlattices and Microstructures 25, no. 1-2 (1999): 419–24. http://dx.doi.org/10.1006/spmi.1998.0669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yarn, K. F., Y. H. Wang, C. Y. Chang, and C. S. Chang. "Voltage-controlled three terminal GaAs negative differential resistance device using n+-i-p+-i-n+ structure." IEE Proceedings G Circuits, Devices and Systems 137, no. 3 (1990): 219. http://dx.doi.org/10.1049/ip-g-2.1990.0033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chowdhury, Md. Iqbal Bahar. "Analytical Model of Cutoff Frequency of GaAs PIN Photodiode." Journal of VLSI Design and Signal Processing 10, no. 2 (2024): 31–40. https://doi.org/10.5281/zenodo.15318634.

Full text
Abstract:
This work has developed an analytical model of the cutoff frequency for a GaAs p-i-n photodiode, which can be employed to investigate the high-frequency response– a key concern for the applications of high-speed optical communications. In doing so, the three transit times for the highly and uniformly doped emitter and base regions and the intrinsic region sandwiched between these regions have been determined, which requires the solutions of governing differential equations for each region. The analytical model considers the effects of the surface and volume recombination on the emitter a
APA, Harvard, Vancouver, ISO, and other styles
13

Borzdov, A. V., V. M. Borzdov, D. N. Buinouski, and A. N. Petlitsky. "Monte Carlo Simulation of Photoresponse in Silicon Photodiodes with p-n-Junction and p-i-n-Structure." Devices and Methods of Measurements 16, no. 2 (2025): 140–46. https://doi.org/10.21122/2220-9506-2025-16-2-140-146.

Full text
Abstract:
Numerical modeling of semiconductor photodiodes’ electrical characteristics is an important task at the stage of their development and design. In this regard, it should be noted that one of the most promising methods that can be used for this purpose is the ensemble Monte Carlo method, which allows including, along with the dominant mechanisms of charge carriers’ scattering in the device structure, also the processes of impact ionization, which is very important for adequate modeling of a wide class of silicon photodiodes operating in the reverse bias mode. The aim of the work was to study the
APA, Harvard, Vancouver, ISO, and other styles
14

Chevrier, J. B., P. Cambon, R. C. Chittick, and B. Equer. "Use of n-i-p-i-n a-Si:H structure for bistable optically addressed spatial light modulator." Journal of Non-Crystalline Solids 137-138 (January 1991): 1325–28. http://dx.doi.org/10.1016/s0022-3093(05)80368-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Manyakhin, F. I., and L. O. Mokretsova. "Modeling the Energy Structure of a GaN p–i–n Junction." Russian Microelectronics 47, no. 8 (2018): 619–23. http://dx.doi.org/10.1134/s1063739718080073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Dittrich, Th, V. Yu Timoshenko, J. Rappich, and L. Tsybeskov. "Room temperature electroluminescence from a c-Si p-i-n structure." Journal of Applied Physics 90, no. 5 (2001): 2310–13. http://dx.doi.org/10.1063/1.1390310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Tyagi, Priyanka, Ritu Srivastava, Arunandan Kumar, et al. "Low voltage organic light emitting diode using p–i–n structure." Synthetic Metals 160, no. 9-10 (2010): 1126–29. http://dx.doi.org/10.1016/j.synthmet.2010.02.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ahmad, Estiak, P. K. Kasanaboina, M. R. Karim, et al. "Te incorporation in GaAs1−xSbxnanowires and p-i-n axial structure." Semiconductor Science and Technology 31, no. 12 (2016): 125001. http://dx.doi.org/10.1088/0268-1242/31/12/125001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Cao, Wei, C. J. Yao, G. F. Jiao, Daming Huang, H. Y. Yu, and Ming-Fu Li. "Improvement in Reliability of Tunneling Field-Effect Transistor With p-n-i-n Structure." IEEE Transactions on Electron Devices 58, no. 7 (2011): 2122–26. http://dx.doi.org/10.1109/ted.2011.2144987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Schneider, H., C. Schönbein, and G. Bihlmann. "Voltage‐tunable two‐color detection by interband and intersubband transitions in a p‐i‐n‐i‐n structure." Applied Physics Letters 68, no. 13 (1996): 1832–34. http://dx.doi.org/10.1063/1.116028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lee, M. L., and J. K. Sheu. "GaN-Based Ultraviolet p-i-n Photodiodes with Buried p-Layer Structure Grown by MOVPE." Journal of The Electrochemical Society 154, no. 3 (2007): H182. http://dx.doi.org/10.1149/1.2426889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kim, Moonjung. "InGaAs/InP p-i-n Photodiode with an Extrinsic Pad Isolation Structure." Journal of the Korean Physical Society 51, no. 4 (2007): 1409. http://dx.doi.org/10.3938/jkps.51.1409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

de Cesare, Giampiero, Augusto Nascetti, and Domenico Caputo. "Amorphous Silicon p-i-n Structure Acting as Light and Temperature Sensor." Sensors 15, no. 6 (2015): 12260–72. http://dx.doi.org/10.3390/s150612260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Traut-Johnstone, Telisha, Stonard Kanyanda, Frederik H. Kriel, et al. "Heteroditopic P,N ligands in gold(I) complexes: Synthesis, structure and cytotoxicity." Journal of Inorganic Biochemistry 145 (April 2015): 108–20. http://dx.doi.org/10.1016/j.jinorgbio.2015.01.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bachechi, F., A. Burini, R. Galassi, B. R. Pietroni, and D. Tesei. "Crystal structure of bis(3,5-dimethylpyrazole)-N,N'-µ-[1-bis(diphenylphosphino) propane]-P,P'-digold(I)] diperchlorate, C37H42N4P2AU2CI2O8." Zeitschrift für Kristallographie - New Crystal Structures 214, no. 4 (1999): 497–98. http://dx.doi.org/10.1515/ncrs-1999-0449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chen, Hao, Liang-Xuan Xu, Li-Juan Yan, et al. "Mononuclear Copper(I) complexes based on phenanthroline derivatives P^N^N^P tetradentate ligands: Syntheses, crystal structure, photochemical properties." Dyes and Pigments 173 (February 2020): 108000. http://dx.doi.org/10.1016/j.dyepig.2019.108000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Pankratov, E. L., and E. A. Bulaeva. "Increasing of Compactness of p-i-n-Diodes by Using Inhomogeneity of a Multilayer Structure." Journal of Computational Intelligence and Electronic Systems 2, no. 2 (2013): 148–55. http://dx.doi.org/10.1166/jcies.2013.1056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yu Strekert, O., and N. G. Marsov. "Comparison of organic-inorganic p-i-n and p-n heterostructures as potential solar cell designs for use in difficult weather conditions." IOP Conference Series: Earth and Environmental Science 1045, no. 1 (2022): 012082. http://dx.doi.org/10.1088/1755-1315/1045/1/012082.

Full text
Abstract:
Abstract This paper investigates the possibility of increasing the spectral sensitivity of an organic-inorganic p-i-n-heterostructure solar cell as compared to a p-n-structure solar cell. Both p-i-n and p-n structures are fabricated from gallium arsenide (GaAs) and copper phthalocyanine (CuPc) using the same technology. In fabricating the p-n-structure, CuPc is deposited in a thinner layer and is fully doped with oxygen; in fabricating the p-i-n-structure, CuPc is deposited in a thicker layer and only its upper part is doped. The main properties of both heterostructures are investigated. The s
APA, Harvard, Vancouver, ISO, and other styles
29

Ma, Z. Y., G. Y. Xia, X. F. Jiang, et al. "Improved Electroluminescence from nc-Si Film Embedded in p-i-n Structure LED." Advanced Materials Research 340 (September 2011): 177–80. http://dx.doi.org/10.4028/www.scientific.net/amr.340.177.

Full text
Abstract:
Intensive electroluminescence (EL) visible to the naked eyes is observed from p–i–n structure light emitting diodes with nanocrystalline Si (nc-Si) film as the luminescent layer. It is found the luminescence intensity increases by 20 times compared with that of nc-Si film without p-i-n structure and the turn-on voltage is sharply reduced. Combined with I-V and TEM analysis, the improved EL is attributed to the enhancement of carrier injection probability of nc-Si inserted in p-i-n structure.
APA, Harvard, Vancouver, ISO, and other styles
30

Kikuchi, Nobuhiro, Yasuo Shibata, Ken Tsuzuki, et al. "80-Gb/s Low-Driving-Voltage InP DQPSK Modulator With an n-p-i-n Structure." IEEE Photonics Technology Letters 21, no. 12 (2009): 787–89. http://dx.doi.org/10.1109/lpt.2009.2018475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

SUMITA, Shigekazu, Yuichi KUBOTA, Osamu HASEGAWA, and Terufumi KAMIJO. "The p-i-n Structure and Additive Elements of Amorphous Silicon Solar Cells." Journal of Society of Materials Engineering for Resources of Japan 8, no. 2 (1995): 93–104. http://dx.doi.org/10.5188/jsmerj.8.2_93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Telenkov, M. P., and Yu A. Mityagin. "Resonant-tunneling structure of quantum wells in the p-i-n photovoltaic element." Bulletin of the Lebedev Physics Institute 40, no. 12 (2013): 346–53. http://dx.doi.org/10.3103/s106833561312004x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mchedlidze, T., T. Arguirov, M. Holla, and M. Kittler. "Electroluminescence from p-i-n structure fabricated using crystalline silicon on glass technology." Journal of Applied Physics 105, no. 9 (2009): 093107. http://dx.doi.org/10.1063/1.3124358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ho, Meng-Huan, Teng-Ming Chen, Pu-Cheng Yeh, Shiao-Wen Hwang, and Chin H. Chen. "Highly efficient p-i-n white organic light emitting devices with tandem structure." Applied Physics Letters 91, no. 23 (2007): 233507. http://dx.doi.org/10.1063/1.2822398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Woo Young Choi, Jae Young Song, Jong Duk Lee, Young June Park, and Byung-Gook Park. "100-nm n-/p-channel I-MOS using a novel self-aligned structure." IEEE Electron Device Letters 26, no. 4 (2005): 261–63. http://dx.doi.org/10.1109/led.2005.844695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Huang, Yi-Ting, Pinghui S. Yeh, Yen-Hsiang Huang, et al. "High-Performance InGaN p-i-n Photodetectors Using LED Structure and Surface Texturing." IEEE Photonics Technology Letters 28, no. 6 (2016): 605–8. http://dx.doi.org/10.1109/lpt.2015.2500272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yeh, L. S., M. L. Lee, J. K. Sheu, et al. "Visible–blind GaN p–i–n photodiodes with an Al0.12Ga0.88N/GaN superlattice structure." Solid-State Electronics 47, no. 5 (2003): 873–78. http://dx.doi.org/10.1016/s0038-1101(02)00441-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

An, X. E., Z. J. Shang, C. H. Ma, et al. "Field dependent ultrafast carrier dynamics in InGaN/GaN p-i(MQW)-n structure." Superlattices and Microstructures 137 (January 2020): 106354. http://dx.doi.org/10.1016/j.spmi.2019.106354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Serin, T., and N. Serin. "The effect of annealing on the resistance of a p/i/n structure." Semiconductor Science and Technology 9, no. 11 (1994): 2097–100. http://dx.doi.org/10.1088/0268-1242/9/11/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Manyakhin, F. I., and L. O. Mokretsova. "Modeling of energy structure p-i-n transition on the basis of GaN." Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering 20, no. 4 (2021): 284–90. http://dx.doi.org/10.17073/1609-3577-2017-4-284-290.

Full text
Abstract:
The differential equation of the second order including function of distribution of density of a mobile charge in the compensated layer p-i-n of transition of the diode on the basis of GaN is received. The decision of the equation is executed by a numerical method with application of program MathCad. The electric field on border of the compensated layer (CL) and the compensated layer pays off from a condition, that concentration made diffusion in CL of electrons is much more than concentration of the motionless compensated ions of an impurity. Electrons from strongly alloyed layer made diffusi
APA, Harvard, Vancouver, ISO, and other styles
41

Lapteva, U. A., A. Yu Baranov, D. G. Samsonenko, and A. V. Artem’ev. "A four-nuclear Ag(I) complex supported by a N,N',N'',P-ligand: synthesis, crystal and electronic structure." Журнал структурной химии 63, no. 4 (2022): 527–29. http://dx.doi.org/10.26902/jsc_id95901.

Full text
Abstract:
A four-nuclear complex [Ag4(Lut3P)2(MeCN)2](BF4)4 has been synthesized by the treatment of tris[(6-methylpyridin-2-yl)methyl]phosphine (Lut3P) with AgBF4 in MeCN solution. The crystal and electronic structure of the obtained complex were studied using X-ray diffraction analysis and DFT computations. Moreover, solid-state photoluminescence of title compound has been examined at ambient temperature.
APA, Harvard, Vancouver, ISO, and other styles
42

Lapteva, U. A., A. Yu Baranov, D. G. Samsonenko, and A. V. Artem′ev. "A FOUR-NUCLEAR Ag(I) COMPLEX SUPPORTED BY A N,N′,N″,P-LIGAND: SYNTHESIS, CRYSTAL AND ELECTRONIC STRUCTURE." Journal of Structural Chemistry 63, no. 4 (2022): 663–68. http://dx.doi.org/10.1134/s0022476622040199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhang, Lei, Dong-Ying Zhou, Bo Wang, et al. "Enhanced efficiency and stability in organic light-emitting diodes by employing a p-i-n-p structure." Applied Physics Letters 109, no. 17 (2016): 173302. http://dx.doi.org/10.1063/1.4966544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhou Mei and Zhao De-Gang. "Effect of p-GaN layer thickness on the performance of p-i-n structure GaN ultraviolet photodetectors." Acta Physica Sinica 57, no. 7 (2008): 4570. http://dx.doi.org/10.7498/aps.57.4570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Miki, K., T. Abe, J. Naruse, et al. "Highly sensitive ultraviolet PIN photodiodes of ZnSSe n+–i–p structure/p+-GaAs substrate grown by MBE." physica status solidi (b) 243, no. 4 (2006): 950–54. http://dx.doi.org/10.1002/pssb.200564720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wattanakanjana, Yupa, Arunpatcha Nimthong-Roldán та Janejira Ratthiwan. "Crystal structure of [1,3-bis(diphenylphosphanyl)propane-κ2P,P′](N,N′-dimethylthiourea-κS)(thiocyanato-κN)copper(I)". Acta Crystallographica Section E Crystallographic Communications 71, № 3 (2015): m61—m62. http://dx.doi.org/10.1107/s2056989015002479.

Full text
Abstract:
The asymmetric unit of the title compound, [Cu(NCS)(C3H8N2S)(C27H26P2)], contains two independent mononuclear complex molecules. In each, the CuIion exhibits a distorted tetrahedral geometry by coordination with two P atoms from one 1,3-bis(diphenylphosphino)propane (dppm) ligand, one terminal S atom of oneN,N′-dimethylthiourea (dmtu) ligand and one terminal N atom of the thiocyanato ligand. The dppp ligand is involved in a bidentate coordination mode with the CuIion, forming a six-membered CuP2C3ring. In both molecules, the coordination of the dmtu ligand is further stabilized by an intramole
APA, Harvard, Vancouver, ISO, and other styles
47

Yeo, Chien Ing, Yi Jiun Tan, Aya Shiomitsu, Jactty Chew, Nathan R. Halcovitch та Edward R. T. Tiekink. "Crystal structure of bis[μ2-(N,N-diethylcarbamodithioato-κS:κS,κS′)]-bis(triethylphosphine-P)-di-silver(I), C22H50Ag2N2P2S4". Zeitschrift für Kristallographie - New Crystal Structures 235, № 6 (2020): 1365–68. http://dx.doi.org/10.1515/ncrs-2020-0317.

Full text
Abstract:
AbstractC22H50Ag2N2P2S4, triclinic, P1̄ (no. 2), a = 9.0672(2) Å, b = 11.2091(3) Å, c = 16.6853(4) Å, α = 91.097(2)°, β = 90.363(2)°, γ = 110.989(2)°, V = 1582.85(7) Å3, Z = 2, Rgt(F) = 0.0241, wRref(F2) = 0.0653, T = 100(2) K.
APA, Harvard, Vancouver, ISO, and other styles
48

Polischuk, O. V., D. V. Fateev, and V. V. Popov. "Amplification of terahertz radiation in a plasmon n–i–p–i graphene structure with charge-carrier injection." Semiconductors 51, no. 11 (2017): 1460–65. http://dx.doi.org/10.1134/s1063782617110240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Albert Cotton, F., та Rinaldo Poli. "Iridium(I) dimers with bridging N,N′-di-p-tolylformamidine. X-ray molecular structure of Ir2(μ-p-CH3C6H4NCHN-p-C6H4CH3)(μ-NH-p-C6H4CH3)(C8H14)2". Inorganica Chimica Acta 122, № 2 (1986): 243–48. http://dx.doi.org/10.1016/s0020-1693(00)81646-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Yokoyama, Meiso, Shui-Hsiang Su, Cheng-Chieh Hou, Chung-Ta Wu, and Chun-Hao Kung. "Highly Efficient White Organic Light-Emitting Diodes with a p–i–n Tandem Structure." Japanese Journal of Applied Physics 50, no. 4S (2011): 04DK06. http://dx.doi.org/10.7567/jjap.50.04dk06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!