Academic literature on the topic 'P3HT polymer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'P3HT polymer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "P3HT polymer"

1

Kubota, Mayara, Ricardo Fernandes, and Santana de. "Electrical, optical and structural characterization of interfaces containing poly(3-alkylthiophenes)(P3ATs) and polydiphenylamine on ITO/TiO2: Interaction between P3ATs polymeric segments and TiO2." Journal of the Serbian Chemical Society, no. 00 (2024): 24. http://dx.doi.org/10.2298/jsc231125024k.

Full text
Abstract:
With the aim of studying the use of conjugated polymers poly(3- methylthiophene) (P3MT), poly(3-hexylthiophene) (P3HT) and polydiphenylamine (PDPA) to make up the active layer of inverted organic solar cells forming the interface with TiO2, and also help shed light on the optical and electronic properties applied to develop this technology, the interfaces between films containing P3MT, P3HT and PDPA on ITO electrode were electrochemically prepared, after chemically depositing a film of TiO2. The systems under investigation were designated ITO/TiO2/P3MT, ITO/TiO2/PDPA/P3MT, ITO/TiO2/PDPA, ITO/T
APA, Harvard, Vancouver, ISO, and other styles
2

Sairam, Koneti, and A. Sivagami. "Comparison the Electrical Characteristics of PEDOT: PSS Tandem Solar Cell and P3HT Tandem Solar Cell by Varying Thickness." Alinteri Journal of Agriculture Sciences 36, no. 1 (2021): 674–81. http://dx.doi.org/10.47059/alinteri/v36i1/ajas21095.

Full text
Abstract:
Aim: This project aims to improve the electrical characteristics in the polymer tandem solar cell by changing polymers with thickness to increase the efficiency. Methods and Materials: The PEDOT: PSS and P3HT Polymer was chosen as a group having 20 samples in each respectively. The electrical characteristics are stimulated by varying the polymer with thickness. Changing the polymer material leads to improved efficiency in the tandem solar cell. Results: The Independent T test was done which reveals that the P3HT (P = 0.553) was found to be statistically significantly compared with PEDOT: PSS p
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Jean Hong, Jian Yi Li, Lung Chuan Chen, and Ching Iuan Su. "Morphology and Microstructure of Aggregates and Gelation Behaviour of Poly(3-hexylthiophene) in Xylene Solution." Applied Mechanics and Materials 479-480 (December 2013): 115–20. http://dx.doi.org/10.4028/www.scientific.net/amm.479-480.115.

Full text
Abstract:
In this work, we investigate the morphology and microstructure of the aggregates, and the gelation behaviour of Poly(3-hexylthiophene) (P3HT) conjugated polymer in xylene solution as functions of P3HT concentration and aging time by the means of ageing time test, wide angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), UV-visible absorption (UV-vis) and photoluminescence (PL) spectra. The result reveals that the gelation time of P3HT/xylene solution decreases markedly with increasing P3HT concentration. The photophysical properties of the P3HT aggregates in P3HT/xylene solution
APA, Harvard, Vancouver, ISO, and other styles
4

García-Escobar, C. H., M. E. Nicho, Hailin Hu, et al. "Effect of Microwave Radiation on the Synthesis of Poly(3-hexylthiophene) and the Subsequent Photovoltaic Performance of CdS/P3HT Solar Cells." International Journal of Polymer Science 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/1926972.

Full text
Abstract:
Poly(3-hexylthiophene) (P3HT) is a semiconductor polymer that has been proved to be a good electron donor in organic or hybrid solar cells. In this work, a detailed study of P3HT synthesis in CH2Cl2solvent by oxidative method with and without MW assistance has been conducted. Effects of synthesis process parameters on the physical properties of P3HT products and their application in hybrid CdS/P3HT photovoltaic devices were studied. It is observed that the use of MW as well as the reaction time affected the reaction yield and properties of the polymer products. It was found that, by the tradit
APA, Harvard, Vancouver, ISO, and other styles
5

Orlova, M., S. Didenko, D. Saranin, O. Rabinovich, A. Panichkin, and I. Borzykh. "New Polymer Systems for Use in Organic Photovoltaics." International Journal of Nanoscience 17, no. 05 (2018): 1750022. http://dx.doi.org/10.1142/s0219581x17500223.

Full text
Abstract:
In this paper, new polymers for use in organic photovoltaics were investigated. PPBI, PNBI and copolymer MULT are considered as a potential alternative or an effective dopant for P3HT and PCBM. The choice of these materials allows us to find out new information on the prospects and properties of heterocyclic polymers — for thermal stability and resistance to the environment for organic solar cells. The levels of HOMO and LUMO of new heterocyclic polymers were measured, and the results were compared with those of P3HT: PCBM. The level of new polymer MULT photoluminescence was determined. The ab
APA, Harvard, Vancouver, ISO, and other styles
6

Nagamatsu, Shuichi, Masataka Ishida, Shougo Miyajima, and Shyam S. Pandey. "P3HT Nanofibrils Thin-Film Transistors by Adsorbing Deposition in Suspension." Materials 12, no. 21 (2019): 3643. http://dx.doi.org/10.3390/ma12213643.

Full text
Abstract:
A novel film preparation method utilizing polymer suspension, entitled adsorbing deposition in suspensions (ADS), has been proposed. The poly(3-hexylthiophene) (P3HT) toluene solution forms P3HT nanofibrils dispersed suspension by aging. P3HT nanofibrils are highly crystallized with sharp vibronic absorption spectra. By the ADS method, only P3HT nanofibrils in suspension can be deposited on the substrate surface without any disordered fraction from the dissolved P3HT in suspension. Formed ADS film contains only the nanostructured conjugated polymer. Fabricated polymer thin-film transistor (TFT
APA, Harvard, Vancouver, ISO, and other styles
7

Arrigoni, Alessia, Luigi Brambilla, Chiara Castiglioni, and Chiara Bertarelli. "Conducting Electrospun Nanofibres: Monitoring of Iodine Doping of P3HT through Infrared (IRAV) and Raman (RaAV) Polaron Spectroscopic Features." Nanomaterials 12, no. 23 (2022): 4308. http://dx.doi.org/10.3390/nano12234308.

Full text
Abstract:
Aligned polymer nanofibres are prepared by means of the electrospinning of a chlorobenzene solution containing regioregular poly(3-hexyltiophene-2,5-diyl), P3HT, and poly(ethylene oxide), PEO. The PEO scaffold is easily dissolved with acetonitrile, leaving pure P3HT fibres, which do not show structural modification. Polymer fibres, either with or without the PEO supporting polymer, are effectively doped by exposure to iodine vapours. Doping is monitored following the changes in the doping-induced vibrational bands (IRAVs) observed in the infrared spectra and by means of Raman spectroscopy. Mol
APA, Harvard, Vancouver, ISO, and other styles
8

Kyokunzire, Proscovia, Ganghoon Jeong, Seo Young Shin, et al. "Enhanced Nitric Oxide Sensing Performance of Conjugated Polymer Films through Incorporation of Graphitic Carbon Nitride." International Journal of Molecular Sciences 24, no. 2 (2023): 1158. http://dx.doi.org/10.3390/ijms24021158.

Full text
Abstract:
Organic field-effect transistor (OFET) gas sensors based on conjugated polymer films have recently attracted considerable attention for use in environmental monitoring applications. However, the existing devices are limited by their poor sensing performance for gas analytes. This drawback is attributed to the low charge transport in and the limited charge–analyte interaction of the conjugated polymers. Herein, we demonstrate that the incorporation of graphitic carbon nitride (g-C₃N₄) into the conjugated polymer matrix can improve the sensing performance of OFET gas sensors. Moreover, the effec
APA, Harvard, Vancouver, ISO, and other styles
9

Švrček, Vladimir. "Excitation energy transfer in conjugated polymer/silicon nanocrystal-based bulk heterojunctions." Pure and Applied Chemistry 82, no. 11 (2010): 2121–35. http://dx.doi.org/10.1351/pac-con-09-12-01.

Full text
Abstract:
An excitation energy transfer in a bulk heterojunction based on freestanding silicon nanocrystals (Si-NCs) and conjugated polymers {poly(3-hexylthiophene) (P3HT), poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV)} is demonstrated. The electrochemical etching process is employed for fabrication of freestanding and polymer soluble Si-NCs. Formation of a bulk heterojunction is confirmed by a difference in a work function of both polymers and an ionization potential of the NCs. An annealing step significantly influences the polymer chain conformation and electronic interaction
APA, Harvard, Vancouver, ISO, and other styles
10

Wakahara, Takatsugu, Kun’ichi Miyazawa, Osamu Ito, and Nobutaka Tanigaki. "Preparation of Composite Films of a Conjugated Polymer and C60NWs and Their Photovoltaic Application." Journal of Nanomaterials 2016 (2016): 1–5. http://dx.doi.org/10.1155/2016/2895850.

Full text
Abstract:
Composite films of conjugated polymers, such as poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and poly(3-hexylthiophene) (P3HT), with C60nanowhiskers (C60NWs) were prepared. The photoluminescence originating from the conjugated MDMO-PPV polymers was effectively quenched in the composite film, indicating a strong interaction between the conjugated polymer and C60NWs. The photovoltaic devices were fabricated using C60NW (conjugated polymer) composite films, resulting in a power conversion efficiency of ~0.01% for P3HT with short length thin C60NWs, which is higher t
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!