Academic literature on the topic 'PA6'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'PA6.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "PA6"
Fawwas Asrory, Fahriza, Seniola Sima Datuan, Anthonius Dhinar Hasto Wisnugroho, and Ramy Yahya. "ANALISIS RISIKO RANTAI PASOK MENGGUNAKAN METODE SUPPLY CHAIN OPERATION REFERENCE (SCOR) DAN HOUSE OF RISK (HOR) PADA RUMAH PRODUKSI BERAS SIUNG MAS PT BERAU COAL." Industri Inovatif : Jurnal Teknik Industri 14, no. 1 (April 11, 2024): 50–60. http://dx.doi.org/10.36040/industri.v14i1.8309.
Full textRiskiana, Wulan, Moehamad Aman, and Affan Rifa'i. "Analisis Risiko Rantai Pasok Dengan House of Risk di PT. Petrogas Prima Service." Borobudur Engineering Review 1, no. 2 (September 28, 2021): 89–95. http://dx.doi.org/10.31603/benr.3165.
Full textFerreira, P. B., P. R. N. Rorato, F. C. B. Mello, B. Bevilaqua, A. Macedo, and L. B. P. Brittes. "Egg production evaluation of laying hens by multivariate analysis." Arquivo Brasileiro de Medicina Veterinária e Zootecnia 69, no. 3 (June 2017): 676–82. http://dx.doi.org/10.1590/1678-4162-8540.
Full textMcNelis, Jenna, Bree Gaffney, Haley Linder, Zachary Buessing, Jennifer E. Earing, Daniel W. Shike, Marion Bernardeau, and Joshua C. McCann. "212 The Effects of Propionibacterium Acidipropionici P169 in an in Vitro Ruminal Acidosis Model." Journal of Animal Science 100, Supplement_2 (April 12, 2022): 101–2. http://dx.doi.org/10.1093/jas/skac064.169.
Full textZhang, Yajing, Mingda Wang, Di Zhang, Yibing Wang, Li Wang, Yongjun Qiu, Liquan Wang, Tao Chen, and Liming Zhao. "Crystallization and Performance of Polyamide Blends Comprising Polyamide 4, Polyamide 6, and Their Copolymers." Polymers 15, no. 16 (August 14, 2023): 3399. http://dx.doi.org/10.3390/polym15163399.
Full textKrause, Beate, Lisa Kroschwald, and Petra Pötschke. "The Influence of the Blend Ratio in PA6/PA66/MWCNT Blend Composites on the Electrical and Thermal Properties." Polymers 11, no. 1 (January 11, 2019): 122. http://dx.doi.org/10.3390/polym11010122.
Full textKaushal, Bindiya, Salbi Paul, and F. Marion Hulett. "Direct Regulation of Bacillus subtilis phoPR Transcription by Transition State Regulator ScoC." Journal of Bacteriology 192, no. 12 (April 9, 2010): 3103–13. http://dx.doi.org/10.1128/jb.00089-10.
Full textVasanthan, N. "Determination of Molecular Orientation of Uniaxially Stretched Polyamide Fibers by Polarized Infrared Spectroscopy: Comparison of X-Ray Diffraction and Birefringence Methods." Applied Spectroscopy 59, no. 7 (July 2005): 897–903. http://dx.doi.org/10.1366/0003702054411715.
Full textXu, Bao Feng, Zhi Dan Lin, Jiang Ming Chen, and Jun Lin. "Preparation and Characterization of GNP/Nylon Composites." Applied Mechanics and Materials 556-562 (May 2014): 339–42. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.339.
Full textOliveira, Maria do Socorro Padilha de, Márcia Motta Maués, and Maura Anjos de Andrade Kalume. "Viabilidade de pólen in vivo e in vitro em genótipos de açaizeiro." Acta Botanica Brasilica 15, no. 1 (April 2001): 27–33. http://dx.doi.org/10.1590/s0102-33062001000100004.
Full textDissertations / Theses on the topic "PA6"
Fiegenbaum, Fernanda. "Estudo da compatibilização das blendas PP/PA6 e PA6/EPR." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2007. http://hdl.handle.net/10183/14860.
Full textIn this work an evaluation of the compatibilization of the Polypropylene (PP)/Polyamide-6 (PA6) blends and Polyamide-6/Ethylene-Propylene Rubber (EPR) blends was carried out. A funcionalized PP and a funcionalized EPR were used as compatibilizer agent in the first and second systems, respectively. The binary blends PP/PA6 were prepared in the proportions 70/30 and the ternary mixtures PP/PP-MA/PA6 in the proportions 65/5/30, both in Haake Rheomex PTW Extruder and Haake Rheomex CTW100p Extruder. The binary blend PA6/EPR was prepared in the proportion 70/30 and the ternary blend PA6/EPR-MA/EPR in the proportion 70/5/25, using a Haake Polylab Rheometer with internal mixer module. The compatibilizer agent EPR-MA was prepared in a Haake Rheomex PTW Extruder functionalized with 1 wt % of maleic anhydride (MA) as grafting agent and 0.1% of Luperox as initiator. The obtained blends were characterized for Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Dynamic Mechanical Thermal Analysis (DMTA), roational rheometry and mechanical properties measurements. When necessary the significance of the differences among samples was statically analyzed using a t test. The results showed that the addition of the compatibilizer agents PP-MA and EPRMA provokes an alteration in the morphology of the blends, increasing miscibility and reducing the size of the dispersed phase particles. Besides, the dynamic-mechanical thermal and rheological analyses indicate interaction between the phases caused by the compatibilization. The mechanical analysis of the blends PP/PA6 showed a better performance of the ternary blends in comparison to the binary blends.
Roeder, Jerusa. "Blendas PP/PA6 compatibilizadas." Florianópolis, SC, 2001. http://repositorio.ufsc.br/xmlui/handle/123456789/81726.
Full textMade available in DSpace on 2012-10-19T07:13:23Z (GMT). No. of bitstreams: 0Bitstream added on 2014-09-25T21:46:19Z : No. of bitstreams: 1 182972.pdf: 25091202 bytes, checksum: a180a027ce2bc40c1b5d75acf0259bc3 (MD5)
Fasahat, F., R. Dastjerdi, and M. R. M. Mojtahedi. "Thermophysiological Comfort by PA6/TiO2 Nanocomposite Yarns." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35603.
Full textYau, Alvin. "Mechanical characteristics of PA6-monmorillonite [i.e. montmorillonite] nanocomposites." access abstract and table of contents access full-text, 2004. http://libweb.cityu.edu.hk/cgi-bin/ezdb/dissert.pl?msc-ap-b21175226a.pdf.
Full textAt head of title: City University of Hong Kong, Department of Physics and Materials Science, Master of Science in materials engineering & nanotechnology dissertation. Title from title screen (viewed on Sept. 4, 2006) Includes bibliographical references.
Fasahat, F., R. Dastjerdi, and M. R. M. Dastjerdi. "Abrasion Resistance of Ag/SiO2/PA6 Nanocomposite Fabrics." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35638.
Full textUmar, Muneer. "Processing, structure and properties of PA6/carbon composites." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/processing-structure-and-properties-of-pa6carbon-composites(8573d69a-e4f1-4ea9-99ef-edabc141da45).html.
Full textBenfer, Andreas. "Herstellung eines Adsorbers für proteingebundene Toxine durch Modifikation von PA6-Mikrofiltrationsmembranen." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=972416668.
Full textOliveira, Amanda Dantas de. "Dispersão seletiva de argila montmorilonita em blendas poliméricas de PA6/ABS." Universidade Federal de São Carlos, 2009. https://repositorio.ufscar.br/handle/ufscar/843.
Full textUniversidade Federal de Sao Carlos
For some applications toughening of polyamide is important. This can be accomplished through the addition of an elastomeric phase to the polyamide matrix with the drawback of a reduction in the stiffness and strength of the material. Several studies lately have focused on the modification of polyamide matrix with the purpose of obtaining a balance between toughness and stiffness for these thermoplastics. In this work, to achieve a balance between stiffness and toughness, ternary nanocomposites based on blends of polyamide 6 (PA6) and acrylonitrile-butadiene-styrene (ABS) were prepared by the melt blending processes using the organoclay Cloisite® 30B (OMMT) and the styrene-maleic anhydride copolymer (SMA) as compatibilizer. Four blending sequences were used to prepare the selected systems and their mechanical properties studied through the Young s modulus and notched Izod impact properties. The addition of organoclay increases the Young s modulus of all ternary nanocomposites when compared to the blend and the PA6 matrix. This fact was attributed to preferential location of the clay in the PA6 matrix phase. The micrographs obtained by transmission electronic microscopy (TEM) indicate that the nanoclay shows an exfoliated structure and reside in the PA6 matrix phase, as well as in the interface between the phases. PA6/ABS/OMMT ternary nanocomposites with different content of nanoclay (1, 3 and 5%) were studied and it was observed that the particles size of ABS dispersed phase decrease with the increase of the OMMT content in the blend. This fact indicates that nanoclay can play an important role to prevent the coalescence in the ABS domains during the melt state processes. PA6/ABS ternary blends compatibilized with SMA were prepared by melt state process and it was observed that the mechanical properties and the morphology were influenced by the blending sequence of the components.
A tenacificação da poliamida 6 é desejável para diversas aplicações e pode ser obtida através da adição de uma fase elastomérica à matriz, entretanto, isto leva a uma perda em suas características de rigidez e resistência a tração. Com o intuito de se obter um balanço entre as propriedades de rigidez e tenacidade, nanocompósitos baseados em blendas de poliamida 6 (PA6) e terpolímero acrilonitrila-butadieno-estireno (ABS) foram preparados pelo método de mistura no estado fundido utilizando a argila organofílica Cloisite® 30B (OMMT) como reforço e o copolímero estirenoanidrido maleico (SMA) como compatibilizante. Os sistemas foram preparados em uma extrusora de rosca dupla co-rotacional, utilizando quatro sequências de misturas e suas propriedades mecânicas foram analisadas através da determinação do módulo de elasticidade sob tração e resistência ao impacto Izod. A adição da argila organofílica aumentou o módulo de todos os nanocompósitos ternários em relação à blenda e à matriz PA6. Mas por outro lado, foi observada uma redução da resistência ao impacto desses nanocompósitos. Este aumento na rigidez foi atribuído à localização da argila no interior da fase matriz PA6. As micrografias obtidas por microscopia eletrônica de transmissão (MET) indicaram que a argila apresenta uma estrutura esfoliada em todos os sistemas e reside na fase matriz PA6, bem como na interface entre as duas fases. Sistemas ternários de PA6/ABS/OMMT com diferentes teores de argila (1, 3 e 5%) também foram estudados e foi observado que o tamanho das partículas da fase dispersa ABS diminui com o aumento da quantidade de OMMT na blenda. Isto indica que a argila pode desempenhar um importante efeito em prevenir a coalescência dos domínios de ABS durante a mistura do fundido, estabilizando a estrutura formada. Blendas ternárias de PA6/ABS compatibilizadas com o SMA foram preparadas e foi observado que as propriedades mecânicas e a morfologia são bastante influenciadas pela ordem de mistura dos componentes da blenda.
Castro, Lucas Daniel Chiba de. "Desenvolvimento de nanocompósitos de blendas PA6/ABS compatibilizadas com copolímeros funcionalizados." Universidade Federal de São Carlos, 2014. https://repositorio.ufscar.br/handle/ufscar/7171.
Full textApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-15T13:42:07Z (GMT) No. of bitstreams: 1 DissLDCC.pdf: 4367646 bytes, checksum: 6ea0bbaf8821a92bf7348237ecee172b (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-15T13:42:14Z (GMT) No. of bitstreams: 1 DissLDCC.pdf: 4367646 bytes, checksum: 6ea0bbaf8821a92bf7348237ecee172b (MD5)
Made available in DSpace on 2016-09-15T13:42:20Z (GMT). No. of bitstreams: 1 DissLDCC.pdf: 4367646 bytes, checksum: 6ea0bbaf8821a92bf7348237ecee172b (MD5) Previous issue date: 2014-09-22
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Nanocomposites based on polyamide 6 (PA6) and acrylonitrile-butadienestyrene (ABS) blends compatibilized with styrene-maleic anhydride-acrylonitrile (SANMA) and methyl methacrylate-maleic anhydride (MA-MMA) were prepared by melt blending in a twin screw extruder through different mixing protocols. The nanoclay incorporation effect, different compatibilizing systems and components mixing sequence were evaluated in morphological, mechanical, thermal, thermomechanical and rheological properties. Evidences of chemical interactions between PA6 and reactive copolymers were observed by torque rheometry. XRD analysis indicates an exfoliated structure for all the nanocomposites due to the good interaction between PA6/OMMT. The significant increase in nanocomposites viscosity when compared with their respective ternary blends corroborates the results obtained by XRD. TEM micrographs show a strong influence of both reactive copolymers on polymer blends morphology, where the presence of SANMA and MMA-MA is responsible for reducing the dispersed phase particle size when compared to the uncompatibilized blend. TEM images confirm the existence of an exfoliation structure in all nanocomposites. The addition of both reactive copolymers significantly increased the ternary blends toughness when compared with PA6/ABS. Furthermore, the nanoclay incorporation enhanced the elasticity modulus and HDT of the nanocomposites but also reduced the toughness and the elongation at break when compared with their respective compatibilized blends.
Nanocompósitos baseados em blendas de poliamida 6 (PA6) e acrilonitrila-butadieno-estireno (ABS) compatibilizadas com os estirenoacrilonitrila- anidrido maleico (SANMA) e metacrilato de metila-anidrido maleico (MMA-MA), foram preparadas por mistura no estado fundido em uma extrusora de rosca dupla corotacional através de diferentes sequências de mistura. Foram analisadas a influência da incorporação das nanopartículas lamelares de argila, dos diferentes agentes de compatibilização e da sequência de mistura dos componentes na morfologia, propriedades mecânicas, térmicas, termomecânicas e reológicas dos materiais. Evidencias de reações químicas entre a PA6 e os copolímeros reativos foram observadas por reometria de torque. Ensaios de DRX fornecem indícios da formação de estrutura esfoliada para todos os nanocompósitos decorrente da boa interação entre PA6/OMMT. O significativo aumento da viscosidade dos nancompósitos quando comparados com suas respectivas blendas ternárias corroboram os resultados obtidos por DRX. As micrografias de MET evidenciam a forte influencia da incorporação de ambos os copolímeros reativos na morfologia das blendas poliméricas onde a presença, tanto do SANMA quanto do MMA-MA, é responsável pela redução do tamanho de partícula da fase dispersa quando comparadas com a blenda não compatibilizada. Adicionalmente as imagens obtidas por MET reafirmam o alto grau de esfoliação da argila em todos os nanocompósitos estudados. Além de refinar a morfologia, a adição de ambos os copolímeros reativos aumentou significativamente a tenacidade das blendas ternárias em relação à blenda PA6/ABS. Por fim, a incorporação de nanoargila foi responsável pelo incremento no módulo de elasticidade e HDT dos nanocompósitos, resultado esse acompanhado pela redução da tenacidade e da deformação na ruptura quando comparados com suas respectivas blendas compatibilizadas.
Bondan, Fabrício. "Preparação e caracterização de elastômeros reticulados dinamicamente de PA6-12/EVA." reponame:Repositório Institucional da UCS, 2014. https://repositorio.ucs.br/handle/11338/873.
Full textSubmitted by Ana Guimarães Pereira (agpereir@ucs.br) on 2015-02-11T12:37:56Z No. of bitstreams: 1 Dissertacao Fabricio Bondan.pdf: 8945414 bytes, checksum: fa1ca7a658e38621e0b6ca94c8f91b73 (MD5)
Made available in DSpace on 2015-02-11T12:37:56Z (GMT). No. of bitstreams: 1 Dissertacao Fabricio Bondan.pdf: 8945414 bytes, checksum: fa1ca7a658e38621e0b6ca94c8f91b73 (MD5)
Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
Polymeric materials having good mechanical properties combined with flexibility are requirements to meet changing needs of the industry. These requirements can be met with the production of dynamically vulcanized/crosslinked elastomers (TPVs). TPVs are generally produced from blends between immiscible polymers. In this study, was evaluated the production of TPVs from polyamide 6-12 (PA-612) and random copolymer of ethylene and vinyl acetate (EVA) using dicumyl peroxide (DCP) as crosslinking agent (1, 4 and 8 phr in relation to the elastomeric phase) prepared in a batch mixer. The polymer blends were processed using the PA6-12/EVA 50/50 wt. %/wt.% in a torque rheometer (120 rpm, 15 min and 200 °C). The addition of higher DCP contents in the blends results in increase of the stabilized torque values, torque rate due to the crosslink formation, which results in a gel contents from 2,6 to 17 wt.%. The blend PA 6-12/EVA 50/50 has ~99% of interconnected phase, for the blends with in smaller EVA contents are formed disperse phase morphology with sizes from 0.64 to 1.57 μm. For the polymers systems dynamically crosslinked, the morphology was dependent on DCP addition, due to reduced mobility of the EVA phase. This system has morphology with well-defined contours and an interfacial thickness of 7.3-7.6 nm. The mechanical forces action during melt processing resulted in partial fragmentation of the EVA phase. The PA6-12/EVA blends are immiscible, since the DMTA experiments two glass transitions were observed, characteristics of each pure polymer, and also by the interfacial tension value of the system (4.62 mN/m). The crystallinity index remains constant for blends, however, an increase was observed in the lamellar long period (Lp), this effect associated with the increase of the amorphous fraction of the system. This occurs because the EVA chains being located adjacent to the amorphous portion of PA 6-12 due to the presence of secondary interactions between amide and acetate groups. The dynamic crosslinking of the PA612/EVA system, results in increases of the stiffness, on the other hand not able to promote increases in mechanical properties as well as improvement in elastic recovery due to the formation of phase morphology with partial fragmentation of the EVA.
Books on the topic "PA6"
illustrator, Epstein Len, and SRA/McGraw-Hill, eds. Pat and Pam. Worthington, OH: SRA/McGraw-Hill, 2000.
Find full textBunchūchūai, Dēchō. Yā pai-Pak Tai. 2nd ed. Krung Thēp: Samnakphim Mǣkhamphāng, 2008.
Find full text1977-, Pak Chin-gyu, ed. Kyoyang ŏmnŭn pam: Pak Chin-gyu sosŏl. Kyŏnggi-do P'aju-si: Munhak Tongne, 2012.
Find full textSteffensen, Erik. Pas paa toget!: 25 års DSB-plakatkunst. København: Arkitektens forlag, 2001.
Find full textBook chapters on the topic "PA6"
Bashford, David. "Polyamide 6 (PA6)." In Thermoplastics, 269–90. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1531-2_48.
Full textBashford, David. "Polyamide PA6-6-T." In Thermoplastics, 328–29. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1531-2_58.
Full textBashford, David. "Amorphous Polyamide (PA6-3-T)." In Thermoplastics, 329. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1531-2_59.
Full textLi, Yiren, Xiaomin Zhao, Lian Tang, Peng Ji, Chaosheng Wang, and Huaping Wang. "Preparation and Properties of Cool-Feeling PA6 Fiber." In Advanced Functional Materials, 831–40. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0110-0_90.
Full textTMS, Pankaj Agrawal, Gustavo F. Brito, Bartira B. Cunha, Shirley N. Cavalcanti, Edcleide M. Araújo, and Tomás J. A. Mélo. "Mechanical Properties of Nanocomposites Based on PA6 Blends." In Supplemental Proceedings, 613–19. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118357002.ch77.
Full textAgrawal, Pankaj, Akidauana D. B. Oliveira, Gustavo F. Brito, Carlos T. C. Cunha, Edcleide M. Araújo, and Tomás J. A. Mélo. "Nanocomposites Based on Polymer Blends: Effect of the Organoclay on the Thermo-Mechanical Properties and Morphology of PA6/HDPE and PA6/Compatibilizer/HDPE Blends." In Supplemental Proceedings, 685–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062173.ch87.
Full textPatil, Anurag R., S. Aparna, and D. Purnima. "Surface Modified Carbon Fibre Reinforced PA6 and its Blend-Based Composites." In Lecture Notes in Mechanical Engineering, 759–67. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6577-5_74.
Full textNakhaei, Mohammad Reza, Ghasem Naderi, and Mir Hamid Reza Ghoreishy. "Microstructure and Mechanical Properties of Nanocomposite Based on PA6/NBR/Graphene." In Eco-friendly and Smart Polymer Systems, 320–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_76.
Full textGuloglu, M. Oktar, and Anna Larsen. "Dopaminergic Differentiation of Human Embryonic Stem Cells on PA6-Derived Adipocytes." In Embryonic Stem Cell Protocols, 235–44. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/7651_2015_235.
Full textIlling, T., M. Schoßig, C. Bierögel, B. Langer, and W. Grellmann. "Hygrothermal Ageing of Injection-Moulded PA6/GF Materials Considering Automotive Requirements." In Deformation and Fracture Behaviour of Polymer Materials, 405–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41879-7_28.
Full textConference papers on the topic "PA6"
Sanchaniya, Jaymin-Vrajlal, Sai-Pavan Kanukuntla, and Kagan-Berkay Senyurt. "Fabrication and mechanical properties of polymer composite nanofiber mats." In 22nd International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 2023. http://dx.doi.org/10.22616/erdev.2023.22.tf014.
Full textAvanesyan, Vachagan, and Zhanna Salnikova. "Electric modulus spectroscopy of PA6/PA66 aliphatic polyamide." In PROCEEDINGS OF THE XV INTERNATIONAL CONFERENCE «PHYSICS OF DIELECTRICS». AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0035258.
Full textBenz, J., M. Poindl, and C. Bonten. "PA6-block copolymers and their potential as impact modifier in PA6." In PROCEEDINGS OF THE REGIONAL CONFERENCE GRAZ 2015 – POLYMER PROCESSING SOCIETY PPS: Conference Papers. Author(s), 2016. http://dx.doi.org/10.1063/1.4965547.
Full textODAIRA,, YUSUKE, HIROSHI SAITO, and ISAO KIMPARA. "EXPERIMENTAL EVALUATION OF COMPRESSIVE STRENGTH OF PAN-BASED CARBON MONOFILAMENT BY POISSON’S DEFORMATION IN CRUCIFORM SPECIMEN." In Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35770.
Full textYan, Xiaofei, Putinun Uawongsuwan, Masuo Murakami, Akihiko Imajo, Yuqiu Yang, and Hiroyuki Hamada. "Tensile Properties of Glass Fiber/Carbon Fiber Reinforced Polypropylene Hybrid Composites Fabricated by Direct Fiber Feeding Injection Molding Process." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66270.
Full textHeyn, J., and C. Bonten. "Structure property relationships of PA6-EOR-blends." In PROCEEDINGS OF THE EUROPE/AFRICA CONFERENCE DRESDEN 2017 – POLYMER PROCESSING SOCIETY PPS. Author(s), 2019. http://dx.doi.org/10.1063/1.5084812.
Full textSivanesh, A. R., R. Soundararajan, M. Natrayan, J. D. Nallasivam, and R. Santhosh. "Experimental Study on the Mechanical Behavior of Polyamide 6 with Glass Fiber Composites Fabricated through Fused Deposition Modeling Process." In Automotive Technical Papers. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-5043.
Full textRaja, R., Sabitha Jannet, Jerry Verghese, Pullanikkat Abhishek, Febin Cherian John, and Hywin Hyjan. "Enhancing Mechanical Behavior of As-Built Polyamide 6+Glass Fiber Produced with Fused Filament Fabrication via Varying Infill Pattern." In Automotive Technical Papers. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-5035.
Full textAmbika Harikumar, Akshay Krishna, Michael Tobias Heitzmann, Asanka Basnayake, Hadis Khakbaz, and Darren Martin. "Tribological Performance of Nylon-6/Oyster Shell Composites." In ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/omae2023-104611.
Full textBarangi, Leila, Faramarz Afshar Taromi, Hossein Nazockdast, Saeed Shafiei Sararoudi, Albert Co, Gary L. Leal, Ralph H. Colby, and A. Jeffrey Giacomin. "Interfacial Elasticity of Reactively Compatibilized PP∕PA6 Blends." In THE XV INTERNATIONAL CONGRESS ON RHEOLOGY: The Society of Rheology 80th Annual Meeting. AIP, 2008. http://dx.doi.org/10.1063/1.2964472.
Full textReports on the topic "PA6"
Pisani, William, Dane Wedgeworth, Michael Roth, John Newman, and Manoj Shukla. Exploration of two polymer nanocomposite structure-property relationships facilitated by molecular dynamics simulation and multiscale modeling. Engineer Research and Development Center (U.S.), March 2023. http://dx.doi.org/10.21079/11681/46713.
Full textFlandin, Simon, Germain Poizat, and Romuald Perinet. Contribuer à la sécurité industrielle «par le facteur humain»: un regard pour aider à (re)penser la formation. Fondation pour une culture de sécurité industrielle, October 2019. http://dx.doi.org/10.57071/207bbe.
Full textWelty, Amy, Mitchell Greenhalgh, Troy Garn, and Rocklan McDowell. HZ-PAN and AgZ-PAN Desorption Characterization. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1962370.
Full textSaulais, Laure, and Maurice Doyon. Impact du design de questions sur la perception des compensations proposées et les intentions de participation au pad: étude de préfaisabilité. CIRANO, August 2022. http://dx.doi.org/10.54932/ziga3839.
Full textDroz, P., and T. Przygienda. Proxy-PAR. RFC Editor, May 2000. http://dx.doi.org/10.17487/rfc2843.
Full textAllen, Robert J., and Ali Sadeghi. PAP Flap. Touch Surgery Simulations, March 2015. http://dx.doi.org/10.18556/touchsurgery/2015.s0044.
Full textWelty, Amy K., Troy G. Garn, and Mitchell Greenhalgh. Cycle Testing of AgZ-PAN and HZ-PAN. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1467488.
Full textCorlin Christensen, Rasmus, Martin Hearson, and Tovony Randriamanalina. Une tablée plus grande, mais toujours le même menu ? Evaluer l’inclusion des pays en développement dans les négociations fiscales mondiales. Institute of Development Studies, December 2020. http://dx.doi.org/10.19088/ictd.2020.006.
Full textWelty, Amy K., Mitchell Greenhalgh, and Troy G. Garn. Preliminary Desorption studies for HZ-PAN and AgZ-PAN. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1468544.
Full textCharness, Gary, and Peter Kuhn. Pay Inequality, Pay Secrecy, and Effort: Theory and Evidence. Cambridge, MA: National Bureau of Economic Research, November 2005. http://dx.doi.org/10.3386/w11786.
Full text