To see the other types of publications on this topic, follow the link: Paal-Knorr.

Journal articles on the topic 'Paal-Knorr'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Paal-Knorr.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Abbat, Sheenu, Devendra Dhaked, Minhajul Arfeen, and Prasad V. Bharatam. "Mechanism of the Paal–Knorr reaction: the importance of water mediated hemialcohol pathway." RSC Advances 5, no. 107 (2015): 88353–66. http://dx.doi.org/10.1039/c5ra16246g.

Full text
Abstract:
The mechanism of the Paal–Knorr reaction was explored using quantum chemical methods. Hydronium ion catalysed hemialcohol pathway has been established as the preferred mechanistic route for the Paal–Knorr formation of furan, pyrrole and thiophene.
APA, Harvard, Vancouver, ISO, and other styles
2

Wagh, Sachin B., Vladimir Maslivetc, James J. La Clair, and Alexander Kornienko. "A fluorescent target-guided Paal–Knorr reaction." RSC Advances 10, no. 61 (2020): 37035–39. http://dx.doi.org/10.1039/d0ra06962k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Akbaşlar, Dilek, Onur Demirkol, and Sultan Giray. "Paal–Knorr Pyrrole Synthesis in Water." Synthetic Communications 44, no. 9 (March 28, 2014): 1323–32. http://dx.doi.org/10.1080/00397911.2013.857691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Truong Nguyen, Hai, Duy-Khiem Nguyen Chau, and Phuong Hoang Tran. "A green and efficient method for the synthesis of pyrroles using a deep eutectic solvent ([CholineCl][ZnCl2]3) under solvent-free sonication." New J. Chem. 41, no. 21 (2017): 12481–89. http://dx.doi.org/10.1039/c7nj02396k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mou, Xue-Qing, Zheng-Liang Xu, Shao-Hua Wang, Dao-Yong Zhu, Jie Wang, Wen Bao, Shi-Jiang Zhou, Chao Yang, and Di Zhang. "An Au(i)-catalyzed rearrangement/cyclization cascade toward the synthesis of 2-substituted-1,4,5,6-tetrahydrocyclopenta[b]pyrrole." Chemical Communications 51, no. 60 (2015): 12064–67. http://dx.doi.org/10.1039/c5cc03979g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Menuel, S., E. Bertaut, E. Monflier, and F. Hapiot. "Cyclodextrin-based PNN supramolecular assemblies: a new class of pincer-type ligands for aqueous organometallic catalysis." Dalton Transactions 44, no. 30 (2015): 13504–12. http://dx.doi.org/10.1039/c5dt01825k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kornienko, Alexander, and James J. La Clair. "Covalent modification of biological targets with natural products through Paal–Knorr pyrrole formation." Natural Product Reports 34, no. 9 (2017): 1051–60. http://dx.doi.org/10.1039/c7np00024c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mulzer, Johann, and Anna Innitzer. "A Tetracarbonyl Paal-Knorr Approach to Semicorrins." HETEROCYCLES 77, no. 2 (2009): 873. http://dx.doi.org/10.3987/com-08-s(f)54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dasari, Ramesh, James J. La Clair, and Alexander Kornienko. "Irreversible Protein Labeling by Paal-Knorr Conjugation." ChemBioChem 18, no. 18 (August 10, 2017): 1792–96. http://dx.doi.org/10.1002/cbic.201700210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rajeshkumar, Venkatachalam, Chinnaraj Neelamegam, and Sambandam Anandan. "A one-pot metal-free protocol for the synthesis of chalcogenated furans from 1,4-enediones and thiols." Organic & Biomolecular Chemistry 17, no. 4 (2019): 982–91. http://dx.doi.org/10.1039/c8ob03051k.

Full text
Abstract:
Transition-metal-free synthesis of chalcogenated furans through the sequential thiol-Michael/Paal–Knorr reaction of 1,4-enediones in the presence of a catalytic amount of p-toluene sulfonic acid has been developed.
APA, Harvard, Vancouver, ISO, and other styles
11

Amarnath, Venkataraman, and Kalyani Amarnath. "Intermediates in the Paal-Knorr Synthesis of Furans." Journal of Organic Chemistry 60, no. 2 (January 1995): 301–7. http://dx.doi.org/10.1021/jo00107a006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Akelis, Liudvikas, Jolanta Rousseau, Robertas Juskenas, Jelena Dodonova, Cyril Rousseau, Stéphane Menuel, Dominique Prevost, Sigitas Tumkevičius, Eric Monflier, and Frédéric Hapiot. "Greener Paal-Knorr Pyrrole Synthesis by Mechanical Activation." European Journal of Organic Chemistry 2016, no. 1 (December 9, 2015): 31–35. http://dx.doi.org/10.1002/ejoc.201501223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Akbaslar, Dilek, Onur Demirkol, and Sultan Giray. "ChemInform Abstract: Paal-Knorr Pyrrole Synthesis in Water." ChemInform 45, no. 38 (September 4, 2014): no. http://dx.doi.org/10.1002/chin.201438109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Amarnath, Venkataraman, Douglas C. Anthony, Kalyani Amarnath, William M. Valentine, Lawrence A. Wetterau, and Doyle G. Graham. "Intermediates in the Paal-Knorr synthesis of pyrroles." Journal of Organic Chemistry 56, no. 24 (November 1991): 6924–31. http://dx.doi.org/10.1021/jo00024a040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sherikar, Mahadev Sharanappa, Kiran R. Bettadapur, Veeranjaneyulu Lanke, and Kandikere Ramaiah Prabhu. "Rhodium(iii)-catalyzed synthesis of trisubstituted furans via vinylic C–H bond activation." Organic & Biomolecular Chemistry 19, no. 34 (2021): 7470–74. http://dx.doi.org/10.1039/d1ob01293b.

Full text
Abstract:
A simple method for the synthesis of trisubstituted furans has been disclosed using an Rh(iii)-catalyst by Cvinyl–H bond activation, with silver salt Ag(i) is playing a dual role – a halide scavenger and a Lewis acid catalyst for promoting Paal–Knorr type cyclization.
APA, Harvard, Vancouver, ISO, and other styles
16

Handy, Scott, and Kevin Lavender. "Organic synthesis in deep eutectic solvents: Paal–Knorr reactions." Tetrahedron Letters 54, no. 33 (August 2013): 4377–79. http://dx.doi.org/10.1016/j.tetlet.2013.05.122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Banik, Bimal K., Indrani Banik, Mercy Renteria, and Swapan K. Dasgupta. "A straightforward highly efficient Paal–Knorr synthesis of pyrroles." Tetrahedron Letters 46, no. 15 (April 2005): 2643–45. http://dx.doi.org/10.1016/j.tetlet.2005.02.103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kidwai, Mazaahir, Kavita Singhal, and Shweta Rastogi. "Paal knorr reaction for novel pyrrolo[2,3-d]pyrimidines." Journal of Heterocyclic Chemistry 43, no. 5 (September 2006): 1231–36. http://dx.doi.org/10.1002/jhet.5570430514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Szakal-Quin, Gyongyi, Doyle G. Graham, David S. Millington, David A. Maltby, and Andrew T. McPhail. "Stereoisomer effects on the Paal-Knorr synthesis of pyrroles." Journal of Organic Chemistry 51, no. 5 (March 1986): 621–24. http://dx.doi.org/10.1021/jo00355a010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zard, Samir Z., Béatrice Quiclet-Sire, Leticia Quintero, and Graciela Sanchez-Jimenez. "A Practical Variation on the Paal-Knorr Pyrrole Synthesis." Synlett, no. 1 (2002): 0075–78. http://dx.doi.org/10.1055/s-2003-36223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jiang, Xia, Hui Jin, Tingshu Wang, Hyebin Yoo, and Sangho Koo. "Synthesis of Phenyl-2,2′-bichalcophenes and Their Aza-Analogues by Catalytic Oxidative Deacetylation." Synthesis 51, no. 17 (May 28, 2019): 3259–68. http://dx.doi.org/10.1055/s-0037-1611564.

Full text
Abstract:
Efficient synthetic method for medicinally and opto-electronically important bichalcophenes is reported, which highlights Mn(OAc)3/CoCl2-catalyzed oxidative deacetylation of 1,5-dicarbonyl compounds that were easily prepared by conjugate addition of ethyl acetoacetate to α,β-unsaturated carbonyl compounds containing a chalcophene unit. Paal–Knorr reaction of the resulting 1,4-dicarbonyl compounds produced 4-phenyl-2,2′-bichalcophenes and their aza-analogues.
APA, Harvard, Vancouver, ISO, and other styles
22

Dittrich, Nora, Eun-Kyung Jung, Samuel J. Davidson, and David Barker. "An acyl-Claisen/Paal-Knorr approach to fully substituted pyrroles." Tetrahedron 72, no. 31 (August 2016): 4676–89. http://dx.doi.org/10.1016/j.tet.2016.06.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lapina, I. M., L. M. Pevzner, and A. A. Potekhin. "Aminomethyl derivatives of furancarboxylic acids in the Paal-Knorr reaction." Russian Journal of General Chemistry 77, no. 5 (May 2007): 923–25. http://dx.doi.org/10.1134/s1070363207050180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Banik, Mandira, Bianca Ramirez, Ashwini Reddy, Debasish Bandyopadhyay, and Bimal K. Banik. "Polystyrenesulfonate-catalyzed synthesis of novel pyrroles through Paal-Knorr reaction." Organic and Medicinal Chemistry Letters 2, no. 1 (2012): 11. http://dx.doi.org/10.1186/2191-2858-2-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Balakrishna, Avula, António Aguiar, Pedro J. M. Sobral, Mohmmad Younus Wani, Joana Almeida e Silva, and Abilio J. F. N. Sobral. "Paal–Knorr synthesis of pyrroles: from conventional to green synthesis." Catalysis Reviews 61, no. 1 (October 19, 2018): 84–110. http://dx.doi.org/10.1080/01614940.2018.1529932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Amarnath, Venkataraman, Kalyani Amarnath, William M. Valentine, Michael A. Eng, and Doyle G. Graham. "Intermediates in the Paal-Knorr Synthesis of Pyrroles. 4-Oxoaldehydes." Chemical Research in Toxicology 8, no. 2 (March 1995): 234–38. http://dx.doi.org/10.1021/tx00044a008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ryzhkov, I. O., I. A. Andreev, G. M. Belov, A. V. Kurkin, and M. A. Yurovskaya. "Preparation of chiral pyrrole derivatives by the Paal-Knorr reaction." Chemistry of Heterocyclic Compounds 47, no. 2 (May 2011): 182–93. http://dx.doi.org/10.1007/s10593-011-0739-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Pasha, Sk Khadeer, V. S. V. Satyanarayana, A. Sivakumar, K. Chidambaram, and L. John Kennedy. "Catalytic applications of nano β-PbO in Paal–Knorr reaction." Chinese Chemical Letters 22, no. 8 (August 2011): 891–94. http://dx.doi.org/10.1016/j.cclet.2010.12.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

He, Yan-Hong, Gang-Qiang Wang, Ke-Ling Xu, and Zhi Guan. "An Efficient Procedure for the Synthesis of Polysubstituted Pyrroles in an Ionic Liquid." Zeitschrift für Naturforschung B 66, no. 2 (February 1, 2011): 191–96. http://dx.doi.org/10.1515/znb-2011-0212.

Full text
Abstract:
The ionic liquid 1-butyl-3-methyl-imidazolium hydrogen sulfate, [bmim]HSO4, was used as a catalyst and reaction medium for the pyrrole synthesis, and a wide range of aliphatic, aromatic, heteroaromatic and carboxylic 1,4-diketones easily underwent condensations with aniline and ethylenediamine to form polysubstituted pyrroles. Sequential decarboxylation/Paal-Knorr pyrrole condensation was observed, which provides a new and facile approach to monoester pyrroles from 1,4-diketo-2,3-dicarboxylic acid esters.
APA, Harvard, Vancouver, ISO, and other styles
30

Sugita, Kazuyuki, Rintaro Matsuo, Ayumu Miyashita, Motoi Kuwabara, Shinya Adachi, and Akinobu Matsuzawa. "Concise Diastereoselective Total Synthesis of (±)-Parvistemonine A." Synlett 31, no. 18 (September 18, 2020): 1800–1804. http://dx.doi.org/10.1055/s-0040-1707283.

Full text
Abstract:
AbstractWe have developed a concise diastereoselective total synthesis of (±)-parvistemonine A. By using a Mukaiyama–Michael addition, an aza-Wittig reaction, a Paal–Knorr pyrrole synthesis, an acid-mediated annulation, and a Mitsunobu reaction as key steps, we achieved a total synthesis in which the longest linear sequence was ten steps and the overall yield was 19.6%. Additionally, the relative stereochemistry of parvistemonine A was confirmed by X-ray crystallographic analysis for the first time.
APA, Harvard, Vancouver, ISO, and other styles
31

Aghapoor, Kioumars, Mostafa M. Amini, Khosrow Jadidi, Farshid Mohsenzadeh, and Hossein Reza Darabi. "Catalytic activity of the nanoporous MCM-41 surface for the Paal–Knorr pyrrole cyclocondensation." Zeitschrift für Naturforschung B 70, no. 7 (July 1, 2015): 475–81. http://dx.doi.org/10.1515/znb-2014-0259.

Full text
Abstract:
AbstractThe investigation of different oxide surfaces revealed that nanoporous silica (MCM-41) had the best catalytic activity for Paal–Knorr pyrrole synthesis. Despite the same composition, MCM-41 proved to be more effective than SiO2 itself, probably due to a significantly higher surface area of the SiO2 nanopores. The important features of this “clean” solvent-free protocol are the ease of recovery and the reuse of the catalyst for several cycles, operational simplicity, and easy product isolation and purification.
APA, Harvard, Vancouver, ISO, and other styles
32

Mahato, Sanjit K., Jayaraman Vinayagam, Sumit Dey, Ajay K. Timiri, Sourav Chatterjee, and Parasuraman Jaisankar. "InCl3 Catalysed One-Pot Synthesis of Substituted Pyrroles and 2-Pyrones." Australian Journal of Chemistry 66, no. 2 (2013): 241. http://dx.doi.org/10.1071/ch12359.

Full text
Abstract:
An efficient InCl3 catalysed one-pot strategy has been developed for the synthesis of tetra-substituted pyrroles and tri-substituted 2-pyrones in very good yields. Tetra-substituted pyrroles were prepared from 1,4-enediones and β-dicarbonyls employing NH4OAc as a nitrogen source, through a combination of Michael addition and Paal–Knorr methods. Tri-substituted 2-pyrones were synthesised from 1,4-ynediones and appropriate β-dicarbonyls using a sequential Michael addition and 6-exo-trig cyclisation.
APA, Harvard, Vancouver, ISO, and other styles
33

Zhang, Lei, Jian Zhang, Ji Ma, Dao-Juan Cheng, and Bin Tan. "Highly Atroposelective Synthesis of Arylpyrroles by Catalytic Asymmetric Paal–Knorr Reaction." Journal of the American Chemical Society 139, no. 5 (January 26, 2017): 1714–17. http://dx.doi.org/10.1021/jacs.6b09634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kostyanovsky, Remir G., Gulnara K. Kadorkina, Anait G. Mkhitaryan, Ivan I. Chervin, and Abil E. Aliev. "New Scope and Limitations in the Knorr–Paal Synthesis of Pyrroles." Mendeleev Communications 3, no. 1 (January 1993): 21–23. http://dx.doi.org/10.1070/mc1993v003n01abeh000204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Khaghaninejad, Soheila, and Majid M. Heravi. "ChemInform Abstract: Paal-Knorr Reaction in the Synthesis of Heterocyclic Compounds." ChemInform 45, no. 38 (September 4, 2014): no. http://dx.doi.org/10.1002/chin.201438261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Handy, Scott, and Kevin Lavender. "ChemInform Abstract: Organic Synthesis in Deep Eutectic Solvents: Paal-Knorr Reactions." ChemInform 44, no. 47 (November 4, 2013): no. http://dx.doi.org/10.1002/chin.201347090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Portilla-Zúñiga, Omar, Ángel Sathicq, José Martínez, Hugo Rojas, Eduardo De Geronimo, Rafael Luque, and Gustavo Romanelli. "Novel Bifunctional Mesoporous Catalysts Based on Preyssler Heteropolyacids for Green Pyrrole Derivative Synthesis." Catalysts 8, no. 10 (September 26, 2018): 419. http://dx.doi.org/10.3390/catal8100419.

Full text
Abstract:
In this paper, we report the synthesis of Preyssler heteropolyacids supported on mesoporous alumina in order to obtain materials with acid–base properties. A series of pyrrole derivatives were synthesized using a suitable procedure under solvent-free conditions. Using the alumina-supported material, more complex pyrrole derivatives can be obtained through a tandem one-pot process that involves the formation of 2-amino-3-cyano 4-H-chromenes by a multicomponent reaction and their subsequent conversion to pyrrole using a Paal–Knorr reaction.
APA, Harvard, Vancouver, ISO, and other styles
38

Rajeshkumar, Venkatachalam, Chinnaraj Neelamegam, and Sambandam Anandan. "An Expedient, Direct, Three-Component Approach for the Synthesis of 4-Thioarylpyrroles." Synthesis 51, no. 21 (August 15, 2019): 4023–33. http://dx.doi.org/10.1055/s-0039-1690024.

Full text
Abstract:
A three-component strategy for the synthesis of 4-thioarylpyrroles from 1,4-enediones, thiols, and ammonium formate in one-pot has been developed. The reaction proceeds through the sequential thiol-Michael/Paal–Knorr reaction of 1,4-enediones with the formation of one new C–S and two C–N bonds. The operationally simple protocol provides direct access to the highly functionalized 4-thioarylpyrroles with free-NH in good to excellent yields. The synthetic application of resulting 4-thioarylpyrroles was demonstrated by oxidation of the sulfur atom to the corresponding sulfoxide and sulfone.
APA, Harvard, Vancouver, ISO, and other styles
39

Quiclet-Sire, Béatrice, and Samir Zard. "Convergent Routes to Pyrroles Exploiting the Unusual Radical Chemistry of Xanthates – An Overview." Synlett 28, no. 20 (July 21, 2017): 2685–96. http://dx.doi.org/10.1055/s-0036-1590809.

Full text
Abstract:
Convergent routes to a variety of pyrroles involving radical additions of xanthates are described. Emphasis is placed on reactions leading to the formation of 1,4-diketones or 1,4-ketoaldehydes or their synthetic equivalents, which can then be condensed with ammonia or primary amines in a variation of the classical Paal–Knorr synthesis of pyrroles. The modification of pyrroles by direct radical addition is also discussed.1 Introduction2 Earlier Routes to Pyrroles3 The Xanthate Radical Addition–Transfer Process4 Application to Pyrrole Synthesis5 Further Variations6 Direct Modification of Existing Pyrrole Rings7 Outlook and Perspectives
APA, Harvard, Vancouver, ISO, and other styles
40

Shcherbakov, Roman O., Diana A. Eshmemet’eva, Anton A. Merkushev, Igor V. Trushkov, and Maxim G. Uchuskin. "Transformation of 3-(Furan-2-yl)-1,3-di(het)arylpropan-1-ones to Prop-2-en-1-ones via Oxidative Furan Dearomatization/2-Ene-1,4,7-triones Cyclization." Molecules 26, no. 9 (April 30, 2021): 2637. http://dx.doi.org/10.3390/molecules26092637.

Full text
Abstract:
The approach to 3-(furan-2-yl)-1,3-di(het)arylprop-2-en-1-ones based on the oxidative dearomatization of 3-(furan-2-yl)-1,3-di(het)arylpropan-1-ones followed by an unusual cyclization of the formed di(het)aryl-substituted 2-ene-1,4,7-triones has been developed. The cyclization step is related to the Paal–Knorr synthesis, but the furan ring formation is accompanied in this case by a formal shift of the double bond through the formation of a fully conjugated 4,7-hydroxy-2,4,6-trien-1-one system or its surrogate.
APA, Harvard, Vancouver, ISO, and other styles
41

Wang, Dao-Lin, Lu Zhang, Jin-Juan Xing, and Lin Liu. "Facile Synthesis of (Guaiazulen-1-yl)-1H-pyrroles via Paal-Knorr Reaction." HETEROCYCLES 98, no. 11 (2019): 1555. http://dx.doi.org/10.3987/com-19-14166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Bo, Yanlong Gu, Cheng Luo, Tao Yang, Liming Yang, and Jishuan Suo. "Pyrrole synthesis in ionic liquids by Paal–Knorr condensation under mild conditions." Tetrahedron Letters 45, no. 17 (April 2004): 3417–19. http://dx.doi.org/10.1016/j.tetlet.2004.03.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pasha, Sk Khadeer, V. S. V. Satyanarayana, A. Sivakumar, K. Chidambaram, and L. John Kennedy. "ChemInform Abstract: Catalytic Applications of Nano β-PbO in Paal-Knorr Reaction." ChemInform 42, no. 44 (October 6, 2011): no. http://dx.doi.org/10.1002/chin.201144100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ryzhkov, I. O., I. A. Andreev, G. M. Belov, A. V. Kurkin, and M. A. Yurovskaya. "ChemInform Abstract: Preparation of Chiral Pyrrole Derivatives by the Paal-Knorr Reaction." ChemInform 42, no. 52 (December 1, 2011): no. http://dx.doi.org/10.1002/chin.201152102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Irgashev, Roman A., Arseny A. Karmatsky, Gennady L. Rusinov, and Valery N. Charushin. "A new and convenient synthetic way to 2-substituted thieno[2,3-b]indoles." Beilstein Journal of Organic Chemistry 11 (June 11, 2015): 1000–1007. http://dx.doi.org/10.3762/bjoc.11.112.

Full text
Abstract:
A short and robust approach for the synthesis of 2-(hetero)aryl substituted thieno[2,3-b]indoles from easily available 1-alkylisatins and acetylated (hetero)arenes has been advanced. The two-step procedure includes the “aldol-crotonic” type of condensation of the starting materials, followed by treatment of the intermediate 3-(2-oxo-2-(hetero)arylethylidene)indolin-2-ones with Lawesson’s reagent. The latter process involves two sequential reactions, namely reduction of the C=C ethylidene double bond of the intermediate indolin-2-ones followed by the Paal–Knorr cyclization, thus affording tricyclic thieno[2,3-b]indoles.
APA, Harvard, Vancouver, ISO, and other styles
46

Li, Pengcheng, Guodong Weng, Yongdong Zhang, and Xingxian Zhang. "A Highly Efficient Paal-Knorr Synthesis of Chiral Pyrrole Derivatives Catalyzed by MgI2." Chinese Journal of Organic Chemistry 36, no. 2 (2016): 364. http://dx.doi.org/10.6023/cjoc201505041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang, Xingxian, Guodong Weng, Yongdong Zhang, and Pengcheng Li. "Unique chemoselective Paal-Knorr reaction catalyzed by MgI2 etherate under solvent-free conditions." Tetrahedron 71, no. 18 (May 2015): 2595–602. http://dx.doi.org/10.1016/j.tet.2015.03.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Venugopala, K. Narayanaswamy, Renuka T. Prasanna, and Bharti Odhav. "Trifluoroacetic Acid: An Efficient Catalyst for Paal-Knorr Pyrrole Synthesis and Its Deprotection." Asian Journal of Chemistry 25, no. 15 (2013): 8685–89. http://dx.doi.org/10.14233/ajchem.2013.15185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Minetto, Giacomo, Luca F. Raveglia, and Maurizio Taddei. "Microwave-Assisted Paal−Knorr Reaction. A Rapid Approach to Substituted Pyrroles and Furans." Organic Letters 6, no. 3 (February 2004): 389–92. http://dx.doi.org/10.1021/ol0362820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

KOSTYANOVSKY, R. G., G. K. KADORKINA, A. G. MKHITARYAN, I. I. CHERVIN, and A. E. ALIEV. "ChemInform Abstract: New Scope and Limitations in the Knorr-Paal Synthesis of Pyrroles." ChemInform 25, no. 33 (August 19, 2010): no. http://dx.doi.org/10.1002/chin.199433155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography