Academic literature on the topic 'Packing dimension'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Packing dimension.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Packing dimension"
STÄGER, D. V., and H. J. HERRMANN. "CUTTING SELF-SIMILAR SPACE-FILLING SPHERE PACKINGS." Fractals 26, no. 01 (February 2018): 1850013. http://dx.doi.org/10.1142/s0218348x18500135.
Full textConidis, Chris J. "A real of strictly positive effective packing dimension that does not compute a real of effective packing dimension one." Journal of Symbolic Logic 77, no. 2 (June 2012): 447–74. http://dx.doi.org/10.2178/jsl/1333566632.
Full textMATTILA, PERTTI, and R. DANIEL MAULDIN. "Measure and dimension functions: measurability and densities." Mathematical Proceedings of the Cambridge Philosophical Society 121, no. 1 (January 1997): 81–100. http://dx.doi.org/10.1017/s0305004196001089.
Full textDas, Manav. "Billingsley's packing dimension." Proceedings of the American Mathematical Society 136, no. 01 (January 1, 2008): 273–79. http://dx.doi.org/10.1090/s0002-9939-07-09069-7.
Full textFALCONER, K. J., and J. D. HOWROYD. "Packing dimensions of projections and dimension profiles." Mathematical Proceedings of the Cambridge Philosophical Society 121, no. 2 (March 1997): 269–86. http://dx.doi.org/10.1017/s0305004196001375.
Full textMyjak, Józef. "Some typical properties of dimensions of sets and measures." Abstract and Applied Analysis 2005, no. 3 (2005): 239–54. http://dx.doi.org/10.1155/aaa.2005.239.
Full textHOWROYD, J. D. "Box and packing dimensions of projections and dimension profiles." Mathematical Proceedings of the Cambridge Philosophical Society 130, no. 1 (January 2001): 135–60. http://dx.doi.org/10.1017/s0305004100004849.
Full textFALCONER, K. J., and M. JÄRVENPÄÄ. "Packing dimensions of sections of sets." Mathematical Proceedings of the Cambridge Philosophical Society 125, no. 1 (January 1999): 89–104. http://dx.doi.org/10.1017/s0305004198002977.
Full textKontorovich, Alex, and Kei Nakamura. "Geometry and arithmetic of crystallographic sphere packings." Proceedings of the National Academy of Sciences 116, no. 2 (December 26, 2018): 436–41. http://dx.doi.org/10.1073/pnas.1721104116.
Full textPÖTZELBERGER, KLAUS. "The quantization dimension of distributions." Mathematical Proceedings of the Cambridge Philosophical Society 131, no. 3 (November 2001): 507–19. http://dx.doi.org/10.1017/s0305004101005357.
Full textDissertations / Theses on the topic "Packing dimension"
Spear, Donald W. "Hausdorff, Packing and Capacity Dimensions." Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc330990/.
Full textSouissi, Salma. "Problème du Bin Packing probabiliste à une dimension." Versailles-St Quentin en Yvelines, 2006. http://www.theses.fr/2006VERS0052.
Full textIn the Probabilistic Bin Packing Problem (PBPP) the random deletion of some items once placed into bins. The problem is to rearrange the residual items, using the a priori solution. The initial arrangement being done with the Next Fit Decreasing Heuristic (NFD). We propose two resolution methodologies: the redistribution strategy according to NFD and the a priori strategy. In the first one, the Next fit algorithm is applied to the new list. In the second one, successive groups of bins are optimally rearranged. In both cases, we develop an average case analysis for the (PBPP). We prove the law of large numbers and the central limit theorem for the number of occupied bins as the initial number of items tends to infinity. We verify these theoretical results by simulation
Berlinkov, Artemi. "Dimensions in Random Constructions." Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3160/.
Full textNilsson, Anders. "Dimensions and projections." Licentiate thesis, Umeå University, Mathematics and Mathematical Statistics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-939.
Full textThis thesis concerns dimensions and projections of sets that could be described as fractals. The background is applied problems regarding analysis of human tissue. One way to characterize such complicated structures is to estimate the dimension. The existence of different types of dimensions makes it important to know about their properties and relations to each other. Furthermore, since medical images often are constructed by x-ray, it is natural to study projections.
This thesis consists of an introduction and a summary, followed by three papers.
Paper I, Anders Nilsson, Dimensions and Projections: An Overview and Relevant Examples, 2006. Manuscript.
Paper II, Anders Nilsson and Peter Wingren, Homogeneity and Non-coincidence of Hausdorff- and Box Dimensions for Subsets of ℝn, 2006. Submitted.
Paper III, Anders Nilsson and Fredrik Georgsson, Projective Properties of Fractal Sets, 2006. To be published in Chaos, Solitons and Fractals.
The first paper is an overview of dimensions and projections, together with illustrative examples constructed by the author. Some of the most frequently used types of dimensions are defined, i.e. Hausdorff dimension, lower and upper box dimension, and packing dimension. Some of their properties are shown, and how they are related to each other. Furthermore, theoretical results concerning projections are presented, as well as a computer experiment involving projections and estimations of box dimension.
The second paper concerns sets for which different types of dimensions give different values. Given three arbitrary and different numbers in (0,n), a compact set in ℝn is constructed with these numbers as its Hausdorff dimension, lower box dimension and upper box dimension. Most important in this construction, is that the resulted set is homogeneous in the sense that these dimension properties also hold for every non-empty and relatively open subset.
The third paper is about sets in space and their projections onto planes. Connections between the dimensions of the orthogonal projections and the dimension of the original set are discussed, as well as the connection between orthogonal projection and the type of projection corresponding to realistic x-ray. It is shown that the estimated box dimension of the orthogonal projected set and the realistic projected set can, for all practical purposes, be considered equal.
Inui, Kanji. "Study of the fractals generated by contractive mappings and their dimensions." Kyoto University, 2020. http://hdl.handle.net/2433/253370.
Full text0048
新制・課程博士
博士(人間・環境学)
甲第22534号
人博第937号
新制||人||223(附属図書館)
2019||人博||937(吉田南総合図書館)
京都大学大学院人間・環境学研究科共生人間学専攻
(主査)教授 角 大輝, 教授 上木 直昌, 准教授 木坂 正史
学位規則第4条第1項該当
Leifsson, Patrik. "Fractal sets and dimensions." Thesis, Linköping University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7320.
Full textFractal analysis is an important tool when we need to study geometrical objects less regular than ordinary ones, e.g. a set with a non-integer dimension value. It has developed intensively over the last 30 years which gives a hint to its young age as a branch within mathematics.
In this thesis we take a look at some basic measure theory needed to introduce certain definitions of fractal dimensions, which can be used to measure a set's fractal degree. Comparisons of these definitions are done and we investigate when they coincide. With these tools different fractals are studied and compared.
A key idea in this thesis has been to sum up different names and definitions referring to similar concepts.
Snigireva, Nina. "Inhomogeneous self-similar sets and measures." Thesis, St Andrews, 2008. http://hdl.handle.net/10023/X682.
Full textJoyce, Helen Janeith. "Packing measures, packing dimensions, and the existence of sets of positive finite measure." Thesis, University College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307030.
Full textDO, CARMO SÁ AZEVEDO LEMOS MARGARIDA. "O Design de embalagem como síntese formal e expressiva do conteúdo." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/61438.
Full text[ES] El envase es una presencia permanente y asume una expresión significativa en lo cotidiano, al contener, proteger, informar y conferir carácter a los productos estableciendo una relación indisociable entre el contenido y el contenedor. Esta investigación centrada en los aspectos formales, materiales y comunicativos de los envases de productos alimenticios líquidos, efectúa un mapeado de las cuestiones relacionadas con la interrelación de las funciones prácticas (desempeño para el usuario), estéticas (configuración e interacción con el usuario) y simbólicas (significado para el usuario) de los envases de productos líquidos alimenticios teniendo como punto de convergencia la relación contenido/ contenedor en el conjunto de las interacciones producto/ usuario/ medio. Concebida como interfaz entre el producto y el usuario, el envase de productos líquidos alimentícios ocupa un lugar esencial en nuestra sociedad, permitiendo que un sin número de productos llegue a manos de aquellos que los necesitan, intactos y perfectas condiciones de uso. El envase preserva la integridad física y temporal de los productos naturales, recubriéndolos y dándoles forma, transformándose en una piel del producto a semejanza de la piel de la fruta o de la piel humana, prolongando su existencia, con beneficios directos para la salud y bienestar de la población. La presente tesis tiene por objeto de estudio el envase de productos líquidos alimentícios y el modo en el que su forma expresa la identidad, el concepto y la función del producto que contiene y conforma. Esta investigación provino de estudios analíticos, fundamentados en las reflexiones de Flusser y Lipovetsky en torno al hombre y a su relación con el objeto y procedió a la identificación y reconocimiento de envases arquetipo en el universo de productos de referencia (leche, zumos, agua y bebidas híbridas), así como el análisis morfológico comparado y cualitativo de los envases de productos líquidos alimentícios en los diferentes materiales (vidrio, cartón multicapa, metal, plástico), teniendo como foco de estudio la relación indisociable entre el contenido y el contenedor. Este estudio culminó con la realización del meta proyecto Tetra Con)forma, que previó las posibilidades constructivas del material multicapa para conformar un volumen con)formador para bebidas líquidas híbridas, enfatizando los conceptos de nomadismo (portabilidad), personalización (composición) y teatralidad (convertibilidad), en que se expresa la forma en la dimensión estructural por la portabilidad, en la comunicativa por la composición y en la simbólica por la convertibilidad.
[CAT] L'envàs és una presència permanent i assumeix una expressió significativa el quotidià, en contenir, protegir, informar i conferir caràcter als productes establint una relació indissociable entre el contingut i el contenidor. Aquesta recerca centrada en els aspectes formals, materials i comunicatius dels envasos de productes alimentosos líquids, efectua una localització de les qüestions relacionades amb la correspondència de les funcions pràctiques (acompliment per a l'usuari), estètiques (configuració i interacció amb l'usuari) i simbòliques (significat per a l'usuari) dels envasos de productes líquids alimentosos tenint com a punt de convergència la relació contingut/ contenidor en el conjunt de les interacciones producte/ usuari/ mitjà. Concebuda com a interfície entre el producte i l'usuari, l'envàs de productes líquids alimentosos ocupa un lloc essencial en la nostra societat, permetent que un sense nombre de productes arriben a les mans d'aquells que els necessiten, intactes i perfectes condicions d'ús. L'envàs preserva la integritat física i temporal dels productes naturals, recobrint-los i donant-los forma, transformant-se en una pell del producte a semblança de la pell de la fruita o de la pell humana, perllongant la seua existència, amb beneficis directes per a la salut i benestar de la població. La present tesi té per objecte d'estudi l'envàs de productes líquids alimentosos i la manera en el qual la seua forma expressa la identitat, el concepte i la funció del producte que conté i conforma. Aquesta recerca va provenir d'estudis analítics, fonamentats en les reflexions de Flusser i Lipovetsky entorn de l'home i a la seua relació amb l'objecte i va procedir a la identificació i reconeixement d'envasos arquetip en l'univers de productes de referència (llet, sucs, aigua i begudes híbrides), així com l'anàlisi morfològica comparada i qualitatiu dels envasos de productes líquids alimentosos en els diferents materials (vidre, cartó multicapa, metall, plàstic), tenint com a focus d'estudi la relació indissociable entre el contingut i el contenidor. Aquest estudi va culminar amb la realització del meta projecte Tetra Amb)forma, que va preveure les possibilitats constructives del material multicapa per a conformar un volum amb)formador per a begudes líquides híbrides, emfatitzant els conceptes de nomadisme (portabilitat), personalització (composició) i teatralitat (convertibilitat), en què s'expressa la forma en la dimensió estructural per la portabilitat, en la comunicativa per la composició i en la simbòlica per la convertibilitat.
Do Carmo Sá Azevedo Lemos, M. (2016). O Design de embalagem como síntese formal e expressiva do conteúdo [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61438
TESIS
Dickinson, John Kenneth. "Packing subsets of arbitrary three-dimensional objects." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0012/NQ42508.pdf.
Full textBooks on the topic "Packing dimension"
Csirik, J. Two dimensional rectangle packing: On-line methods and results. Brussels: European Institute for Advanced Studies in Management, 1990.
Find full textSabbadin, E. Merchandising, packaging e promozione: Le nuove dimensioni della concorrenza verticale. Milano: Franco Angeli, 1991.
Find full textTuenter, Hans J. H. Worst-case bounds for bin-packing heuristics with applications to the duality gap of the one-dimensional cutting stock problem. Birmingham: University of Birmingham, 1996.
Find full textElectrical modeling and design for 3D integration: 3D integrated circuits and packaging signal integrity, power integrity, and EMC. Hoboken, N.J: Wiley-IEEE Press, 2011.
Find full textBarg, Alexander, and O. R. Musin. Discrete geometry and algebraic combinatorics. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textPISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics (2011 Messina, Italy). Fractal geometry and dynamical systems in pure and applied mathematics. Edited by Carfi David 1971-, Lapidus, Michel L. (Michel Laurent), 1956-, Pearse, Erin P. J., 1975-, Van Frankenhuysen Machiel 1967-, and Mandelbrot Benoit B. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textKieffer, David. Introduction To Dimensional Weight In Quality Dimensions. Xlibris Corporation, 2004.
Find full textFortescue, Michael. What are the Limits of Polysynthesis? Edited by Michael Fortescue, Marianne Mithun, and Nicholas Evans. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199683208.013.14.
Full textA Three-Dimensional 463L Pallet Packing Model and Algorithm. Storming Media, 1998.
Find full textBook chapters on the topic "Packing dimension"
Høyland, Sven-Olai. "Bin-packing in 1.5 dimension." In SWAT 88, 129–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/3-540-19487-8_14.
Full textArvind, Vikraman, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. "On the Weisfeiler-Leman Dimension of Fractional Packing." In Language and Automata Theory and Applications, 357–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40608-0_25.
Full textTruong, Cong Tan Trinh, Lionel Amodeo, and F. Yalaoui. "A Genetic Algorithm for the Three-Dimensional Open Dimension Packing Problem." In Communications in Computer and Information Science, 203–15. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85672-4_15.
Full textYaskov, G., T. Romanova, I. Litvinchev, and S. Shekhovtsov. "Optimal Packing Problems: From Knapsack Problem to Open Dimension Problem." In Advances in Intelligent Systems and Computing, 671–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33585-4_65.
Full textTruong, Cong-Tan-Trinh, Lionel Amodeo, and Farouk Yalaoui. "A Mathematical Model for Three-Dimensional Open Dimension Packing Problem with Product Stability Constraints." In Communications in Computer and Information Science, 241–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41913-4_20.
Full textRosenberg, Eric. "Hausdorff, Similarity, and Packing Dimensions." In Fractal Dimensions of Networks, 83–106. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43169-3_5.
Full textAzar, Yossi, and Leah Epstein. "On two dimensional packing." In Algorithm Theory — SWAT'96, 321–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61422-2_142.
Full textScheithauer, Guntram. "One-Dimensional Bin Packing." In Introduction to Cutting and Packing Optimization, 47–72. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64403-5_3.
Full textScheithauer, Guntram. "Two-Dimensional Bin Packing." In Introduction to Cutting and Packing Optimization, 227–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64403-5_8.
Full textLodi, Andrea, Silvano Martello, Michele Monaci, and Daniele Vigo. "Two-Dimensional Bin Packing Problems." In Paradigms of Combinatorial Optimization, 107–29. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118600207.ch5.
Full textConference papers on the topic "Packing dimension"
Asta, Shahriar, Ender Özcan, and Andrew J. Parkes. "Dimension reduction in the search for online bin packing policies." In Proceeding of the fifteenth annual conference companion. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2464576.2464620.
Full textCha´vez, Rosa H., Javier de J. Guadarrama, Osbaldo Pe´rez, and Abel Herna´ndez-Guerrero. "Influence of the Cross Sectional Area of a Separation Column Using Structured Packing." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43918.
Full textPérez, Joaquín, Hilda Castillo, Darnes Vilariño, José C. Zavala, Rafael De la Rosa, and Jorge A. Ruiz-Vanoye. "A hybrid algorithm with reduction criteria for the bin packing problem in one dimension." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4913022.
Full textShi, Yu, and Yuwen Zhang. "Simulation of Random Packing of Spherical Particles With Different Size Distributions." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15271.
Full textLi, Jian-hua, Hui Chen, and Lina Ren. "A Novel Clone Selection Algorithm and its Application for Three Dimension Bin Packing Problem of Web Mode." In 2010 Third International Joint Conference on Computational Science and Optimization. IEEE, 2010. http://dx.doi.org/10.1109/cso.2010.169.
Full textWang, Hui, Yong-Peng Lei, Zhao-Ran Xiao, and Li Chen. "The influence of packing dimension on the effective thermal properties of doubly-periodic composites by using super hybrid finite body elements." In BEM36. Southampton, UK: WIT Press, 2013. http://dx.doi.org/10.2495/bem360271.
Full textYuksel, Anil, Michael Cullinan, and Jayathi Murthy. "Thermal Energy Transport Below the Diffraction Limit in Close-Packed Metal Nanoparticles." In ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-4968.
Full textGuidea, Sorin, and T. J. Nye. "Automated Optimal Design for Manufacturability of Sheet/Plate Assemblies." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81508.
Full textMuzychka, Y. S. "Constructal Design of Forced Convection Cooled Microchannel Heat Sinks and Heat Exchangers." In ASME 3rd International Conference on Microchannels and Minichannels. ASMEDC, 2005. http://dx.doi.org/10.1115/icmm2005-75025.
Full textHong, Y. E., and M. T. T. We. "The Application of Novel Failure Analysis Techniques and Defect Modeling in Eliminating Short Poly End-Cap Problem in Submicron CMOS Devices." In ISTFA 1996. ASM International, 1996. http://dx.doi.org/10.31399/asm.cp.istfa1996p0165.
Full text