Academic literature on the topic 'Padé approximation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Padé approximation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Padé approximation"

1

Khodier, Ahmed M. M. "Perturbed padé approximation." International Journal of Computer Mathematics 74, no. 2 (January 2000): 247–53. http://dx.doi.org/10.1080/00207160008804938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guillaume, Philippe, and Alain Huard. "Multivariate Padé approximation." Journal of Computational and Applied Mathematics 121, no. 1-2 (September 2000): 197–219. http://dx.doi.org/10.1016/s0377-0427(00)00337-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brezinski, Claude. "Partial Padé approximation." Journal of Approximation Theory 54, no. 2 (August 1988): 210–33. http://dx.doi.org/10.1016/0021-9045(88)90020-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fasondini, Marco, Nicholas Hale, Rene Spoerer, and J. A. C. Weideman. "Quadratic Padé Approximation: Numerical Aspects and Applications." Computer Research and Modeling 11, no. 6 (December 2019): 1017–31. http://dx.doi.org/10.20537/2076-7633-2019-11-6-1017-1031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Daras, Nicholas J. "Composed Padé-type approximation." Journal of Computational and Applied Mathematics 134, no. 1-2 (September 2001): 95–112. http://dx.doi.org/10.1016/s0377-0427(00)00531-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Allouche, Hassane, Ebby Mint El Agheb, and Noura Ghanou. "Adapted multivariate Padé approximation." Applied Numerical Mathematics 62, no. 9 (September 2012): 1061–76. http://dx.doi.org/10.1016/j.apnum.2011.07.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bultheel, Adhemar, and Marc Van Barel. "Minimal vector Padé approximation." Journal of Computational and Applied Mathematics 32, no. 1-2 (November 1990): 27–37. http://dx.doi.org/10.1016/0377-0427(90)90413-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Song, Hanjie, Yingjie Gao, Jinhai Zhang, and Zhenxing Yao. "Long-offset moveout for VTI using Padé approximation." GEOPHYSICS 81, no. 5 (September 2016): C219—C227. http://dx.doi.org/10.1190/geo2015-0094.1.

Full text
Abstract:
The approximation of normal moveout is essential for estimating the anisotropy parameters of the transversally isotropic media with vertical symmetry axis (VTI). We have approximated the long-offset moveout using the Padé approximation based on the higher order Taylor series coefficients for VTI media. For a given anellipticity parameter, we have the best accuracy when the numerator is one order higher than the denominator (i.e., [[Formula: see text]]); thus, we suggest using [4/3] and [7/6] orders for practical applications. A [7/6] Padé approximation can handle a much larger offset and stronger anellipticity parameter. We have further compared the relative traveltime errors between the Padé approximation and several approximations. Our method shows great superiority to most existing methods over a wide range of offset (normalized offset up to 2 or offset-to-depth ratio up to 4) and anellipticity parameter (0–0.5). The Padé approximation provides us with an attractive high-accuracy scheme with an error that is negligible within its convergence domain. This is important for reducing the error accumulation especially for deeper substructures.
APA, Harvard, Vancouver, ISO, and other styles
9

Sadaka, R. "Padé approximation of vector functions." Applied Numerical Mathematics 21, no. 1 (May 1996): 57–70. http://dx.doi.org/10.1016/0168-9274(96)00002-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brookes, Richard G. "The quadratic hermite-padé approximation." Bulletin of the Australian Mathematical Society 40, no. 3 (December 1989): 489. http://dx.doi.org/10.1017/s0004972700017561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Padé approximation"

1

Brookes, Richard G. "The quadratic Hermite-Padé approximation." Thesis, University of Canterbury. Mathematics, 1989. http://hdl.handle.net/10092/8886.

Full text
Abstract:
This thesis is concerned with the existence, behaviour and performance of the quadratic Hermite-Padé approximation. It starts with the definition of the general Hermite-Padé approximation. Some of the problems which arise, particularly those of finding Hermite-Padé forms and the existence of approximations are discussed. Chapter 3 solves the existence problem in the quadratic case whilst Chapter 2 presents a recurrence algorithm for finding quadratic forms which can easily be extended to general Hermite-Padé forms. Chapters 4 and 5 compare the performance of the quadratic, Padé and Taylor approximations using particular examples over a variety of regions. Many graphs and contour maps of the various approximations and error functions are given. The quadratic approximation is shown to be superior in these cases. Finally, in Chapter 6, a theorem concerning sequences of quadratic approximations is presented and the structure of the quadratic table is explored.
APA, Harvard, Vancouver, ISO, and other styles
2

Khémira, Samy. "Approximants de Hermite-Padé, déterminants d'interpolation et approximation diophantienne." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00009653.

Full text
Abstract:
Cette thèse aborde des sujets d'approximation diophantienne et de transcendance liés aux fonctions exponentielles. Il est tout d'abord établit des liens entre les coefficients d'approximants de Hermite-Padé, ceux de polynômes d'interpolation de Hermite et certains cofacteurs d'un déterminant de Vandermonde généralisé. Nous utilisons ensuite la notion de hauteur d'une matrice (que nous majorons grâce aux liens précédemment fournis) afin de donner une nouvelle démonstration de la transcendance de $e$. Ces résultats nous permettent finalement d'obtenir de nouveaux énoncés d'approximation diophantienne tels que la minoration de la distance de l'exponentielle d'un nombre algébrique (de hauteur absolue logarithmique de Weil bornée) à un autre nombre algébrique (lui aussi de hauteur absolue logarithmique de Weil bornée) en fonction de ces mêmes bornes. Il est ensuite donné, pour différentes valeurs de nombres rationnels $a$, quelques estimations remarquables telles que le minimum, sur l'ensemble des entiers non nuls $b$ et $c$, de la distance $|e^(b)-a^(c)|$.
APA, Harvard, Vancouver, ISO, and other styles
3

Dujardin, Bénédicte. "Approximation rationnelle appliquée au traitement de données." Nice, 2005. http://www.theses.fr/2005NICE4106.

Full text
Abstract:
Nous abordons dans ce document divers problèmes relevant des mathématiques et du traitement de données dont le point commun est de faire intervenir des polynômes à coefficients aléatoires, dont l’étude compose exclusivement la matière du premier chapitre. En analyse spectrale, l’utilisation de modèles paramétriques linéaires d’un signal conduit à des estimateurs rationnels de sa densité spectrale de puissance. Nous nous intéressons aux estimateurs AR et ARMA de certains processus stochastiques et caractérisons leurs performances en terme de statistique de leurs pôles et zéros complexes. Notre compréhension du rôle tenu par la composante aléatoire du signal est facilitée par une partie préliminaire consacrée aux approximants rationnels de Padé de séries formelles perturbées aléatoirement. Cette première partie est pour nous l’occasion de mettre en évidence certains problèmes récurrents liés à la perturbation tels que l’appariement des pôles et des zéros ou la formation de structures cristallines
In this document, we are concerned with different problems arising from mathematics and date processing whose common point is to involve polynomials with random coefficients, the study of which composes exclusively the material of the first chapter. In spectral analysis, the use of linear parametric models of a signal leads to rational estimators of its power spectrum density. We are interested in the AR and ARMA estimators of certain stochastic processes and characterize their performance in terms of the statistics of their complex poles and zeros. Our understanding of the role played by the random component of the signal is made easier by a preliminary part devoted to rational Padé approximants of randomly perturbed formal series. This first part provides us with the opportunity to underline some recurring phenomena related to the perturbation such as the matching of poles and zeros or the formation of crystal structures
APA, Harvard, Vancouver, ISO, and other styles
4

RIBEIRO, LUIZ CLAUDIO. "IDENTIFICATION OF BOX AND JENKINS: A COPARISON BETWEEN FACE AND PADÉ APPROXIMATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1992. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9016@1.

Full text
Abstract:
Desde de 1970, quando Box e Jenkins introduziram os modelos ARMA para análise e previsão de séries temporais, muitos estudos foram desenvolvidos buscando encontrar um método mais eficiente de identificação de tais modelos. Tal fato se deu porque o método por Box e Jenkins, baseado na função de auto-correlação parcial (FACP) não são eficientes quando os modelos apresentam componentes auto- regressivas (AR) e médias móveis (MA). Estudos comparativos realizados anteriormente mostraram que dentre os métodos de identificação já desenvolvidos, o que se mostrou mais eficiente foi o baseado na função de auto-correlação extendida (FACE) de TIAO e TSAY (1992) Recentemente, Kuldeep Kumar introduziu na literatura um método de identificação baseado na teoria de aproximação de Padé. O objetivo deste trabalho é comparar o método da FACE com o método baseado na teoria de aproximação de Padé.
Since 1970, when Box and Jenkins first introduced the ARMA models to analysis and predict of time series data, a lot of studies have been developed to find an efficient identification method for such models. This was due the fact that the identification method proposed by Box and Jenkins, based on Auto-correlation Function (ACF) and Partial Auto-correlation Function (PACF), are inefficient when the models have auto regressive - AR- and moving average - MA- components. Comparative studies undertaken, have shown that, among the identification methods already developed, the method based on the Extended Auto-correlation Fuction of Tiao and Tsay (1982) is the most efficient. More recently, however, Kuldeep Kumar has introduced in the literature an identification method based on the theory of Padé aproximation. The objective of this paper is to compare the Extended Auto-correlation Function method with the method based on the Theory of Padé approximation.
APA, Harvard, Vancouver, ISO, and other styles
5

Heimonen, A. (Ari). "On effective irrationality measures for some values of certain hypergeometric functions." Doctoral thesis, University of Oulu, 1997. http://urn.fi/urn:isbn:9514247191.

Full text
Abstract:
Abstract The dissertation consists of three articles in which irrationality measures for some values of certain special cases of the Gauss hypergeometric function are considered in both archimedean and non-archimedean metrics. The first presents a general result and a divisibility criterion for certain products of binomial coefficients upon which the sharpenings of the general result in special cases rely. The paper also provides an improvement concerning th e values of the logarithmic function. The second paper includes two other special cases, the first of which gives irrationality measures for some values of the arctan function, for example, and the second concerns values of the binomial function. All the results of the first two papers are effective, but no computation of the constants for explicit presentation is carried out. This task is fulfilled in the third article for logarithmic and binomial cases. The results of the latter case are applied to some Diophantine equations.
APA, Harvard, Vancouver, ISO, and other styles
6

Fontgalland, Glauco. "Contribution à l'étude des procédés d'accélération de convergence dans la méthode des éléments de frontière." Toulouse, INPT, 1999. http://www.theses.fr/1999INPT014H.

Full text
Abstract:
Dans ce travail, l'analyse rigoureuse des discontinuités en guides d'ondes de différentes natures est présentée. Dans ce contexte, les modes des guides à nervures obtenus à l'aide de la méthode des éléments de frontières (BEM) sont utilisés dans la caractérisation des structures guidantes. Cette analyse est précédée de l'étude qualitative des méthodes intégrales pour la résolution des problèmes homogènes dans les guides d'ondes à nervures, tels que la méthode des moindres carrés et la méthode du déterminant. La caractéristique non monotone de l'opérateur des modes TE est vérifiée et des études de convergence sur les troncatures des séries sont présentées. Couplée à la méthode récursive, la formation scalaire et vectorielle de la fonction de Green a permis d'alléger et d'accélérer les calculs des modes dans les guides. Les approximants de Pade et les fonctions d'essai de deuxième ordre sont introduits dans l'approche générale en vue d'accélérer la convergence. Une méthode d'optimisation est proposée pour assurer la convergence des solutions en temps réduit. La détermination du potentiel et du champ électromagnétique sur la surface de discontinuité a été présentée. En effet, la connaissance du champ permet d'une part de valider la convergence des solutions et d'autre de valider les conditions aux limites préalablement fixées. Enfin, le calcul d'une discontinuité est réalisé par l'analyse modale des guides en utilisant une formulation variationnelle. Cette analyse est ensuite appliquée à l'étude de composantes en guides d'ondes.
APA, Harvard, Vancouver, ISO, and other styles
7

Rivoal, Tanguy. "Propriétés diophantiennes de la fonction zêta de Riemann aux entiers impairs." Phd thesis, Université de Caen, 2001. http://tel.archives-ouvertes.fr/tel-00004519.

Full text
Abstract:
Cette thèse est consacrée à l'étude des valeurs de la fonction zêta de Riemann aux entiers impairs. Quatre résultats sont démontrés : - Soit $a$ un nombre rationnel, $\vert a \vert <1$. Le Q-espace vectoriel engendré par $1, Li_1(a), Li_2(a),...$ est de dimension infinie. - Le Q-espace vectoriel engendré par $1, \zeta(3), \zeta(5), \zeta(7),...$ est de dimension infinie. - Il existe un entier impair $j$, $5\le j \le 169$ tel que $1, \zeta(3), \zeta(j)$ sont linéairement indépendants sur Q. - Au moins un des neuf nombres $\zeta(5), \zeta(7),..., \zeta(21)$ est irrationnel.
APA, Harvard, Vancouver, ISO, and other styles
8

Leinonen, M. (Marko). "On various irrationality measures." Doctoral thesis, Oulun yliopisto, 2017. http://urn.fi/urn:isbn:9789526217031.

Full text
Abstract:
Abstract This dissertation consists of four articles on irrationality measures. In the first paper we derive explicit irrationality measures by using the simple continued fraction expansions in a completely new way. In the second and third articles we use Padé approximations to construct irrationality measures. In the second paper we obtain an explicit irrationality measure for the values of q-exponential series, for which the earlier corresponding results are not as explicit. Furthermore, we construct a restricted irrationality measure for the values of q-exponential series, which is an improvement on the earlier results in the restricted case. In the third article we derive the best possible asymptotic restricted irrationality exponent for the values of Jacobi's triple product. In the last paper we consider Cantor series. We generalize the earlier results by deriving Sondow's irrationality measure for some Cantor series
Tiivistelmä Tämä väitöskirja koostuu neljästä artikkelista, jotka kaikki käsittelevät irrationaalisuusmittoja. Ensimmäisessä artikkelissa irrationaalisuusmittoja johdetaan uudella tavalla irrationaalilukujen yksinkertaisista ketjumurtolukuesityksistä. Toisessa ja kolmannessa artikkelissa irrationaalisuusmitat konstruoidaan Padé-approksimaatioiden avulla. Toisessa artikkelissa saadaan eksplisiittinen irrationaalisuusmitta q-eksponenttisarjan arvoille, joiden vastaavat aikaisemmat irrationaalisuusmitat eivät ole näin eksplisiittisiä. Lisäksi samassa artikkelissa konstruoidaan q-eksponenttisarjan arvoille rajoitettu eksplisiittinen irrationaalisuusmitta, mikä parantaa aikaisempia tuloksia rajoitetussa tapauksessa. Kolmannessa artikkelissa johdetaan paras mahdollinen asymptoottinen irrationaalisuuseksponentti Jacobin kolmitulon arvoille. Viimeisessä artikkelissa käsitellään Cantorin sarjoja. Siinä yleistetään aikaisempia tuloksia johtamalla Sondowin irrationaalisuusmitta tietylle joukolle Cantorin sarjoja
APA, Harvard, Vancouver, ISO, and other styles
9

Seppälä, L. (Louna). "Diophantine perspectives to the exponential function and Euler’s factorial series." Doctoral thesis, University of Oulu, 2019. http://urn.fi/urn:isbn:9789529418237.

Full text
Abstract:
Abstract The focus of this thesis is on two functions: the exponential function and Euler’s factorial series. By constructing explicit Padé approximations, we are able to improve lower bounds for linear forms in the values of these functions. In particular, the dependence on the height of the coefficients of the linear form will be sharpened in the lower bound. The first chapter contains some necessary definitions and auxiliary results needed in later chapters.We give precise definitions for a transcendence measure and Padé approximations of the second type. Siegel’s lemma will be introduced as a fundamental tool in Diophantine approximation. A brief excursion to exterior algebras shows how they can be used to prove determinant expansion formulas. The reader will also be familiarised with valuations of number fields. In Chapter 2, a new transcendence measure for e is proved using type II Hermite-Padé approximations to the exponential function. An improvement to the previous transcendence measures is achieved by estimating the common factors of the coefficients of the auxiliary polynomials. The exponential function is the underlying topic of the third chapter as well. Now we study the common factors of the maximal minors of some large block matrices that appear when constructing Padé-type approximations to the exponential function. The factorisation of these minors is of interest both because of Bombieri and Vaaler’s improved version of Siegel’s lemma and because they are connected to finding explicit expressions for the approximation polynomials. In the beginning of Chapter 3, two general theorems concerning factors of Vandermonde-type block determinants are proved. In the final chapter, we concentrate on Euler’s factorial series which has a positive radius of convergence in p-adic fields. We establish some non-vanishing results for a linear form in the values of Euler’s series at algebraic integer points. A lower bound for this linear form is derived as well.
APA, Harvard, Vancouver, ISO, and other styles
10

Jay, Emmanuelle. "Détection en Environnement non Gaussien." Phd thesis, Université de Cergy Pontoise, 2002. http://tel.archives-ouvertes.fr/tel-00174276.

Full text
Abstract:
Les échos radar provenant des diverses réflexions du signal émis sur les éléments de l'environnement (le fouillis) ont longtemps été modélisés par des vecteurs Gaussiens. La procédure optimale de détection se résumait alors en la mise en oeuvre du filtre adapté classique.
Avec l'évolution technologique des systèmes radar, la nature réelle du fouillis s'est révélée ne plus être Gaussienne. Bien que l'optimalité du filtre adapté soit mise en défaut dans pareils cas, des techniques TFAC (Taux de Fausses Alarmes Constant) ont été proposées pour ce détecteur, dans le but d'adapter la valeur du seuil de détection aux multiples variations locales du fouillis. Malgré leur diversité, ces techniques se sont avérées n'être ni robustes ni optimales dans ces situations.
A partir de la modélisation du fouillis par des processus complexes non-Gaussiens, tels les SIRP (Spherically Invariant Random Process), des structures optimales de détection cohérente ont pu être déterminées. Ces modèles englobent de nombreuses lois non-Gaussiennes, comme la K-distribution ou la loi de Weibull, et sont reconnus dans la littérature pour modéliser de manière pertinente de nombreuses situations expérimentales. Dans le but d'identifier la loi de leur composante caractéristique qu'est la texture, sans a priori statistique sur le modèle, nous proposons, dans cette thèse, d'aborder le problème par une approche bayésienne.
Deux nouvelles méthodes d'estimation de la loi de la texture en découlent : la première est une méthode paramétrique, basée sur une approximation de Padé de la fonction génératrice de moments, et la seconde résulte d'une estimation Monte Carlo. Ces estimations sont réalisées sur des données de fouillis de référence et donnent lieu à deux nouvelles stratégies de détection optimales, respectivement nommées PEOD (Padé Estimated Optimum Detector) et BORD (Bayesian Optimum Radar Detector). L'expression asymptotique du BORD (convergence en loi), appelée le "BORD Asymptotique", est établie ainsi que sa loi. Ce dernier résultat permet d'accéder aux performances théoriques optimales du BORD Asymptotique qui s'appliquent également au BORD dans le cas où la matrice de corrélation des données est non singulière.
Les performances de détection du BORD et du BORD Asymptotique sont évaluées sur des données expérimentales de fouillis de sol. Les résultats obtenus valident aussi bien la pertinence du modèle SIRP pour le fouillis que l'optimalité et la capacité d'adaptation du BORD à tout type d'environnement.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Padé approximation"

1

R, Graves-Morris P., ed. Padé approximants. 2nd ed. Cambridge [England]: Cambridge University Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Applications of Padé approximation theory in fluid dynamics. Singapore: World Scientific, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bultheel, Adhemar. Linear algebra, rational approximation, and orthogonal polynomials. Amsterdam: Elsevier, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Laurent series and their Padé approximations. Basel: Birkhäuser Verlag, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bultheel, Adhemar. Laurent Series and their Padé Approximations. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-9306-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

1968-, Arvesú Jorge, and Lopez Lagomasino Guillermo 1948-, eds. Recent advances in orthogonal polynomials, special functions, and their applications: 11th International Symposium on Orthogonal Polynomials, Special Functions, and Their Applications, August 29-September 2, 2011, Universidad Carlos III de Madrid, Leganes, Spain. Providence, R.I: American Mathematical Society, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Geer, James F. A hybrid Pade-Galerkin technique for differential equations. Hampton, Va: Institute for Computer Applications in Science and Engineeering, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gallopoulos, E. J. On the parallel solution of parabolic equations. [Moffett Field, Calif.]: NASA Ames Research Center, Research Institute for Advanced Computer Science, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Saff, E. B., Douglas Patten Hardin, Brian Z. Simanek, and D. S. Lubinsky. Modern trends in constructive function theory: Conference in honor of Ed Saff's 70th birthday : constructive functions 2014, May 26-30, 2014, Vanderbilt University, Nashville, Tennessee. Providence, Rhode Island: American Mathematical Society, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

BREZINSKI. Padé-Type Approximation and General Orthogonal Polynomials. Birkhäuser, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Padé approximation"

1

Lorentz, George G., Yuly Makovoz, and Manfred V. Golitschek. "Padé Approximation." In Grundlehren der mathematischen Wissenschaften, 277–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-60932-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krattenthaler, Christian, and Tanguy Rivoal. "Approximants de Padé des q-Polylogarithmes." In Diophantine Approximation, 221–30. Vienna: Springer Vienna, 2008. http://dx.doi.org/10.1007/978-3-211-74280-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aptekarev, A. I., and Herbert Stahl. "Asymptotics of Hermite-Padé Polynomials." In Progress in Approximation Theory, 127–67. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2966-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brezinski, C. "Error Estimates in Padé Approximation." In Error Control and Adaptivity in Scientific Computing, 75–85. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4647-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nagao, Hidehtio, and Yasuhiko Yamada. "Padé Approximation and Differential Equation." In SpringerBriefs in Mathematical Physics, 1–8. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2998-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gilewicz, Jacek, and Radosław Jedynak. "Compatibility of Continued Fraction Convergents with Padé Approximants." In Approximation and Computation, 135–44. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6594-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ismail, Mourad E. H., Ron Perline, and Jet Wimp. "Padé Approximants for Some q-Hypergeometric Functions." In Progress in Approximation Theory, 37–50. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2966-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mitrinović, D. S., J. E. Pečarić, and A. M. Fink. "Continued Fractions and Padé Approximation Method." In Classical and New Inequalities in Analysis, 661–68. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-1043-5_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Njåtad, Olav. "A multi-point padé approximation problem." In Lecture Notes in Mathematics, 263–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0075941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Driver, K. A., D. S. Lubinsky, and H. Wallin. "Hermite-Padé Polynomials and Approximation Properties." In Nonlinear Numerical Methods and Rational Approximation II, 261–68. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0970-3_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Padé approximation"

1

Chengde, Zheng, and Zhang Huaguang. "Multivariate Perturbed Padé Approximation." In 2007 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.4346921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Bo, and Youhua Qian. "Padé Approximation Based on Orthogonal Polynomial." In 2016 International Conference on Modeling, Simulation and Optimization Technologies and Applications (MSOTA2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/msota-16.2016.54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Jian, and Li-Yun Fu*. "Thermoelasticity constants based on Padé approximation." In 2nd SEG Rock Physics Workshop: Challenges in Deep and Unconventional Oil/Gas Exploration, 25–27 October 2019, Qingdao, China. Society of Exploration Geophysicists, 2020. http://dx.doi.org/10.1190/rpwk2019-017.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fu, Bo-Ye, and Li-Yun Fu. "Poro-acoustoelastic constants based on Padé approximation." In Rock Physics and Digital Rock Applications Workshop, Beijing, China, 20-22 May 2018. Society of Exploration Geophysicists, 2018. http://dx.doi.org/10.1190/dprp2018-9.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Chung-Ping, and D. F. Wong. "Error bounded Padé approximation via bilinear conformal transformation." In the 36th ACM/IEEE conference. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/309847.309850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pestana, Reynam C., and Jacira C. B. Freitas. "Wave‐equation depth migration using complex Padé approximation." In SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists, 2007. http://dx.doi.org/10.1190/1.2792966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sarnari, Alberto Jose, and Rastko Zivanovic. "Robust padé approximation for the holomorphic embedding load flow." In 2016 Australasian Universities Power Engineering Conference (AUPEC). IEEE, 2016. http://dx.doi.org/10.1109/aupec.2016.7749303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Songyan, Qirui Li, Daniel Tylavsky, and Di Shi. "Robust Padé Approximation Applied to the Holomorphic Embedded Power Flow Algorithm." In 2018 North American Power Symposium (NAPS). IEEE, 2018. http://dx.doi.org/10.1109/naps.2018.8600538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Prajapati, Arvind Kumar, and Rajendra Prasad. "Failure of Padé Approximation and Time Moment MatchingTechniquesin Reduced Order Modelling." In 2018 3rd International Conference for Convergence in Technology (I2CT). IEEE, 2018. http://dx.doi.org/10.1109/i2ct.2018.8529790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li Jin. "Notice of Retraction: A new research on bivariate quadratic Padé approximation." In 2010 International Conference on Computer and Communication Technologies in Agriculture Engineering (CCTAE 2010). IEEE, 2010. http://dx.doi.org/10.1109/cctae.2010.5544363.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Padé approximation"

1

Reusch, M. F., L. Ratzan, N. Pomphrey, and W. Park. Diagonal Pade approximations for initial value problems. Office of Scientific and Technical Information (OSTI), June 1987. http://dx.doi.org/10.2172/6008945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chudnovsky, D. V., and G. V. Chudnovsky. Differential Equations, Related Problems of Pade Approximations and Computer Applications. Fort Belvoir, VA: Defense Technical Information Center, January 1988. http://dx.doi.org/10.21236/ada208590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chudnovsky, D. V., and G. V. Chudnovsky. Nonlinear Partial Differential Equations and Related Problems of Pade Approximations. Fort Belvoir, VA: Defense Technical Information Center, September 1985. http://dx.doi.org/10.21236/ada172253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brent, Ronald. Theoretical and Numerical Validation of Scaler EM Propagation Modeling Using Parabolic Equations and the Pade Rational Operator Approximation. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada386894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography