Academic literature on the topic 'Padé approximation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Padé approximation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Padé approximation"
Khodier, Ahmed M. M. "Perturbed padé approximation." International Journal of Computer Mathematics 74, no. 2 (January 2000): 247–53. http://dx.doi.org/10.1080/00207160008804938.
Full textGuillaume, Philippe, and Alain Huard. "Multivariate Padé approximation." Journal of Computational and Applied Mathematics 121, no. 1-2 (September 2000): 197–219. http://dx.doi.org/10.1016/s0377-0427(00)00337-x.
Full textBrezinski, Claude. "Partial Padé approximation." Journal of Approximation Theory 54, no. 2 (August 1988): 210–33. http://dx.doi.org/10.1016/0021-9045(88)90020-2.
Full textFasondini, Marco, Nicholas Hale, Rene Spoerer, and J. A. C. Weideman. "Quadratic Padé Approximation: Numerical Aspects and Applications." Computer Research and Modeling 11, no. 6 (December 2019): 1017–31. http://dx.doi.org/10.20537/2076-7633-2019-11-6-1017-1031.
Full textDaras, Nicholas J. "Composed Padé-type approximation." Journal of Computational and Applied Mathematics 134, no. 1-2 (September 2001): 95–112. http://dx.doi.org/10.1016/s0377-0427(00)00531-8.
Full textAllouche, Hassane, Ebby Mint El Agheb, and Noura Ghanou. "Adapted multivariate Padé approximation." Applied Numerical Mathematics 62, no. 9 (September 2012): 1061–76. http://dx.doi.org/10.1016/j.apnum.2011.07.007.
Full textBultheel, Adhemar, and Marc Van Barel. "Minimal vector Padé approximation." Journal of Computational and Applied Mathematics 32, no. 1-2 (November 1990): 27–37. http://dx.doi.org/10.1016/0377-0427(90)90413-t.
Full textSong, Hanjie, Yingjie Gao, Jinhai Zhang, and Zhenxing Yao. "Long-offset moveout for VTI using Padé approximation." GEOPHYSICS 81, no. 5 (September 2016): C219—C227. http://dx.doi.org/10.1190/geo2015-0094.1.
Full textSadaka, R. "Padé approximation of vector functions." Applied Numerical Mathematics 21, no. 1 (May 1996): 57–70. http://dx.doi.org/10.1016/0168-9274(96)00002-5.
Full textBrookes, Richard G. "The quadratic hermite-padé approximation." Bulletin of the Australian Mathematical Society 40, no. 3 (December 1989): 489. http://dx.doi.org/10.1017/s0004972700017561.
Full textDissertations / Theses on the topic "Padé approximation"
Brookes, Richard G. "The quadratic Hermite-Padé approximation." Thesis, University of Canterbury. Mathematics, 1989. http://hdl.handle.net/10092/8886.
Full textKhémira, Samy. "Approximants de Hermite-Padé, déterminants d'interpolation et approximation diophantienne." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00009653.
Full textDujardin, Bénédicte. "Approximation rationnelle appliquée au traitement de données." Nice, 2005. http://www.theses.fr/2005NICE4106.
Full textIn this document, we are concerned with different problems arising from mathematics and date processing whose common point is to involve polynomials with random coefficients, the study of which composes exclusively the material of the first chapter. In spectral analysis, the use of linear parametric models of a signal leads to rational estimators of its power spectrum density. We are interested in the AR and ARMA estimators of certain stochastic processes and characterize their performance in terms of the statistics of their complex poles and zeros. Our understanding of the role played by the random component of the signal is made easier by a preliminary part devoted to rational Padé approximants of randomly perturbed formal series. This first part provides us with the opportunity to underline some recurring phenomena related to the perturbation such as the matching of poles and zeros or the formation of crystal structures
RIBEIRO, LUIZ CLAUDIO. "IDENTIFICATION OF BOX AND JENKINS: A COPARISON BETWEEN FACE AND PADÉ APPROXIMATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1992. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9016@1.
Full textSince 1970, when Box and Jenkins first introduced the ARMA models to analysis and predict of time series data, a lot of studies have been developed to find an efficient identification method for such models. This was due the fact that the identification method proposed by Box and Jenkins, based on Auto-correlation Function (ACF) and Partial Auto-correlation Function (PACF), are inefficient when the models have auto regressive - AR- and moving average - MA- components. Comparative studies undertaken, have shown that, among the identification methods already developed, the method based on the Extended Auto-correlation Fuction of Tiao and Tsay (1982) is the most efficient. More recently, however, Kuldeep Kumar has introduced in the literature an identification method based on the theory of Padé aproximation. The objective of this paper is to compare the Extended Auto-correlation Function method with the method based on the Theory of Padé approximation.
Heimonen, A. (Ari). "On effective irrationality measures for some values of certain hypergeometric functions." Doctoral thesis, University of Oulu, 1997. http://urn.fi/urn:isbn:9514247191.
Full textFontgalland, Glauco. "Contribution à l'étude des procédés d'accélération de convergence dans la méthode des éléments de frontière." Toulouse, INPT, 1999. http://www.theses.fr/1999INPT014H.
Full textRivoal, Tanguy. "Propriétés diophantiennes de la fonction zêta de Riemann aux entiers impairs." Phd thesis, Université de Caen, 2001. http://tel.archives-ouvertes.fr/tel-00004519.
Full textLeinonen, M. (Marko). "On various irrationality measures." Doctoral thesis, Oulun yliopisto, 2017. http://urn.fi/urn:isbn:9789526217031.
Full textTiivistelmä Tämä väitöskirja koostuu neljästä artikkelista, jotka kaikki käsittelevät irrationaalisuusmittoja. Ensimmäisessä artikkelissa irrationaalisuusmittoja johdetaan uudella tavalla irrationaalilukujen yksinkertaisista ketjumurtolukuesityksistä. Toisessa ja kolmannessa artikkelissa irrationaalisuusmitat konstruoidaan Padé-approksimaatioiden avulla. Toisessa artikkelissa saadaan eksplisiittinen irrationaalisuusmitta q-eksponenttisarjan arvoille, joiden vastaavat aikaisemmat irrationaalisuusmitat eivät ole näin eksplisiittisiä. Lisäksi samassa artikkelissa konstruoidaan q-eksponenttisarjan arvoille rajoitettu eksplisiittinen irrationaalisuusmitta, mikä parantaa aikaisempia tuloksia rajoitetussa tapauksessa. Kolmannessa artikkelissa johdetaan paras mahdollinen asymptoottinen irrationaalisuuseksponentti Jacobin kolmitulon arvoille. Viimeisessä artikkelissa käsitellään Cantorin sarjoja. Siinä yleistetään aikaisempia tuloksia johtamalla Sondowin irrationaalisuusmitta tietylle joukolle Cantorin sarjoja
Seppälä, L. (Louna). "Diophantine perspectives to the exponential function and Euler’s factorial series." Doctoral thesis, University of Oulu, 2019. http://urn.fi/urn:isbn:9789529418237.
Full textJay, Emmanuelle. "Détection en Environnement non Gaussien." Phd thesis, Université de Cergy Pontoise, 2002. http://tel.archives-ouvertes.fr/tel-00174276.
Full textAvec l'évolution technologique des systèmes radar, la nature réelle du fouillis s'est révélée ne plus être Gaussienne. Bien que l'optimalité du filtre adapté soit mise en défaut dans pareils cas, des techniques TFAC (Taux de Fausses Alarmes Constant) ont été proposées pour ce détecteur, dans le but d'adapter la valeur du seuil de détection aux multiples variations locales du fouillis. Malgré leur diversité, ces techniques se sont avérées n'être ni robustes ni optimales dans ces situations.
A partir de la modélisation du fouillis par des processus complexes non-Gaussiens, tels les SIRP (Spherically Invariant Random Process), des structures optimales de détection cohérente ont pu être déterminées. Ces modèles englobent de nombreuses lois non-Gaussiennes, comme la K-distribution ou la loi de Weibull, et sont reconnus dans la littérature pour modéliser de manière pertinente de nombreuses situations expérimentales. Dans le but d'identifier la loi de leur composante caractéristique qu'est la texture, sans a priori statistique sur le modèle, nous proposons, dans cette thèse, d'aborder le problème par une approche bayésienne.
Deux nouvelles méthodes d'estimation de la loi de la texture en découlent : la première est une méthode paramétrique, basée sur une approximation de Padé de la fonction génératrice de moments, et la seconde résulte d'une estimation Monte Carlo. Ces estimations sont réalisées sur des données de fouillis de référence et donnent lieu à deux nouvelles stratégies de détection optimales, respectivement nommées PEOD (Padé Estimated Optimum Detector) et BORD (Bayesian Optimum Radar Detector). L'expression asymptotique du BORD (convergence en loi), appelée le "BORD Asymptotique", est établie ainsi que sa loi. Ce dernier résultat permet d'accéder aux performances théoriques optimales du BORD Asymptotique qui s'appliquent également au BORD dans le cas où la matrice de corrélation des données est non singulière.
Les performances de détection du BORD et du BORD Asymptotique sont évaluées sur des données expérimentales de fouillis de sol. Les résultats obtenus valident aussi bien la pertinence du modèle SIRP pour le fouillis que l'optimalité et la capacité d'adaptation du BORD à tout type d'environnement.
Books on the topic "Padé approximation"
R, Graves-Morris P., ed. Padé approximants. 2nd ed. Cambridge [England]: Cambridge University Press, 1996.
Find full textApplications of Padé approximation theory in fluid dynamics. Singapore: World Scientific, 1994.
Find full textBultheel, Adhemar. Linear algebra, rational approximation, and orthogonal polynomials. Amsterdam: Elsevier, 1997.
Find full textBultheel, Adhemar. Laurent Series and their Padé Approximations. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-9306-0.
Full text1968-, Arvesú Jorge, and Lopez Lagomasino Guillermo 1948-, eds. Recent advances in orthogonal polynomials, special functions, and their applications: 11th International Symposium on Orthogonal Polynomials, Special Functions, and Their Applications, August 29-September 2, 2011, Universidad Carlos III de Madrid, Leganes, Spain. Providence, R.I: American Mathematical Society, 2012.
Find full textGeer, James F. A hybrid Pade-Galerkin technique for differential equations. Hampton, Va: Institute for Computer Applications in Science and Engineeering, 1993.
Find full textGallopoulos, E. J. On the parallel solution of parabolic equations. [Moffett Field, Calif.]: NASA Ames Research Center, Research Institute for Advanced Computer Science, 1989.
Find full textSaff, E. B., Douglas Patten Hardin, Brian Z. Simanek, and D. S. Lubinsky. Modern trends in constructive function theory: Conference in honor of Ed Saff's 70th birthday : constructive functions 2014, May 26-30, 2014, Vanderbilt University, Nashville, Tennessee. Providence, Rhode Island: American Mathematical Society, 2016.
Find full textBREZINSKI. Padé-Type Approximation and General Orthogonal Polynomials. Birkhäuser, 2013.
Find full textBook chapters on the topic "Padé approximation"
Lorentz, George G., Yuly Makovoz, and Manfred V. Golitschek. "Padé Approximation." In Grundlehren der mathematischen Wissenschaften, 277–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-60932-9_9.
Full textKrattenthaler, Christian, and Tanguy Rivoal. "Approximants de Padé des q-Polylogarithmes." In Diophantine Approximation, 221–30. Vienna: Springer Vienna, 2008. http://dx.doi.org/10.1007/978-3-211-74280-8_12.
Full textAptekarev, A. I., and Herbert Stahl. "Asymptotics of Hermite-Padé Polynomials." In Progress in Approximation Theory, 127–67. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2966-7_6.
Full textBrezinski, C. "Error Estimates in Padé Approximation." In Error Control and Adaptivity in Scientific Computing, 75–85. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4647-0_4.
Full textNagao, Hidehtio, and Yasuhiko Yamada. "Padé Approximation and Differential Equation." In SpringerBriefs in Mathematical Physics, 1–8. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2998-3_1.
Full textGilewicz, Jacek, and Radosław Jedynak. "Compatibility of Continued Fraction Convergents with Padé Approximants." In Approximation and Computation, 135–44. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6594-3_10.
Full textIsmail, Mourad E. H., Ron Perline, and Jet Wimp. "Padé Approximants for Some q-Hypergeometric Functions." In Progress in Approximation Theory, 37–50. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2966-7_2.
Full textMitrinović, D. S., J. E. Pečarić, and A. M. Fink. "Continued Fractions and Padé Approximation Method." In Classical and New Inequalities in Analysis, 661–68. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-1043-5_25.
Full textNjåtad, Olav. "A multi-point padé approximation problem." In Lecture Notes in Mathematics, 263–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0075941.
Full textDriver, K. A., D. S. Lubinsky, and H. Wallin. "Hermite-Padé Polynomials and Approximation Properties." In Nonlinear Numerical Methods and Rational Approximation II, 261–68. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0970-3_22.
Full textConference papers on the topic "Padé approximation"
Chengde, Zheng, and Zhang Huaguang. "Multivariate Perturbed Padé Approximation." In 2007 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.4346921.
Full textWu, Bo, and Youhua Qian. "Padé Approximation Based on Orthogonal Polynomial." In 2016 International Conference on Modeling, Simulation and Optimization Technologies and Applications (MSOTA2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/msota-16.2016.54.
Full textYang, Jian, and Li-Yun Fu*. "Thermoelasticity constants based on Padé approximation." In 2nd SEG Rock Physics Workshop: Challenges in Deep and Unconventional Oil/Gas Exploration, 25–27 October 2019, Qingdao, China. Society of Exploration Geophysicists, 2020. http://dx.doi.org/10.1190/rpwk2019-017.1.
Full textFu, Bo-Ye, and Li-Yun Fu. "Poro-acoustoelastic constants based on Padé approximation." In Rock Physics and Digital Rock Applications Workshop, Beijing, China, 20-22 May 2018. Society of Exploration Geophysicists, 2018. http://dx.doi.org/10.1190/dprp2018-9.1.
Full textChen, Chung-Ping, and D. F. Wong. "Error bounded Padé approximation via bilinear conformal transformation." In the 36th ACM/IEEE conference. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/309847.309850.
Full textPestana, Reynam C., and Jacira C. B. Freitas. "Wave‐equation depth migration using complex Padé approximation." In SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists, 2007. http://dx.doi.org/10.1190/1.2792966.
Full textSarnari, Alberto Jose, and Rastko Zivanovic. "Robust padé approximation for the holomorphic embedding load flow." In 2016 Australasian Universities Power Engineering Conference (AUPEC). IEEE, 2016. http://dx.doi.org/10.1109/aupec.2016.7749303.
Full textLi, Songyan, Qirui Li, Daniel Tylavsky, and Di Shi. "Robust Padé Approximation Applied to the Holomorphic Embedded Power Flow Algorithm." In 2018 North American Power Symposium (NAPS). IEEE, 2018. http://dx.doi.org/10.1109/naps.2018.8600538.
Full textPrajapati, Arvind Kumar, and Rajendra Prasad. "Failure of Padé Approximation and Time Moment MatchingTechniquesin Reduced Order Modelling." In 2018 3rd International Conference for Convergence in Technology (I2CT). IEEE, 2018. http://dx.doi.org/10.1109/i2ct.2018.8529790.
Full textLi Jin. "Notice of Retraction: A new research on bivariate quadratic Padé approximation." In 2010 International Conference on Computer and Communication Technologies in Agriculture Engineering (CCTAE 2010). IEEE, 2010. http://dx.doi.org/10.1109/cctae.2010.5544363.
Full textReports on the topic "Padé approximation"
Reusch, M. F., L. Ratzan, N. Pomphrey, and W. Park. Diagonal Pade approximations for initial value problems. Office of Scientific and Technical Information (OSTI), June 1987. http://dx.doi.org/10.2172/6008945.
Full textChudnovsky, D. V., and G. V. Chudnovsky. Differential Equations, Related Problems of Pade Approximations and Computer Applications. Fort Belvoir, VA: Defense Technical Information Center, January 1988. http://dx.doi.org/10.21236/ada208590.
Full textChudnovsky, D. V., and G. V. Chudnovsky. Nonlinear Partial Differential Equations and Related Problems of Pade Approximations. Fort Belvoir, VA: Defense Technical Information Center, September 1985. http://dx.doi.org/10.21236/ada172253.
Full textBrent, Ronald. Theoretical and Numerical Validation of Scaler EM Propagation Modeling Using Parabolic Equations and the Pade Rational Operator Approximation. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada386894.
Full text