Academic literature on the topic 'Paleobiology, Macroevolutionary studies, Echinoids'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Paleobiology, Macroevolutionary studies, Echinoids.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Paleobiology, Macroevolutionary studies, Echinoids"

1

Labandeira, Conrad C. "The Paleobiology of Pollination and its Precursors." Paleontological Society Papers 6 (November 2000): 233–70. http://dx.doi.org/10.1017/s1089332600000784.

Full text
Abstract:
Perhaps the most conspicuous of associations between insects and plants is pollination. Pollinating insects are typically the first and most obvious of interactions between insects and plants when one encounters a montane meadow or a tropical woodland. The complex ecological structure of insect pollinators and their host plants is a central focus within the ever-expanding discipline of plant-insect interactions. The relationships between plants and insects have provided the empirical documentation of many case-studies that have resulted in the formulation of biological principles and construction of theoretical models, such as the role of foraging strategy on optimal plant-resource use, the advantages of specialized versus generalized host preferences as viable feeding strategies, and whether “pollination syndromes” are meaningful descriptions that relate flower type to insect mouthpart structure and behavior (Roubik, 1989; Ollerton, 1996; Waser et al., 1996; Johnson and Steiner, 2000). Much of the recent extensive discussion of plant-insect associations has centered on understanding the origin, maintenance, and evolutionary change in plant/pollinator associations at ecological time scales and increasingly at longer-term macroevolutionary time intervals (Armbruster, 1992; Pellmyr and Leebens-Mack, 1999). Such classical plant-insect association studies—cycads and cycad weevils, figs and fig wasps, and yuccas and yucca moths—were explored at modern time scales and currently are being examined through a long-term geologic component that involves colonization models based on cladogenetic events of plant and insect associates, buttressed by the fossil record (Farrell, 1998; Pellmyr and Leebens-Mack, 1999; A. Herre,pers. comm.). In addition to tracing modern pollination to the earlier Cenozoic and later Mesozoic, there is a resurgence in understanding the evolutionary history of earlier palynivore taxa (spore, prepollen and pollen consumers), which led toward pollination as a mutualism (Scott et al., 1992).
APA, Harvard, Vancouver, ISO, and other styles
2

Barnes, B. Davis, Judith A. Sclafani, and Andrew Zaffos. "Dead clades walking are a pervasive macroevolutionary pattern." Proceedings of the National Academy of Sciences 118, no. 15 (April 7, 2021): e2019208118. http://dx.doi.org/10.1073/pnas.2019208118.

Full text
Abstract:
D. Jablonski [Proc. Natl. Acad. Sci. U.S.A. 99, 8139–8144 (2002)] coined the term “dead clades walking” (DCWs) to describe marine fossil orders that experience significant drops in genus richness during mass extinction events and never rediversify to previous levels. This phenomenon is generally interpreted as further evidence that the macroevolutionary consequences of mass extinctions can continue well past the formal boundary. It is unclear, however, exactly how long DCWs are expected to persist after extinction events and to what degree they impact broader trends in Phanerozoic biodiversity. Here we analyze the fossil occurrences of 134 skeletonized marine invertebrate orders in the Paleobiology Database (paleobiodb.org) using a Bayesian method to identify significant change points in genus richness. Our analysis identifies 70 orders that experience major diversity losses without recovery. Most of these taxa, however, do not fit the popular conception of DCWs as clades that narrowly survive a mass extinction event and linger for only a few stages before succumbing to extinction. The median postdrop duration of these DCW orders is long (>30 Myr), suggesting that previous studies may have underestimated the long-term taxonomic impact of mass extinction events. More importantly, many drops in diversity without recovery are not associated with mass extinction events and occur during background extinction stages. The prevalence of DCW orders throughout both mass and background extinction intervals and across phyla (>50% of all marine invertebrate orders) suggests that the DCW pattern is a major component of macroevolutionary turnover.
APA, Harvard, Vancouver, ISO, and other styles
3

Knoll, Andrew H. "Patterns of evolution in the Archean and Proterozoic Eons." Paleobiology 11, no. 1 (1985): 53–64. http://dx.doi.org/10.1017/s0094837300011398.

Full text
Abstract:
Problems of taphonomy and sampling adequacy hinder direct evolutionary interpretations of pattern in the Precambrian paleontological record; however, molecular studies of microbial phylogeny and comparative physiological and ecological investigations of living microorganisms can be combined with geological research to establish patterns of early evolution. The Late Proterozoic record of planktonic algae resembles those of Phanerozoic plants, animals, and microplankton in its patterns of diversification and turnover, as well as in the importance of major extinction events in shaping the course of evolution. Late Proterozoic eukaryotes thus appear to be discussable in terms of the macroevolutionary issues that have become central to Phanerozoic paleobiology. In contrast, evolutionary patterns in Precambrian prokaryotes appear to be different from those of plants and animals, a possible consequence of their differing systems of genetic organization and recombination.
APA, Harvard, Vancouver, ISO, and other styles
4

Mesoudi, Alex, Andrew Whiten, and Kevin N. Laland. "Towards a unified science of cultural evolution." Behavioral and Brain Sciences 29, no. 4 (August 2006): 329–47. http://dx.doi.org/10.1017/s0140525x06009083.

Full text
Abstract:
We suggest that human culture exhibits key Darwinian evolutionary properties, and argue that the structure of a science of cultural evolution should share fundamental features with the structure of the science of biological evolution. This latter claim is tested by outlining the methods and approaches employed by the principal subdisciplines of evolutionary biology and assessing whether there is an existing or potential corresponding approach to the study of cultural evolution. Existing approaches within anthropology and archaeology demonstrate a good match with the macroevolutionary methods of systematics, paleobiology, and biogeography, whereas mathematical models derived from population genetics have been successfully developed to study cultural microevolution. Much potential exists for experimental simulations and field studies of cultural microevolution, where there are opportunities to borrow further methods and hypotheses from biology. Potential also exists for the cultural equivalent of molecular genetics in “social cognitive neuroscience,” although many fundamental issues have yet to be resolved. It is argued that studying culture within a unifying evolutionary framework has the potential to integrate a number of separate disciplines within the social sciences.
APA, Harvard, Vancouver, ISO, and other styles
5

Connolly, Sean R., and Arnold I. Miller. "Joint estimation of sampling and turnover rates from fossil databases: capture-mark-recapture methods revisited." Paleobiology 27, no. 4 (2001): 751–67. http://dx.doi.org/10.1666/0094-8373(2001)027<0751:jeosat>2.0.co;2.

Full text
Abstract:
The estimation and interpretation of temporal patterns in origination and extinction rates is a major goal of paleobiology. However, the possibility of coincident variation in the quality and completeness of the fossil record makes the identification of such patterns particularly difficult. Previously, Nichols and Pollock (1983) proposed that capture-mark-recapture (CMR) models be adapted to address this problem. These models can be used to estimate both sampling and turnover rates, reducing the risk of confounding the two quantities. Since that time, theoretical advances have made possible the application of these tools to a much broader range of problems. This paper reviews those advances likely to be of greatest relevance in paleobiological studies. They include (1) joint estimation of per-taxon origination and extinction rates, (2) modeling sampling or turnover rates as explicit functions of causal variables, (3) ranking of alternative models according to their fit to the data, and (4) estimation of parameter values using multiple models. These are illustrated by application to an Ordovician database of benthic marine genera from key higher taxa. Robustness of these methods to violation of assumptions likely to be suspect in paleobiological studies further suggests that these models can make an important contribution to the quantitative study of macroevolutionary dynamics.
APA, Harvard, Vancouver, ISO, and other styles
6

Jablonski, David. "Micro- and macroevolution: Scale and hierarchy in evolutionary biology and paleobiology." Paleobiology 26, S4 (2000): 15–52. http://dx.doi.org/10.1017/s0094837300026877.

Full text
Abstract:
The study of evolution has increasingly incorporated considerations of history, scale, and hierarchy, in terms of both the origin of variation and the sorting of that variation. Although the macroevolutionary exploration of developmental genetics has just begun, considerable progress has been made in understanding the origin of evolutionary novelty in terms of the potential for coordinated morphological change and the potential for imposing uneven probabilities on different evolutionary directions. Global or whole-organism heterochrony, local heterochrony (affecting single structures, regions, or organ systems) and heterotopies (changes in the location of developmental events), and epigenetic mechanisms (which help to integrate the developing parts of an organism into a functional whole) together contribute to profound nonlinearities between genetic and morphologic change, by permitting the generation and accommodation of evolutionary novelties without pervasive, coordinated genetic changes; the limits of these developmental processes are poorly understood, however. The discordance across hierarchical levels in the production of evolutionary novelties through time, and among latitudes and environments, is an intriguing paleontological pattern whose explanation is controversial, in part because separating effects of genetics and ecology has proven difficult. At finer scales, species in the fossil record tend to be static over geologic time, although this stasis—to which there are gradualistic exceptions—generally appears to be underlain by extensive, nondirectional change rather than absolute invariance. Only a few studies have met the necessary protocols for the analysis of evolutionary tempo and mode at the species level, and so the distribution of evolutionary patterns among clades, environments, and modes of life remains poorly understood. Sorting among taxa is widely accepted in principle as an evolutionary mechanism, but detailed analyses are scarce; if geographic range or population density can be treated as traits above the organismic level, then the paleontological and mac̀roecological literature abounds in potential raw material for such analyses. Even if taxon sorting operates on traits that are not emergent at the species level, the differential speciation and extinction rates can shape large-scale evolutionary patterns in ways that are not simple extrapolations from short-term evolution at the organismal level. Changes in origination and extinction rates can evidently be mediated by interactions with other clades, although such interactions need to be studied in a geographically explicit fashion before the relative roles of biotic and physical factors can be assessed. Incumbency effects are important at many scales, with the most dramatic manifestation being the postextinction diversifications that follow the removal of incumbents. However, mass extinctions are evolutionarily important not only for the removal of dominant taxa, which can occur according to rules that differ from those operating during times of lower extinction intensity, but also for the dramatic diversifications that follow upon the removal or depletion of incumbents. Mass extinctions do not entirely reset the evolutionary clock, so survivors can exhibit unbroken evolutionary continuity, trends that suffer setbacks but then resume, or failure to participate in the recovery.
APA, Harvard, Vancouver, ISO, and other styles
7

Brett, Carlton E., Heather A. Moffat, and Wendy L. Taylor. "Echinoderm taphonomy, taphofacies, and Lagerstätten." Paleontological Society Papers 3 (October 1997): 147–90. http://dx.doi.org/10.1017/s1089332600000243.

Full text
Abstract:
Taphonomic study of echinoderms provides useful information on sedimentary conditions before, during, and after burial. Taphonomic studies of Recent echinoderms indicate that much skeletal disarticulation occurs within a few days after death. However, experiments also indicate that within a short period after death echinoderm carcasses remain rather resistant to disarticulation, and thus may be transported a considerable distance by currents; following periods of a few hours of decay, more delicate portions of echinoderm skeletons are readily disarticulated. Some skeletal modules (e.g., crinoid pluricolumnals) may resist disarticulation for periods of months in quiet- and or cool-water environments. Anoxia promotes intact preservation by excluding scavenging metazoans. Echinoderm ossicles may undergo minor abrasion and/or corrosion if left exposed, and less dense stereom corrodes much more rapidly than dense plates, such as echinoid spines. However, heavily abraded ossicles may indicate prefossilization and reworking.Various groups of echinoderms (e.g., pelmatozoans, asterozoans, echinoids) have differing propensities for degradation and, therefore, produce different arrays of preserved fossil material primarily depending upon the relative rates of burial, bottom-water oxygenation, and turbulence. Echinoderms may be divided into three groups based upon the relative ease of skeletal disarticulation. Type 1 echinoderms include weakly articulated forms (e.g., asteroids and ophiuroids) that rapidly disintegrate into individual ossicles. Type 2 includes those echinoderms whose bodies contain portions in which are more tightly sutured, as well as portions in which the ossicles are somewhat more delicately bound (e.g., crinoids, regular echinoids). Such echinoderms display more varied taphonomic grades from fully intact to mixtures of isolated ossicles and articulated modules. Type 3 comprises those echinoderms (e.g., irregular echinoids) in which major portions of the skeleton are so resistant to disarticulation that they may be broken across sutures rather than coming apart at plate boundaries.Comparative taphonomy of particular types of echinoderm skeletal remains leads to recognition of distinctive taphofacies that characterize particular depositional environments. Taphofacies include two types of characteristic modes of fossil preservation: event taphonomic signatures and background taphonomic signatures. Depending upon normal conditions of environmental energy and rates of sedimentation, the background condition of various types of echinoderms for a given facies may range from articulated, unabraded skeletal modules (in Types 2 and 3) to highly corroded and/or abraded ossicles. Conversely, the occurrence of fully intact fossil echinoderms provides unambiguous evidence of rapid and deep burial of benthic communities. Such well-preserved fossil assemblages can provide a wealth of information regarding the paleobiology of echinoderms, as well as the nature of the depositional events and burial histories.This paper presents a preliminary classification and characterization of background and event aspects of echinoderm taphofacies for carbonate- (9 taphofacies, including reefs and hardgrounds) and siliciclastic-dominated (5 taphofacies) environments. In each case, we recognize a spectrum of echinoderm taphofacies that coincides with a gradient of environments, ranging from nearshore, high energy shoreface through proximal and distal storm-influenced shelf, to deeper ramp and dysoxic basinal settings. Most taphofacies also feature particular styles of obrution (smothered bottom) Lagerstätten. These range from scattered lenses of articulated fossils in some high energy sandstone and grainstone facies to bedding planes of articulated, pyrite coated specimens in dark shales. We classify and discuss the genesis of these types of Lagerstätten and list typical examples. Finally, we present a simple model that integrates the occurrence of various echinoderm taphofacies with concepts of cyclic and sequence stratigraphy.
APA, Harvard, Vancouver, ISO, and other styles
8

Bambach, Richard K., and J. John Sepkoski. "Historical evolutionary information in the traditional Linnean hierarchy." Paleontological Society Special Publications 6 (1992): 16. http://dx.doi.org/10.1017/s2475262200005761.

Full text
Abstract:
The first two ranks above the species level in the traditional Linnean hierarchy — the genus and family — are species based: genera have been erected to unify groups of morphologically similar, closely related species and families have been erected to group genera recognized as closely related because of the shared morphologic characteristics of their species. Diversity patterns of traditional genera and families thus appear congruent with those of species in (a) the Recent (e. g., latitudinal gradients in many groups), (b) compilations of all marine taxa for the entire Phanerozoic (including the stage level), (c) comparisons through time within individual taxa (e. g., Foraminifera, Rugosa, Conodonta), and (d) simulation studies. Genera and families often have a more robust fossil record of diversity than species, especially for poorly sampled groups (e. g., echinoids), because of the range-through record of these polytypic taxa. Simulation studies indicate that paraphyly among traditionally defined taxa is not a fatal problem for diversity studies; in fact, when degradation of the quality of the fossil record is modelled, both diversity and rates of origination and extinction are better represented by including paraphyletic taxa than by restricting data to monophyletic clades. This result underscores the utility of traditional rank-based analyses of the history of diversity.In contrast, the three higher ranks of the Linnean hierarchy — orders, classes and phyla — are defined and recognized by key character complexes assumed to be rooted deep in the developmental program and, therefore, considered to be of special significance. These taxa are unified on the basis of body plan and function, not species morphology. Even if paraphyletic, recognition of such taxa is useful because they represent different functional complexes that reflect biological organization and major evolutionary innovations, often with different ecological capacities. Phanerozoic diversity patterns of orders, classes and phyla are not congruent with those of lower taxa; the higher groups each increased rapidly in the early Paleozoic, during the explosive diversification of body plans in the Cambrian, and then remained stable or declined slightly after the Ordovician. The diversity history of orders superficially resembles that of lower taxa, but this is a result only of ordinal turnover among the Echinodermata coupled with ordinal radiation in the Chordata; it is not a highly damped signal derived from the diversity of species, genera, or families. Despite the stability of numbers among post-Ordovician Linnean higher taxa, the diversity of lower taxa within many of these Bauplan groups fluctuated widely, and these diversity patterns signal embedded ecologic information, such as differences in flexibility in filling or utilizing ecospace.Phylogenetic analysis is vital for understanding the origins and genealogical structure of higher taxa. Only in such fashion can convergence and its implications for ecological constraints and/or opportunities be understood. But blind insistence on the use of monophyletic classifications in all studies would obscure some of the important information contained in traditional taxonomic groupings. The developmental modifications that characterize Linnean higher taxa (and traditionally separate them from their paraphyletic ancestral taxa) provide keys to understanding the role of shifting ecology in macroevolutionary success.
APA, Harvard, Vancouver, ISO, and other styles
9

Womack, Tom M., James S. Crampton, and Michael J. Hannah. "Spatial scaling of beta diversity in the shallow-marine fossil record." Paleobiology, September 24, 2020, 1–15. http://dx.doi.org/10.1017/pab.2020.44.

Full text
Abstract:
Abstract Beta diversity quantifies the spatial structuring of ecological communities and is a fundamental partition of biodiversity, central to understanding many macroecological phenomena in modern biology and paleobiology. Despite its common application in ecology, studies of beta diversity in the fossil record are relatively limited at regional spatial scales that are important for understanding macroevolutionary processes. The spatial scaling of beta diversity in the fossil record is poorly understood, but has significant implications due to temporal variation in the spatial distribution of fossil collections and the large spatiotemporal scales typically employed. Here we test the spatial scaling of several common measures of beta diversity using the Cenozoic shallow-marine molluscan fossil record of New Zealand and derive a spatially standardized time series of beta diversity. To measure spatial scaling, we use and compare grid-cell occupancy based on an equal-area grid and summed minimum spanning tree length, both based on reconstructed paleocoordinates of fossil collections. We find that beta diversity is spatially dependent at local to regional scales, regardless of the metric or spatial scaling utilized, and that spatial standardization significantly changes apparent temporal trends of beta diversity and, therefore, inferences about processes driving diversity change.
APA, Harvard, Vancouver, ISO, and other styles
10

Shaw, Jack O., Derek E. G. Briggs, and Pincelli M. Hull. "Fossilization potential of marine assemblages and environments." Geology, October 21, 2020. http://dx.doi.org/10.1130/g47907.1.

Full text
Abstract:
The fossil record provides the only direct record of the history of life, but it is an incomplete one. Discriminating between what is absent and what is simply not preserved is critical to macroevolutionary and macroecological inferences. A comparison of diversity data in over 20,000 modern marine assemblages from the Ocean Biogeographic Information System database (OBIS) with fossil occurrence data from the Paleobiology Database (PBDB) yielded a global assessment of assemblage-level fossilization potential. We used two different metrics, taxon fossilization potential and within-environment fossilization potential, to assess the proportion of taxa in a modern community with PBDB occurrences or with PBDB occurrences in the same environment, respectively. Taxon fossilization potential of marine genera varies between environments, from 34% in shallow and deep water to 44% in coral reefs, 51% on seamounts, and 15% in pelagic assemblages. Within-environment fossilization potential, in contrast, does not exceed 32% (in shallow water), a lower value than that obtained in other studies, and it may be zero (on seamounts and pelagic environments). These differences are mainly a product of representation in the rock record and sampling biases rather than taxon duration.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Paleobiology, Macroevolutionary studies, Echinoids"

1

Villier, Loïc, and Gunther J. Eble. "Assessing the robustness of disparity estimates: the impact of morphometric scheme, temporal scale, and taxonomic level in spatangoid echinoids." 2004. https://ul.qucosa.de/id/qucosa%3A31907.

Full text
Abstract:
The quantification of disparity is an important aspect of recent macroevolutionary studies, and it is usually motivated by theoretical considerations about the pace of innovation and the filling of morphospace. In practice, varying protocols of data collection and analysis have rendered comparisons among studies difficult. The basic question remains, How sensitive is any given disparity signal to different aspects of sampling and data analysis? Here we explore this issue in the context of the radiation of the echinoid order Spatangoida during the Cretaceous. We compare patterns at the genus and species levels, with time subdivision into subepochs and into stages, and with morphological sampling based on landmarks, traditional morphometrics, and discrete characters. In terms of temporal scale, similarity of disparity pattern accrues despite a change in temporal resolution, and a general deceleration in morphological diversification is apparent. Different morphometric methods also produce similar signals. Both the landmark analysis and the discrete character analysis suggest relatively high early disparity, whereas the analysis based on traditional morphometrics records a much lower value. This difference appears to reflect primarily the measurement of different aspects of overall morphology. Disparity patterns are similar at both the genus and species levels. Moreover, inclusion or exclusion of the sister order Holasteroida and the stem group Disasteroida in the sampled morphospace did not affect proportional changes in spatangoid disparity. Similar results were found for spatangoid subclades vis-à-vis spatangoids as a whole. The relative robustness of these patterns implies that the choice of temporal scale, morphometric scheme, and taxonomic level may not affect broad trends in disparity and the representation of large-scale morphospace structure.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography