Academic literature on the topic 'Paleoclimate modelling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Paleoclimate modelling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Paleoclimate modelling"

1

Hill, Kathryn E., Stuart C. Brown, Alice Jones, Damien Fordham, and Robert S. Hill. "Modelling Climate Using Leaves of Nothofagus cunninghamii—Overcoming Confounding Factors." Sustainability 15, no. 9 (May 5, 2023): 7603. http://dx.doi.org/10.3390/su15097603.

Full text
Abstract:
Fossil leaf anatomy has previously been used as a proxy for paleoclimate. However, the exposure of leaves to sun or shade during their growth can lead to morphotype differences that confound the interpretation of fossil leaf anatomy in relation to climate and prevent reliable paleoclimate reconstruction. This work aims to model the differences in leaf anatomy that are due to various climatic drivers and differences attributable to sun or shade positions, using Nothofagus cunninghamii as the model species. Leaves from the sun and shade parts of three trees have been sampled from each of 11 sites in Victoria and Tasmania, Australia. The gross morphological and cuticular features have been scored and modelled with climate data from the sites. Random forest models can accurately predict Nothofagus cunninghamii contemporary climatic conditions of the spring temperature and summer rainfall based on leaf anatomical measurements. Leaf area, stomatal density and epidermal cell density are the most accurate predictors of whether a leaf grew in the sun or shade. Leaf area is also the strongest predictor of the maximum and minimum spring temperatures and rainfall. The models have implications for the use of fossilised leaves in paleoclimate reconstruction. The models we have built can be used to effectively predict whether a fossil leaf was from a sun or shade position on the tree and thus enable more reliable inference of paleoclimate by removing the confounding issues of variable leaf anatomy due to sun exposure during growth. Finally, these models could conceivably be used to make predictions of past paleoclimatic conditions provided suitable training and validation data on climatic conditions are available.
APA, Harvard, Vancouver, ISO, and other styles
2

Bracaconnot, Pascale, and Sandy P. Harrison. "PMIP (Paleoclimate Modelling Intercomparison Project)." PAGES news 16, no. 2 (April 2008): 31–32. http://dx.doi.org/10.22498/pages.16.2.31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Crucifix, M., P. Braconnot, S. P. Harrison, and B. Otto-Bliesner. "Second phase of paleoclimate modelling intercomparison project." Eos, Transactions American Geophysical Union 86, no. 28 (2005): 264. http://dx.doi.org/10.1029/2005eo280003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sueyoshi, T., R. Ohgaito, A. Yamamoto, M. O. Chikamoto, T. Hajima, H. Okajima, M. Yoshimori, et al. "Setup of the PMIP3 paleoclimate experiments conducted using an Earth System Model, MIROC-ESM." Geoscientific Model Development Discussions 5, no. 3 (September 3, 2012): 2527–69. http://dx.doi.org/10.5194/gmdd-5-2527-2012.

Full text
Abstract:
Abstract. The importance of climate model evaluation using paleoclimate simulations for better future climate projections has been recognized by the Intergovernmental Panel on Climate Change. In recent years, Earth System Models (ESMs) were developed to investigate carbon-cycle climate feedback, as well as to project the future climate. Paleoclimate events, especially those associated with the variations in atmospheric CO2 level or land vegetation, provide suitable benchmarks to evaluate ESMs. Here we present implementations of the paleoclimate experiments proposed by the Coupled Model Intercomparison Project phase 5/Paleoclimate Modelling Intercomparison Project phase 3 (CMIP5/PMIP3) using an Earth System Model, MIROC-ESM. In this paper, experimental settings and procedures of the mid-Holocene, the Last Glacial Maximum, and the Last Millennium experiments are explained. The first two experiments are time slice experiments and the last one is a transient experiment. The complexity of the model requires various steps to correctly configure the experiments. Several basic outputs are also shown.
APA, Harvard, Vancouver, ISO, and other styles
5

Baker, Andy. "Forward modelling of the speleothem oxygen isotope paleoclimate proxy." Quaternary International 279-280 (November 2012): 34. http://dx.doi.org/10.1016/j.quaint.2012.07.147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brierley, Chris, Kaustubh Thirumalai, Edward Grindrod, and Jonathan Barnsley. "Indian Ocean variability changes in the Paleoclimate Modelling Intercomparison Project." Climate of the Past 19, no. 3 (March 27, 2023): 681–701. http://dx.doi.org/10.5194/cp-19-681-2023.

Full text
Abstract:
Abstract. The Indian Ocean exhibits multiple modes of interannual climate variability, whose future behaviour is uncertain. Recent analysis of glacial climates has uncovered an additional El Niño-like equatorial mode in the Indian Ocean, which could also emerge in future warm states. Here we explore changes in the tropical Indian Ocean simulated by the Paleoclimate Model Intercomparison Project (PMIP4). These simulations are performed by an ensemble of models contributing to the Coupled Model Intercomparison Project 6 and over four coordinated experiments: three past periods – the mid-Holocene (6000 years ago), the Last Glacial Maximum (21 000 years ago), the last interglacial (127 000 years ago) – and an idealized forcing scenario to examine the impact of greenhouse forcing. The two interglacial experiments are used to characterize the role of orbital variations in the seasonal cycle, whilst the other pair focus on responses to large changes in global temperature. The Indian Ocean Basin Mode (IOBM) is damped in both the mid-Holocene and last interglacial, with the amount related to the damping of the El Niño–Southern Oscillation in the Pacific. No coherent changes in the strength of the IOBM are seen with global temperature changes; neither are changes in the Indian Ocean Dipole (IOD) nor the Niño-like mode. Under orbital forcing, the IOD robustly weakens during the mid-Holocene experiment, with only minor reductions in amplitude during the last interglacial. Orbital changes do impact the SST pattern of the Indian Ocean Dipole, with the cold pole reaching up to the Equator and extending along it. Induced changes in the regional seasonality are hypothesized to be an important control on changes in the Indian Ocean variability.
APA, Harvard, Vancouver, ISO, and other styles
7

Sueyoshi, T., R. Ohgaito, A. Yamamoto, M. O. Chikamoto, T. Hajima, H. Okajima, M. Yoshimori, et al. "Set-up of the PMIP3 paleoclimate experiments conducted using an Earth system model, MIROC-ESM." Geoscientific Model Development 6, no. 3 (June 21, 2013): 819–36. http://dx.doi.org/10.5194/gmd-6-819-2013.

Full text
Abstract:
Abstract. Paleoclimate experiments using contemporary climate models are an effective measure to evaluate climate models. In recent years, Earth system models (ESMs) were developed to investigate carbon cycle climate feedbacks, as well as to project the future climate. Paleoclimate events can be suitable benchmarks to evaluate ESMs. The variation in aerosols associated with the volcanic eruptions provide a clear signal in forcing, which can be a good test to check the response of a climate model to the radiation changes. The variations in atmospheric CO2 level or changes in ice sheet extent can be used for evaluation as well. Here we present implementations of the paleoclimate experiments proposed by the Coupled Model Intercomparison Project phase 5/Paleoclimate Modelling Intercomparison Project phase 3 (CMIP5/PMIP3) using MIROC-ESM, an ESM based on the global climate model MIROC (Model for Interdisciplinary Research on Climate). In this paper, experimental settings and spin-up procedures of the mid-Holocene, the Last Glacial Maximum, and the Last Millennium experiments are explained. The first two experiments are time slice experiments and the last one is a transient experiment. The complexity of the model requires various steps to correctly configure the experiments. Several basic outputs are also shown.
APA, Harvard, Vancouver, ISO, and other styles
8

Hargreaves, J. C., and J. D. Annan. "The importance of paleoclimate modelling for improving predictions of future climate change." Climate of the Past Discussions 5, no. 4 (July 29, 2009): 2053–80. http://dx.doi.org/10.5194/cpd-5-2053-2009.

Full text
Abstract:
Abstract. We use an ensemble of runs from the MIROC3.2 AGCM with slab-ocean to explore the extent to which mid-Holocene simulations are relevant to predictions of future climate change. The results are compared with similar analyses for the Last Glacial Maximum (LGM) and pre-industrial control climate. We find evidence that the paleoclimate epochs can provide some independent validation of the models that is also relevant for future predictions. Considering the paleoclimate epochs, we find that the stronger global forcing and hence larger climate change at the LGM makes this likely to be the more powerful one for estimating the large-scale changes that are anticipated due to anthropogenic forcing. The regions from the mid-Holocene simulations which produce significant results (mid to high northern latitude land temperature and monsoon precipitation) do, however, coincide with areas where the LGM results are weak, and are also areas where the paleodata indicate significant climate changes have occurred. Thus, these areas should be a high priority for model improvement and validation.
APA, Harvard, Vancouver, ISO, and other styles
9

Hartmann, A., and A. Baker. "Modelling karst vadose zone hydrology and its relevance for paleoclimate reconstruction." Earth-Science Reviews 172 (September 2017): 178–92. http://dx.doi.org/10.1016/j.earscirev.2017.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hargreaves, J. C., and J. D. Annan. "On the importance of paleoclimate modelling for improving predictions of future climate change." Climate of the Past 5, no. 4 (December 21, 2009): 803–14. http://dx.doi.org/10.5194/cp-5-803-2009.

Full text
Abstract:
Abstract. We use an ensemble of runs from the MIROC3.2 AGCM with slab-ocean to explore the extent to which mid-Holocene simulations are relevant to predictions of future climate change. The results are compared with similar analyses for the Last Glacial Maximum (LGM) and pre-industrial control climate. We suggest that the paleoclimate epochs can provide some independent validation of the models that is also relevant for future predictions. Considering the paleoclimate epochs, we find that the stronger global forcing and hence larger climate change at the LGM makes this likely to be the more powerful one for estimating the large-scale changes that are anticipated due to anthropogenic forcing. The phenomena in the mid-Holocene simulations which are most strongly correlated with future changes (i.e., the mid to high northern latitude land temperature and monsoon precipitation) do, however, coincide with areas where the LGM results are not correlated with future changes, and these are also areas where the paleodata indicate significant climate changes have occurred. Thus, these regions and phenomena for the mid-Holocene may be useful for model improvement and validation.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Paleoclimate modelling"

1

Unterman, Matthew Blair. "High resolution simulations of synoptic scale 'paleometeorology' during the last glacial maximum." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/7654.

Full text
Abstract:
Hourly winter weather conditions of the Last Glacial Maximum (LGM) are simulated using the Community Climate Model version 3 (CCM3) on a globally resolved T170 (~75 km) grid. This simulation has been run in-tandem with a lower temporally resolved six-year climatological run. The purpose of the study is to determine: (1) whether examination of higher-resolution simulations, on both spatial and temporal scales, can enhance paleometeorological inferences based previously on monthly statistics of model output and (2) whether certain synoptic-scale events, which may have only a modest impact on seasonal statistics, might exert a disproportionate impact on geological climate records. Analysis is focused on changes in wind flow, no analogue climate “states”, synoptic scale events including Northern Hemisphere cyclogenesis, and gust events over glacial dust source regions. Results show a decrease in North Atlantic and increase in North Pacific cyclogenesis during the LGM. Storm trajectories react to the mechanical forcing of the Laurentide Ice Sheet, with Pacific storms tracking over middle Alaska and northern Canada and terminate in the Labrador Sea. The latter result supports observations and other model runs showing a significant reduction in Greenland winter precipitation. The modified Pacific track results in increased precipitation and the delivery of warmer air along the west coast of North America. This could explain “early” glacial warming inferred in this region from proxy climate records, potentially representing instead a natural regional response to ice age boundary conditions. Results also indicate a low variability, “no analogue” region just south of the Laurentide Ice Sheet margin which has appropriate conditions to harbour temperature-sensitive trees west of the Appalachian Mountains. Combined with pollen data, this lends valuable insight into the known disagreement between modern seed dispersal experiments and calculated migration rates. Finally, hourly-scale gust events over dust source regions during the LGM are two to five times greater than the modern, providing a mechanism to help explain the increased glacial dust load seen in the ice cores. Backwards air-parcel trajectories from Antarctic ice core locations show air sources over Patagonia and the Altiplano with some inputs from South Africa agreeing with recent isotopic tracer analyses. Results demonstrate that high temporal and spatial resolution simulations can provide valuable insight to add to the cornucopia of information already available from lower-resolution runs. They can also enhance our interpretation of geological records, which have been previously assumed to record longer time-scale climatological mean-states and thus ignoring any extreme synoptic events which may actually have had a disproportionate impact on their preservation.
APA, Harvard, Vancouver, ISO, and other styles
2

Flores, Aqueveque Valentina Alejandra. "Modelling Aeolian Transport Processes: Implications for the Paleoclimate of the Coastal Atacama Desert." Tesis, Universidad de Chile, 2010. http://www.repositorio.uchile.cl/handle/2250/102350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Berger, Marit. "Modelling the early to mid-Holocene Arctic climate." Licentiate thesis, KTH, Turbulens, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127870.

Full text
Abstract:
In the recent past it has become evident that the Earth's climate is changing, and that human activity play a significant role in these changes. One of the regions where the ongoing climate change has been most evident is in the Arctic: the surface temperature has increased twice as much in this region as compared to the global average, in addition, a significant decline in the Arctic sea-ice extent has been observed in the past decades. Climate model studies of past climates are important tools to understand the ongoing climate change and how the Earth's climate may respond to changes in the forcing. This thesis includes studies of the Arctic climate in simulations of the early and mid-Holocene, 9 000 and 6 000 years before present. Changes in the Earth's orbital parameters resulted in increased summer insolation as compared to present day, especially at high northern latitudes. Geological data imply that the surface temperatures in the early to mid Holocene were similar to those projected for the near future. In addition, the geological data implies that the Arctic sea ice cover was significantly reduced in this period. This makes the early to mid-Holocene an interesting period to study with respect to the changes observed in the region at present. Several model studies of the mid-Holocene have been performed through the Paleoclimate Modeling Intercomparison Project (PMIP1 to PMIP3). The simulations have been performed with climate models of varying complexity, from atmosphere-only models in the first phase to fully coupled models with the same resolution as used for future climate simulations in the third phase. The first part of this thesis investigates the simulated sea ice in the pre-industrial and mid-Holocene simulations included in the PMIP2 and PMIP3 ensemble. As the complexity of the models increases, the models simulate smaller extents and thinner sea ice in the Arctic; the sea-ice extent suggested by the proxy data for the mid-Holocene is however not reproduced by the majority of the models. One possible explanation for the discrepancy between the simulated and reconstructed Arctic sea ice extent is missing or inadequate representations of important processes. The representation of atmospheric aerosol direct and indirect effects in past climates is a candidate process. Previous studies of deeper time periods have concluded that the representation of the direct and indirect effects of the atmospheric aerosols can influence the simulated climates, and reduce the equator to pole temperature gradient in past warm climates, in better agreement with reconstructions. The second part of the thesis investigates the influence of aerosol on the early Holocene climate. The indirect effect of reduced aerosol concentrations as compared to the present day is found to cause an amplification of the warming, especially in the Arctic region. A better agreement with reconstructed Arctic sea ice extent is thus achieved.
Under senare tid har det blivit uppenbart att jordens klimat håller på att förändras, och att mänsklig aktivitet spelar en viktig roll för dessa ändringar. Ett av de områden där den pägäende klimatfärändringen har varit tydligast är Arktis: temperaturen vid ytan har ökat dubbelt så mycket här jämfört med det globala genomsnittet. Dessutom har man observerat en betydande nedgång i havsisens utbredning i Arktis de senaste decennierna. Simuleringar gjorda med klimatmodeller av forntida klimat är viktiga verktyg för att förstå de pågående klimatförändringarna och hur jordens klimat påverkas av ändringar i klimatsystemets drivningar. Denna avhandling består av studier av det arktiska klimatet i modellsimuleringar av tidig och mid-holocen, ca. 9 000 och 6 000 år före nutid. Förändringar i jordens bana kring solen resulterade i en ökad sommar-solinstrålning jämfört med nutid, särskilt vid höga nordliga breddgrader. Geologiska data antyder att jordens temperatur vid ytan under denna period kan jämföras med dem vi förväntar för den närmaste framtiden. Vidare indikerar geologiska data att havsisen i Arktisk var kraftigt reducerad under denna period. Detta gör tidig till mid-holocen till en intressant period att studera, med avseende på de förändringar som för närvarande har observerats i området. Flera modellstudier av mitt-holocen har utförts i de olika faserna av Paleoclimate Modeling Intercomparison Project (PMIP1 till PMIP3). Simuleringarna har utförts med klimatmodeller av varierande komplexitet, från atmosfärsmodeller i den första fasen, till fullt kopplade modeller med hög rumslig upplösning i den tredje fasen. I den första delen av denna avhandling undersöks den simulerade havsisen i de förindustriella och mid-holocen simuleringar som ingår i PMIP2 och PMIP3 ensemblerna. Modellerna simulerar mindre utbredning och tunnare havsis i Arktis i den senare PMIP ensemblen, men fortfarande återskapar inte modellerna generelt den havsisutbredning som de geologiska data indikerar. En möjlig förklaring till skillnaderna mellan den simulerade och rekonstruerade havsisutsträckningen kan vara att viktiga processer i klimatsystemet saknas eller inte är tillräckligt väl beskrivna i modellerna. Beskrivningen av atmosfäriska aerosoler och dess effekter på klimatet är en möjlig kandidatprocess. Från studier av forntida varma tidsperioder har man dragit slutsatsen att beskrivningen av aerosoleffekterna påverkar det simulerade klimatet. Bland annat kan man minska temperaturgradienten mellan ekvator och polerna i tidigare varma klimat, vilket bättre överensstämmer med temperaturrekonstruktioner. Den andra delen av avhandlingen undersöker påverkan av aerosoler på klimatet under tidig holocen. Den indirekta effekten som följer av lägre aerosolkoncentrationer i tidig holocen jämfört med i dag, visar sig orsaka en förstärkning av uppvärmningen, särskilt i det arktiska områet, vilket stämmer bättre med havsisrekonstruktioner från denna period.

QC 20130910

APA, Harvard, Vancouver, ISO, and other styles
4

Warthen, Seth Tyler. "Attempting to Recreate the Late Ordovician Glaciation with the University of Victoria Earth System Climate Model." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1465828293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Crichton, Katherine. "The role of permafrost soils in the global carbon-cycle on the timescales of centuries to multi-millennia : a modelling study." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENU049/document.

Full text
Abstract:
Cette étude visait à développer un modèle dynamique du pergélisol-carbone à intégrer dans le modèle CLIMBER-2 et d'effectuer des simulations en vue de contribuer à la connaissance du cycle du carbone. Ce travail pourrait, pour la première fois, permettre une étude de modélisation avec un modèle de système terrestre qui comprendrait l'atmosphère dynamique, l'océan dynamique, la végétation dynamique et les composantes de la cryosphere, y compris les terres gelées, afin d'étudier le paléoclimat. La disponibilité des données récentes du CO2 et de δ13C de CO2 dans l'atmosphère fourni un moyen de valider les résultats du modèle pour déterminer si une dynamique pergélisol-carbone pourrait avoir joué un rôle important au cours des climats changeants.Un mécanisme pergélisol-carbone simplifié a été développé et validé et à été réglé en utilisant les données de la terminaison 1 (T1). Il a été constaté que, pour reproduire des données de CO2 et δ13C atmosphériques (pour l'atmosphère et l'océan) au cours de T1, une combinaison des mécanismes océaniques-glaciaires et pergélisol-carbone ont été nécessaires. Suite à cette constatation, plusieurs cycles glaciaires ont été modélisés pour étudier la sensibilité du mécanisme pergélisol-carbone aux forçages de CO2, les calottes glaciaires et l'insolation. l'étendue des calottes glaciaires a été jugée particulièrement importante pour le contrôle de la superficie des terres disponibles pour le pergélisol, et donc aussi pour la dynamique du carbone du pergélisol-carbone. La libération du carbone dans les sols de dégel en réponse à l'augmentation de l'insolation d'été dans les hautes latitudes, a été jugée très probable comme la source des hausses initiales de CO2 dans l'atmosphère au cours des terminaisons glaciaires.Les données CO2 de terminaison 1 peuvent être bien reproduits, y compris le plateau de CO2 BA / YD, quand le forçage de l'eau douce est appliqué à l'Atlantique nord. Expériences avec forçage de l'eau douce ont souligné l'importance du mécanisme du pergélisol-carbone dans l'évolution rapide des climats. Les augmentations très rapides des niveaux de CO2 dans l'atmosphère peuvent être expliqués par la libération rapide des sols en carbone en réponse à l'augmentation du transport de chaleur vers l'hémisphère nord. C'est en réponse à la reprise de l'AMOC suite d'un événement AMOC arrêt/réduction, tels que des événements D/O vu dans les données du δ18O Groenland. Les projections de changement climatique représentent des événements de réchauffement rapide. La conduite du modèle par des projections d'émissions (base de données RCP) a prédit l'augmentation du CO2 de pic et une plus longue période a des niveaux élevées de CO2 par rapport aux sorties du modèle qui ne comprennent pas les évaluations du pergélisol-carbone.L'analyse de δ13C de l'océan doit tenir compte de la dynamique du pergélisol et du carbone de la terre en général et de son effet sur les niveaux de δ13C atmosphériques. Si ce n'est pas pris en compte alors la circulation océanique peut être trop invoquée pour tenter d'expliquer les changements de δ13C de l'océan et du CO2 atmosphérique.Le mécanisme pergélisol-carbone réagit aux changements de température et amplifie la réponse du cycle du carbone. Il est fortement dépendant non seulement de l'apport d'énergie (qui détermine la température du sol et de l'emplacement du pergélisol), mais également de la surface de terres disponible à l'échelle mondiale sur laquelle le pergélisol peut exister. Afin de modéliser et de comprendre correctement la réponse du système terrestre dans les climats futurs et passés, le mécanisme de rétroaction pergélisol-carbone est un élément important du système. Ce travail a été une première étape pour aborder le rôle que la cryosphere terrestre joue dans le cycle du carbone et du système climatique sur de longues échelles de temps, et que d'autres études sont essentielles
This study aimed to develop a permafrost-carbon dynamic model to incorporate into the CLIMBER-2 Earth system model and to carry out simulations with a view to contributing to the knowledge of the carbon cycle. The work would, for the first time, allow a fully coupled modelling study with an earth system model which included dynamic atmosphere, ocean, vegetation and cryosphere components including frozen land to study paleoclimates. The availability of recent ice core data for CO2 and δ13C of atmospheric CO2 was to provide a means of validating model findings to identify whether a permafrost-carbon dynamic could have played a significant role in past changing climates.The deep Southern Ocean is an area of particular interest for glacial-interglacial CO2 variability, and current modelling efforts aim to recreate the observed CO2 changes using ocean mechanisms. These are often related to deep southern ocean carbon storage and release. So far the terrestrial biosphere has not been well-considered in transient simulations of the carbon cycle in Earth system models.A simplified permafrost-carbon mechanism was developed and validated and tuned using data from termination 1. It was found that in order to reproduce atmospheric CO2 and δ13C data (for atmosphere and ocean) during the termination, a combination of glacial ocean mechanisms and the permafrost-carbon mechanism was required. Following this finding, several glacial cycles were modelled to study the sensitivity of the permafrost-carbon mechanisms to CO2, ice sheets and insolation. Ice sheet extent was found to be particularly important in controlling the land area available for permafrost and therefore the carbon dynamics of permafrost-carbon. The permafrost-carbon mechanism, via carbon release from thawing soils responding to increasing summer insolation in higher northern latitudes, was found to very likely be the source of initial rises in CO2 on glacial terminations.Termination 1 CO2 data could be well reproduced, including the B-A/YD CO2 plateau, when fresh water forcing was applied to the north Atlantic. Fresh water forcing experiments pointed to the importance of the permafrost-carbon mechanism in fast changing climates. Very fast increases in atmospheric CO2 levels may be explained by fast soil-carbon release responding to increased heat transport to the northern hemisphere on AMOC resumption following an AMOC switch-off/reduction event, such as D/O events seen in the Greenland δ18O record. Future climate change projections represent fast warming events. Driving the model by emissions projections (RCP database) predicted increased peak CO2 and much longer term elevated CO2 levels relative to model outputs which did not include the permafrost carbon feedback.Analysis of ocean δ13C must take into account the dynamics of permafrost and land carbon in general and its effect on atmospheric δ13C levels. If this is not taken into account then ocean circulation may be over-invoked in attempting to explain changes in ocean δ13C and atmospheric CO2. The Earth system is not simply atmosphere and ocean. The findings in this work highlight that it is essential to consider land carbon dynamics when interpreting paleo-indicators for the carbon cycle.The permafrost-carbon mechanism reacts to temperature changes and amplifies the carbon cycle's response. It is stongly dependent not only on energy input (that determines soil temperature and permafrost location), but also on the area of land available globally on which it can exist. In order to properly model and understand the Earth system response to forcing in both future and past climates, the permafrost-carbon feedback mechanism is an important system component. This work has been a first step to address the role that the land cryosphere plays in the carbon cycle and climate system on long timescales, and further studies are essential
APA, Harvard, Vancouver, ISO, and other styles
6

POCHINI, ENRICO. "Paleo and present oceanic modelling of the Ross Sea (Antarctica): evolution of water masses and ice shelf – ocean interactions during the last glacial cycle (21-0 ka)." Doctoral thesis, Università degli Studi di Trieste, 2022. http://hdl.handle.net/11368/3030770.

Full text
Abstract:
In this work, we want to investigate the influences of water masses on the basal melting under the RIS at present and in the past. In particular, the research aimed at understanding the influences of Ross Sea water masses variability on the RIS basal melting both at present and in the past. A regional adaptation of the Massachusetts Institute of Technology general circulation model (MITgcm) was implemented on the Ross Sea to simulate ocean circulation on the continental shelf and under the RIS. A present-day transient run, forced by ocean (GLORYS12V1) and atmospheric (ERA5) reanalysis over the period 1993-2018, shows that: [1] simulated water masses present different timescales of variability in their properties: Circumpolar Deep Water and Antarctic Surface Waters show a strong seasonal cycle, modulated by strong interannual variability. High Salinity Shelf Water and Low Salinity Shelf Water, on the other hand, show a weaker seasonal cycle and a decadal oscillation in their salinity. Variability of CDW and AASW is probably related to wind variability associated with the Southern Annular Mode, the Amundsen Sea Low, and El-Niño Southern Oscillation, mediated by sea ice. Variability of HSSW and LSSW is probably related to variability of the sea ice and meltwater input, and katabatic wind strength, in turn associated with the Polar Cell. The same variability is observed for the water masses beneath the RIS. [2] Basal melting presents a distinct pattern, related to the current at draft level, and variability related to the changing water masses properties. A new method based on mixing of water masses was developed to disentangle the effect of mixing, and highlight the melting variability associated to each water mass. Results show basal melting of ∼78 Gt/yr, in line with the observations, and presenting variability at the seasonal, interannual and decadal scale indicative of changing water masses properties or volume expansion inside the cavity. Then, we run 21 snapshots at intervals of 1000 years, over the Last Deglaciation (∼21-0 kyears BP): each snapshot was 26 years long and branched on a separate 120 years-long spinup. Simulations are forced by the outputs from an existent transient global paleoclimate experiment TraCE-21ka. The purpose of the paleo experiment was: 1) to analyse the evolution of the water masses with varying deglacial climatic conditions, and 2) how circulation resumed on the continental shelf, starting from a condition restricted by a grounded ice sheet at LGM (∼21 ka), and retreating during the deglaciation. Results show that: [1] initially, circulation was limited to three sub-ice shelf cavities in the Western Ross Sea. In Pennel trough warm CDW water reached the cavity, whereas in the Drygaslki and Joides troughs, HSSW filled the bottom level. [2] During the millenium following the Meltwater Pulse 1-A (14.6-14.3 ka), deep ocean warming and sub-surface ocean freshening caused a weakening of the Antarctic Slope Front, fostered CDW flow in Pennel and the Whales Deep cavity, which experienced high rates of basal melting. HSSW production in the Drygaslki and Joides stopped during this event. [3] In the Early Holocene (∼11.8 ka) grounding line retreat uncovered growingly portions of the continental shelf, allowing stronger atmospheric cooling and resumption of HSSW production. At ∼10ka the RIS cavity began to form, and was melted on the Westward side by HSSW, and on the Eastward side by advected mCDW; therefore, the stronger melting role shifted to the HSSW at that time.
In this work, we want to investigate the influences of water masses on the basal melting under the RIS at present and in the past. In particular, the research aimed at understanding the influences of Ross Sea water masses variability on the RIS basal melting both at present and in the past. A regional adaptation of the Massachusetts Institute of Technology general circulation model (MITgcm) was implemented on the Ross Sea to simulate ocean circulation on the continental shelf and under the RIS. A present-day transient run, forced by ocean (GLORYS12V1) and atmospheric (ERA5) reanalysis over the period 1993-2018, shows that: [1] simulated water masses present different timescales of variability in their properties: Circumpolar Deep Water and Antarctic Surface Waters show a strong seasonal cycle, modulated by strong interannual variability. High Salinity Shelf Water and Low Salinity Shelf Water, on the other hand, show a weaker seasonal cycle and a decadal oscillation in their salinity. Variability of CDW and AASW is probably related to wind variability associated with the Southern Annular Mode, the Amundsen Sea Low, and El-Niño Southern Oscillation, mediated by sea ice. Variability of HSSW and LSSW is probably related to variability of the sea ice and meltwater input, and katabatic wind strength, in turn associated with the Polar Cell. The same variability is observed for the water masses beneath the RIS. [2] Basal melting presents a distinct pattern, related to the current at draft level, and variability related to the changing water masses properties. A new method based on mixing of water masses was developed to disentangle the effect of mixing, and highlight the melting variability associated to each water mass. Results show basal melting of ∼78 Gt/yr, in line with the observations, and presenting variability at the seasonal, interannual and decadal scale indicative of changing water masses properties or volume expansion inside the cavity. Then, we run 21 snapshots at intervals of 1000 years, over the Last Deglaciation (∼21-0 kyears BP): each snapshot was 26 years long and branched on a separate 120 years-long spinup. Simulations are forced by the outputs from an existent transient global paleoclimate experiment TraCE-21ka. The purpose of the paleo experiment was: 1) to analyse the evolution of the water masses with varying deglacial climatic conditions, and 2) how circulation resumed on the continental shelf, starting from a condition restricted by a grounded ice sheet at LGM (∼21 ka), and retreating during the deglaciation. Results show that: [1] initially, circulation was limited to three sub-ice shelf cavities in the Western Ross Sea. In Pennel trough warm CDW water reached the cavity, whereas in the Drygaslki and Joides troughs, HSSW filled the bottom level. [2] During the millenium following the Meltwater Pulse 1-A (14.6-14.3 ka), deep ocean warming and sub-surface ocean freshening caused a weakening of the Antarctic Slope Front, fostered CDW flow in Pennel and the Whales Deep cavity, which experienced high rates of basal melting. HSSW production in the Drygaslki and Joides stopped during this event. [3] In the Early Holocene (∼11.8 ka) grounding line retreat uncovered growingly portions of the continental shelf, allowing stronger atmospheric cooling and resumption of HSSW production. At ∼10ka the RIS cavity began to form, and was melted on the Westward side by HSSW, and on the Eastward side by advected mCDW; therefore, the stronger melting role shifted to the HSSW at that time.
APA, Harvard, Vancouver, ISO, and other styles
7

Ladant, Jean-Baptiste. "Interactions climat-calotte durant la greenhouse Crétacé-Paléogène (120-34 Ma) : influence de la paléogéographie et du CO2 atmosphérique." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLV019/document.

Full text
Abstract:
Les enregistrements climatiques globaux à l’échelle géologique entre le Crétacé et le début du Cénozoïque indiquent des variations de grande amplitude. Sur le long terme, celles-ci sont déterminées par l’équilibre entre la composition atmosphérique en gaz à effet de serre, principalement le CO2, issus du dégazage volcanique et l’altération continentale, modulée par les mouvements tectoniques des continents. Dans cette thèse, les liens entre paléogéographie et CO2 ont été étudiés dans le contexte des interactions entre climat et calottes de glace au cours d’un intervalle de temps dit de « greenhouse », entre 120 et 34 Ma. L’utilisation d’une suite de modèles impliquant un modèle couplé moyenne résolution, un modèle atmosphérique haute résolution et un modèle de calotte de glace, a permis de montrer que les changements paléogéographiques survenant au Crétacé ont régulé la présence de glace en Antarctique. Dans un second temps, une nouvelle méthode de couplage climat-calotte a été développée pour étudier la glaciation Eocène-Oligocène. Ces développements ont permis de reconstruire une évolution fidèle de celle-ci, en bon accord avec les données. Deux rétroactions liées à cette glaciation et à la chute concomitante du CO2 atmosphérique sont étudiées. En premier lieu, l’impact de la glaciation sur le Courant Circumpolaire Antarctique est abordé, montrant que celle-ci génère une intensification de ce courant. Ensuite, au sein d’une étude mêlant données et modèles pour documenter la présence de moussons en Asie dès l’Eocène moyen, il est montré que le changement climatique de la fin de l’Eocène induit une baisse d’intensité de la mousson asiatique. Enfin, dans la perspective d’analyser les conséquences des changements paléogéographiques du Cénozoïque sur la biogéochimie marine, des tests de sensibilité aux passages océaniques de Panama et de Drake ont été réalisés
On geological timescales, global climate proxies indicate that variations of large magnitude occur between the Cretaceous and the Cenozoic. On the long term, these variations are mostly determined by the equilibrium between the greenhouse gases composition of the atmosphere, primarily the CO2, and continental weathering set up by the spatial location of Earth’s landmasses. Here, the links between paleogeography and CO2 are looked upon in a climate-ice sheet interactions framework during a greenhouse period of Earth history (120 – 34 Ma). A suite of models involving both coupled and ice sheet models have been used to demonstrate that paleogeographic reorganizations have regulated the presence of ice over Antarctica during the Cretaceous. In a second time and using a similar setup, a new method for climate-ice sheet coupling have been developed and applied to the Eocene-Oligocene (EO) glaciation to yield a new scenario of ice evolution, in good agreement with data. Two feedbacks related to this glaciation and the coeval atmospheric CO2 fall are investigated. First, it is shown that the EO glaciation generates an intensification of the Antarctic Circumpolar Current. Second, within a data-model study demonstrating active Asian monsoons as old as the mid-Eocene, it is shown that the climatic change at the end of the Eocene is responsible for a reduction in the intensity of the Asian monsoon. Finally, with the aim of analysing the effect of paleogeographic changes on marine biogeochemistry during the Cenozoic, sensitivity tests to Drake Passage and Panama Seaway have been carried out
APA, Harvard, Vancouver, ISO, and other styles
8

Bres, Julia. "Modéliser l’évolution des plantes à fleurs au Crétacé et leurs rétroactions avec le climat." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASJ001.

Full text
Abstract:
Au Crétacé, l'évolution foliaire des plantes à fleurs, ou Angiospermes, vers de fortes densités de nervures et de stomates, suggère une augmentation de la conductance stomatique et des flux d’évapotranspiration sans précédent. Cependant, ces paléo-traits ne sont pas pris en compte dans les modèles de végétation qui visent justement à déterminer les effets de l’évapotranspiration sur le climat. L’objectif de ma thèse est donc de modéliser l’évolution de la conductance stomatique des plantes à fleurs au cours du Crétacé et d’en évaluer ses effets sur les interactions et rétroactions climat-végétation. En combinant des données fossiles et des modèles écophysiologiques, je développe une paramétrisation innovante de la végétation proto-angiosperme dans le modèle de végétation ORCHIDEE qui considère une réduction conjointe de leurs capacités hydrauliques et photosynthétiques. Avec le modèle couplé atmosphère-végétation LMDZOR, je montre que la radiation des Angiospermes génère un renforcement du cycle hydrologique et une baisse de la température de surface, dont les intensités sont modulées par la teneur en CO2 atmosphérique. En activant le modèle de végétation dynamique, je montre que la radiation des plantes à fleurs génère des boucles de rétroactions positives dans un contexte de baisse de la teneur en CO2 atmosphérique au cours du Crétacé : l’augmentation des capacités hydrauliques et photosynthétiques des plantes à fleurs constitue un avantage sélectif par rapport aux autres types de plantes qui leur permet de (i) maintenir leur productivité, (ii) développer des forêts tropicales et remplacer les conifères dans les forêts tempérées et boréales et (iii) renforcer les précipitations, limitant ainsi les effets du stress hydrique sur leur propre essor
During the Cretaceous period, the leaf evolution of flowering plants, or angiosperms, towards higher vein and stomata densities, suggests an unprecedented increase in stomatal conductance as well as evapotranspiration fluxes. However, these paleo-traits are not accounted for in vegetation models whose the aim is to evaluate the effects of evapotranspiration fluxes on the climate system. The purpose of this study is to simulate the stomatal conductance evolution of flowering plants through the Cretaceous period and assess their effects on interaction and feedback between climate and vegetation. By combining fossil data and empirical ecophysiological models, I develop an innovative parameterization of proto-angiosperm vegetation in the ORCHIDEE vegetation model which considers a reduction of both hydraulic and photosynthetic capacities. Thanks to the coupled atmosphere-vegetation model LMDZOR, I demonstrate that the radiation of flowering plants drives a strengthening of the hydrologic cycle and a decrease in surface temperature, the intensities of which are modulated by the atmospheric concentration of CO2. By activating the dynamic vegetation model, I show that flowering plant radiation triggers positive feedback loops in a context of decreasing atmospheric concentration of CO2 during the Cretaceous period: the increase in hydraulic and photosynthetic capacities of flowering plants constitutes a selective advantage compared to other types of plants by allowing them to (i) sustain their productivity, (ii) develop tropical forests and replace conifers in temperate and boreal forests and (iii) enhance precipitations, thus preventing water stress effects on their own development
APA, Harvard, Vancouver, ISO, and other styles
9

Burley, Jonathan Mark Anderson. "Magmatism and glacial cycles : coupled oscillations?" Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:c55a6d98-d222-46de-8500-1ad44d05be75.

Full text
Abstract:
The Earth's climate system is driven by varying insolation from the Sun. The dominant variations in insolation are at 23 and 40 thousand year periods, yet for the past million years the Earth's climate has glacial cycles at approximately 100 kyr periodicity. These cycles are a coupled variation in temperature, ice volume, and atmospheric CO2. Somehow the Earth system's collective response to 23 and 40 kyr insolation forcing produces 100 kyr glacial-interglacial cycles. Generally it has been assumed that the causative mechanisms are a combination of ice dynamics (high ice reflectivity controlling temperature) and ocean circulation (changing carbon partitioning between the deep ocean and the atmosphere, and heat transport to the poles). However, these proposed mechanisms have not yet resulted in a compelling theory for all three variations, particularly CO2. This thesis explores the role of volcanic CO2 emissions in glacial cycles. I calculate that glacial-driven sea level change alters the pressure on mid-ocean ridges (MORs), changing their CO2 emissions by approximately 10%. This occurs because pressure affects the thermodynamics of melt generation. The delay between sea level change and the consequent change in MOR CO2 emissions is several tens-of-thousands-of-years, conceptually consistent with a coupled non-linear oscillation that could disrupt glacial cycles from a 40 kyr mode to a multiple of that period. I develop an Earth system model to investigate this possibility, running for approximately one million years and explicitly calculating global temperatures, ice sheet configuration, and CO2 concentration in the atmosphere. The model is driven by insolation, with all other components varying in response (and according to their own interactions). This model calculates that volcanism is capable of causing a transition to ̃100 kyr glacial cycles, however the required average volcanic CO2 emissions are barely within the 95% confidence interval. Therefore it is possible for volcanic systems and glacial cycles to form a 100 kyr coupled oscillation.
APA, Harvard, Vancouver, ISO, and other styles
10

Ladant, Jean-Baptiste. "Interactions climat-calotte durant la greenhouse Crétacé-Paléogène (120-34 Ma) : influence de la paléogéographie et du CO2 atmosphérique." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLV019.

Full text
Abstract:
Les enregistrements climatiques globaux à l’échelle géologique entre le Crétacé et le début du Cénozoïque indiquent des variations de grande amplitude. Sur le long terme, celles-ci sont déterminées par l’équilibre entre la composition atmosphérique en gaz à effet de serre, principalement le CO2, issus du dégazage volcanique et l’altération continentale, modulée par les mouvements tectoniques des continents. Dans cette thèse, les liens entre paléogéographie et CO2 ont été étudiés dans le contexte des interactions entre climat et calottes de glace au cours d’un intervalle de temps dit de « greenhouse », entre 120 et 34 Ma. L’utilisation d’une suite de modèles impliquant un modèle couplé moyenne résolution, un modèle atmosphérique haute résolution et un modèle de calotte de glace, a permis de montrer que les changements paléogéographiques survenant au Crétacé ont régulé la présence de glace en Antarctique. Dans un second temps, une nouvelle méthode de couplage climat-calotte a été développée pour étudier la glaciation Eocène-Oligocène. Ces développements ont permis de reconstruire une évolution fidèle de celle-ci, en bon accord avec les données. Deux rétroactions liées à cette glaciation et à la chute concomitante du CO2 atmosphérique sont étudiées. En premier lieu, l’impact de la glaciation sur le Courant Circumpolaire Antarctique est abordé, montrant que celle-ci génère une intensification de ce courant. Ensuite, au sein d’une étude mêlant données et modèles pour documenter la présence de moussons en Asie dès l’Eocène moyen, il est montré que le changement climatique de la fin de l’Eocène induit une baisse d’intensité de la mousson asiatique. Enfin, dans la perspective d’analyser les conséquences des changements paléogéographiques du Cénozoïque sur la biogéochimie marine, des tests de sensibilité aux passages océaniques de Panama et de Drake ont été réalisés
On geological timescales, global climate proxies indicate that variations of large magnitude occur between the Cretaceous and the Cenozoic. On the long term, these variations are mostly determined by the equilibrium between the greenhouse gases composition of the atmosphere, primarily the CO2, and continental weathering set up by the spatial location of Earth’s landmasses. Here, the links between paleogeography and CO2 are looked upon in a climate-ice sheet interactions framework during a greenhouse period of Earth history (120 – 34 Ma). A suite of models involving both coupled and ice sheet models have been used to demonstrate that paleogeographic reorganizations have regulated the presence of ice over Antarctica during the Cretaceous. In a second time and using a similar setup, a new method for climate-ice sheet coupling have been developed and applied to the Eocene-Oligocene (EO) glaciation to yield a new scenario of ice evolution, in good agreement with data. Two feedbacks related to this glaciation and the coeval atmospheric CO2 fall are investigated. First, it is shown that the EO glaciation generates an intensification of the Antarctic Circumpolar Current. Second, within a data-model study demonstrating active Asian monsoons as old as the mid-Eocene, it is shown that the climatic change at the end of the Eocene is responsible for a reduction in the intensity of the Asian monsoon. Finally, with the aim of analysing the effect of paleogeographic changes on marine biogeochemistry during the Cenozoic, sensitivity tests to Drake Passage and Panama Seaway have been carried out
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Paleoclimate modelling"

1

PMIP, Workshop (3rd 1999 La Huardière Canada). Paleoclimate Modelling Intercomparison Project (PMIP): Proceedings of the Third PMIP Workshop : La Huardière, Canada, 4-8 October 1999. [Geneva, Switzerland]: World Climate Research Programme, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Paleoclimate modelling"

1

Crowley, Thomas J. "Paleoclimate Modelling." In Physically-Based Modelling and Simulation of Climate and Climatic Change, 883–949. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3043-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Berger, A., and P. Pestiaux. "Modelling the Astronomical Theory of Paleoclimates in the Time and Frequency Domain." In Current Issues in Climate Research, 77–96. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-5494-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hay, William W. "Paleoclimate Modelling." In Encyclopedia of Geology, 309–17. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-409548-9.11989-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Paleoclimate modelling"

1

"Resolving temporal-scale differences between paleoclimate reconstructions and a groundwater model for recharge estimation." In 25th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, 2023. http://dx.doi.org/10.36334/modsim.2023.sharifazari.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dickey, Nathan W., Richard V. Heermance, and Mitchell A. Plummer. "CHRONOLOGY AND PALEOCLIMATE OF LATE PLEISTOCENE GLACIATION IN THE TRINITY ALPS, CALIFORNIA, FROM COSMOGENIC 10BE AND NUMERICAL MODELLING." In 112th Annual GSA Cordilleran Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016cd-274545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography