Journal articles on the topic 'Palladium Nanopartikel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Palladium Nanopartikel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Desportes, S., B. Tidona, and P. Rudolf von Rohr. "Palladium-Nanopartikel-Synthese in einem Zweiphasen- Mikroreaktor und im überkritischen Zustand." Chemie Ingenieur Technik 82, no. 9 (2010): 1318. http://dx.doi.org/10.1002/cite.201050303.
Full textMarhaba, Salem, and Samaya El Samad. "Plasmonic Coupling of One-Dimensional Palladium Nanoparticle Chains." Nano 15, no. 05 (2020): 2050060. http://dx.doi.org/10.1142/s1793292020500605.
Full textHouk, Amanda L., and Levi R. Houk. "Spectroscopy of Palladium Nanoparticle Synthesis: Tailoring Nanoparticle Growth Parameters for Hydrogen Storage." MRS Advances 5, no. 40-41 (2020): 2085–90. http://dx.doi.org/10.1557/adv.2020.228.
Full textGrzincic, Elissa, Ruishen Teh, Rachel Wallen, et al. "Synthesis of gold and palladium nanoshells by in situ generation of seeds on silica nanoparticle cores." RSC Adv. 4, no. 61 (2014): 32283–92. http://dx.doi.org/10.1039/c4ra05688d.
Full textVan Vaerenbergh, Beau, Jeroen Lauwaert, Pieter Vermeir, Joris W. Thybaut, and Jeriffa De Clercq. "Towards high-performance heterogeneous palladium nanoparticle catalysts for sustainable liquid-phase reactions." Reaction Chemistry & Engineering 5, no. 9 (2020): 1556–618. http://dx.doi.org/10.1039/d0re00197j.
Full textKitte, Addisu, Desalegn Assresahegn, and Refera Soreta. "Electrochemical determination of hydrogen peroxide at glassy carbon electrode modified with palladium nanoparticles." Journal of the Serbian Chemical Society 78, no. 5 (2013): 701–11. http://dx.doi.org/10.2298/jsc120619122k.
Full textPeiris, Sunari, Sarina Sarina, Chenhui Han, Qi Xiao, and Huai-Yong Zhu. "Silver and palladium alloy nanoparticle catalysts: reductive coupling of nitrobenzene through light irradiation." Dalton Transactions 46, no. 32 (2017): 10665–72. http://dx.doi.org/10.1039/c7dt00418d.
Full textGarcía-Calvo, José, Patricia Calvo-Gredilla, Saúl Vallejos, et al. "Palladium nanodendrites uniformly deposited on the surface of polymers as an efficient and recyclable catalyst for direct drug modification via Z-selective semihydrogenation of alkynes." Green Chemistry 20, no. 16 (2018): 3875–83. http://dx.doi.org/10.1039/c8gc01522h.
Full textZhu, Jie S., and Young-Seok Shon. "Mechanistic interpretation of selective catalytic hydrogenation and isomerization of alkenes and dienes by ligand deactivated Pd nanoparticles." Nanoscale 7, no. 42 (2015): 17786–90. http://dx.doi.org/10.1039/c5nr05090a.
Full textZeng, Fan W., Dajie Zhang, and James B. Spicer. "Palladium nanoparticle formation processes in fluoropolymers by thermal decomposition of organometallic precursors." Physical Chemistry Chemical Physics 20, no. 37 (2018): 24389–98. http://dx.doi.org/10.1039/c8cp04997a.
Full textZhou, Guohua, Huimin Jiang, Yanfang Zhou, Peilian Liu, Yongmei Jia, and Cui Ye. "Peptide-coated palladium nanoparticle for highly sensitive bioanalysis of trypsin in human urine samples." Nanomaterials and Nanotechnology 8 (January 1, 2018): 184798041882039. http://dx.doi.org/10.1177/1847980418820391.
Full textLi, Wen-Hao, Cun-Yao Li, Yan Li, et al. "Palladium-metalated porous organic polymers as recyclable catalysts for chemoselective decarbonylation of aldehydes." Chemical Communications 54, no. 61 (2018): 8446–49. http://dx.doi.org/10.1039/c8cc03109f.
Full textMa, Hongpeng, Chaolumen Bai, and Yong-Sheng Bao. "Heterogeneous Suzuki–Miyaura coupling of heteroaryl ester via chemoselective C(acyl)–O bond activation." RSC Advances 9, no. 30 (2019): 17266–72. http://dx.doi.org/10.1039/c9ra02394a.
Full textLodge, Rhys W., Graham A. Rance, Michael W. Fay, and Andrei N. Khlobystov. "Movement of palladium nanoparticles in hollow graphitised nanofibres: the role of migration and coalescence in nanocatalyst sintering during the Suzuki–Miyaura reaction." Nanoscale 10, no. 40 (2018): 19046–51. http://dx.doi.org/10.1039/c8nr05267k.
Full textSong, Xueying, Li Gao, Yamin Li, Liqun Mao, and Jing-He Yang. "A sensitive and selective electrochemical nitrite sensor based on a glassy carbon electrode modified with cobalt phthalocyanine-supported Pd nanoparticles." Analytical Methods 9, no. 21 (2017): 3166–71. http://dx.doi.org/10.1039/c7ay01004d.
Full textSalama, Nahla N., Shereen M. Azab, Mona A. Mohamed, and Amany M. Fekry. "A novel methionine/palladium nanoparticle modified carbon paste electrode for simultaneous determination of three antiparkinson drugs." RSC Advances 5, no. 19 (2015): 14187–95. http://dx.doi.org/10.1039/c4ra15909h.
Full textJi, Ran, Shangru Zhai, Wei Zheng, Zuoyi Xiao, Qingda An, and Feng Zhang. "Enhanced metal–support interactions between Pd NPs and ZrSBA-15 for efficient aerobic benzyl alcohol oxidation." RSC Advances 6, no. 74 (2016): 70424–32. http://dx.doi.org/10.1039/c6ra17272e.
Full textBelykh, Lyudmila B., Nikita I. Skripov, Tatyana P. Sterenchuk, Vitaliy A. Umanets, and Fedor K. Schmidt. "Pd–P Hydrogenation Catalyst: Nanoparticle Nature and Surface Layer State." Nano 11, no. 06 (2016): 1650065. http://dx.doi.org/10.1142/s179329201650065x.
Full textColby, R., J. Hulleman, S. Padalkar, J. C. Rochet та L. A. Stanciu. "Biotemplated Synthesis of Metallic Nanoparticle Chains on an α-Synuclein Fiber Scaffold". Journal of Nanoscience and Nanotechnology 8, № 2 (2008): 973–78. http://dx.doi.org/10.1166/jnn.2008.16343.
Full textMizuno, Shunsuke, Taka-Aki Asoh, Yoshinori Takashima, Akira Harada та Hiroshi Uyama. "Palladium nanoparticle loaded β-cyclodextrin monolith as a flow reactor for concentration enrichment and conversion of pollutants based on molecular recognition". Chemical Communications 56, № 92 (2020): 14408–11. http://dx.doi.org/10.1039/d0cc06684b.
Full textSharma, Vinay, Anoop Kumar Saini, and Shaikh M. Mobin. "Correction: Multicolour fluorescent carbon nanoparticle probes for live cell imaging and dual palladium and mercury sensors." Journal of Materials Chemistry B 4, no. 36 (2016): 6154. http://dx.doi.org/10.1039/c6tb90122k.
Full textSalama, Nahla N., Shereen M. Azab, Mona A. Mohamed, and Amany M. Fekry. "Correction: A novel methionine/palladium nanoparticle modified carbon paste electrode for simultaneous determination of three antiparkinson drugs." RSC Advances 6, no. 100 (2016): 98475. http://dx.doi.org/10.1039/c6ra90099b.
Full textWang, Peng, Xuelin Shi, Chunhong Fu, et al. "Strong pyrrolic-N–Pd interactions boost the electrocatalytic hydrodechlorination reaction on palladium nanoparticles." Nanoscale 12, no. 2 (2020): 843–50. http://dx.doi.org/10.1039/c9nr07528c.
Full textMinati, L., Kondo-Francois Aguey-Zinsou, V. Micheli, and G. Speranza. "Palladium nanoparticle functionalized graphene xerogel for catalytic dye reduction." Dalton Transactions 47, no. 41 (2018): 14573–79. http://dx.doi.org/10.1039/c8dt02839g.
Full textZhang, Lei, Pinhua Li, Can Liu, Jin Yang, Min Wang, and Lei Wang. "A highly efficient and recyclable Fe3O4 magnetic nanoparticle immobilized palladium catalyst for the direct C-2 arylation of indoles with arylboronic acids." Catal. Sci. Technol. 4, no. 7 (2014): 1979–88. http://dx.doi.org/10.1039/c4cy00040d.
Full textShen, Nan, Xiu-Yang Xia, Yun Chen, Hang Zheng, Yong-Chen Zhong, and Raymond J. Zeng. "Palladium nanoparticles produced and dispersed by Caldicellulosiruptor saccharolyticus enhance the degradation of contaminants in water." RSC Advances 5, no. 20 (2015): 15559–65. http://dx.doi.org/10.1039/c4ra14991b.
Full textFavier, Isabelle, Marie-Lou Toro, Pierre Lecante, Daniel Pla, and Montserrat Gómez. "Palladium-mediated radical homocoupling reactions: a surface catalytic insight." Catalysis Science & Technology 8, no. 18 (2018): 4766–73. http://dx.doi.org/10.1039/c8cy00901e.
Full textTaniguchi, Kento, Xiongjie Jin, Kazuya Yamaguchi, and Noritaka Mizuno. "Supported gold–palladium alloy nanoparticle catalyzed tandem oxidation routes to N-substituted anilines from non-aromatic compounds." Chemical Communications 51, no. 81 (2015): 14969–72. http://dx.doi.org/10.1039/c5cc06514c.
Full textDehghani Firuzabadi, Fahimeh, Zahra Asadi, and Farhad Panahi. "Immobilized NNN Pd-complex on magnetic nanoparticles: efficient and reusable catalyst for Heck and Sonogashira coupling reactions." RSC Advances 6, no. 103 (2016): 101061–70. http://dx.doi.org/10.1039/c6ra22535g.
Full textMohammadi, Sayed, Hooshang Hamidian, and Zahra Moeinadini. "Separation of trace amounts palladium by SiO2/TiO2/Ce nanoparticles prior to flame atomic absorption spectrometry determination in anodic slime and wastewater samples." Open Chemistry 11, no. 11 (2013): 1749–56. http://dx.doi.org/10.2478/s11532-013-0315-3.
Full textFujishima, M., M. Yamauchi, R. Ikeda, T. Kubo, K. Nakasuji, and H. Kitagawa. "Powder XRD and Solid-State 2H-NMR Studies on RAP-Protected Palladium Nanoparticle (RAP = Rubeanic-Acid Polymer)." Solid State Phenomena 111 (April 2006): 107–10. http://dx.doi.org/10.4028/www.scientific.net/ssp.111.107.
Full textLeong, G. Jeremy, Abbas Ebnonnasir, Maxwell C. Schulze, et al. "Shape-directional growth of Pt and Pd nanoparticles." Nanoscale 6, no. 19 (2014): 11364–71. http://dx.doi.org/10.1039/c4nr02755h.
Full textKandathil, Vishal, Bradley D. Fahlman, B. S. Sasidhar, Shivaputra A. Patil, and Siddappa A. Patil. "A convenient, efficient and reusable N-heterocyclic carbene-palladium(ii) based catalyst supported on magnetite for Suzuki–Miyaura and Mizoroki–Heck cross-coupling reactions." New Journal of Chemistry 41, no. 17 (2017): 9531–45. http://dx.doi.org/10.1039/c7nj01876b.
Full textTaniguchi, Kento, Xiongjie Jin, Kazuya Yamaguchi, and Noritaka Mizuno. "Facile access to N-substituted anilines via dehydrogenative aromatization catalysis over supported gold–palladium bimetallic nanoparticles." Catalysis Science & Technology 6, no. 11 (2016): 3929–37. http://dx.doi.org/10.1039/c5cy01908g.
Full textArkhipova, Daria M., Vadim V. Ermolaev, Vasily A. Miluykov, et al. "Sterically Hindered Phosphonium Salts: Structure, Properties and Palladium Nanoparticle Stabilization." Nanomaterials 10, no. 12 (2020): 2457. http://dx.doi.org/10.3390/nano10122457.
Full textKalishyn, Yevhen Y., Vladislav V. Ordynskyi, Mykola V. Ishchenko та ін. "Synthesis and Thermal Stability of Palladium Nanoparticles Supported on γ-Αl2O3". Current Nanomaterials 5, № 1 (2020): 79–90. http://dx.doi.org/10.2174/2405461505666191220114659.
Full textFu, Bao Song, Hu Liu, and Guo Min Xiao. "Ultrafine Pd Nanoparticles Synthesis and Catalytic Performance in Methane Partial Oxidation." Advanced Materials Research 284-286 (July 2011): 1905–8. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.1905.
Full textPARVATHI, L. T., and S. KARUTHAPANDIAN. "1D MoO3 Nanorods Decorated by Palladium Nanoparticles: Surface Plasmon Resonance Promoted Photodegradation of Congo Red Dye." Asian Journal of Chemistry 32, no. 9 (2020): 2315–23. http://dx.doi.org/10.14233/ajchem.2020.22791.
Full textMengistie, Endalkachew Chanie, and Jean-François Lahitte. "Development of Flow-Through Polymeric Membrane Reactor for Liquid Phase Reactions: Experimental Investigation and Mathematical Modeling." International Journal of Chemical Engineering 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/9802073.
Full textJiang, Yao-Wen, Ge Gao, Pengcheng Hu, et al. "Palladium nanosheet-knotted injectable hydrogels formed via palladium–sulfur bonding for synergistic chemo-photothermal therapy." Nanoscale 12, no. 1 (2020): 210–19. http://dx.doi.org/10.1039/c9nr08454a.
Full textGancheva, Teodora, and Nick Virgilio. "Tailored macroporous hydrogel–nanoparticle nanocomposites for monolithic flow-through catalytic reactors." Reaction Chemistry & Engineering 4, no. 5 (2019): 806–11. http://dx.doi.org/10.1039/c8re00337h.
Full textLiu, Yan, Kaihuan Zhang, Weiya Li, Jinghong Ma, and G. Julius Vancso. "Metal nanoparticle loading of gel-brush grafted polymer fibers in membranes for catalysis." Journal of Materials Chemistry A 6, no. 17 (2018): 7741–48. http://dx.doi.org/10.1039/c8ta01231h.
Full textPascu, Alexandru, Elena Manuela Stanciu, Cătălin Croitoru, Ionut Claudiu Roată, and Mircea Horia Tierean. "Carbon Nanoparticle-Supported Pd Obtained by Solar Physical Vapor Deposition." Advances in Materials Science and Engineering 2018 (2018): 1–7. http://dx.doi.org/10.1155/2018/4730192.
Full textMorozov, Michael, Tatyana Bendikov, Guennadi Evmenenko, Pulak Dutta, Michal Lahav, and Milko E. van der Boom. "Anion-induced palladium nanoparticle formation during the on-surface growth of molecular assemblies." Chemical Communications 52, no. 13 (2016): 2683–86. http://dx.doi.org/10.1039/c5cc08630b.
Full textStolle, Heike Lisa Kerstin Stephanie, Andrea Csáki, Jan Dellith, and Wolfgang Fritzsche. "Modification of Surface Bond Au Nanospheres by Chemically and Plasmonically Induced Pd Deposition." Nanomaterials 11, no. 1 (2021): 245. http://dx.doi.org/10.3390/nano11010245.
Full textZhao, Yili, Lei Liu, Daniel Shi, Xiangyang Shi, and Mingwu Shen. "Performing a catalysis reaction on filter paper: development of a metal palladium nanoparticle-based catalyst." Nanoscale Advances 1, no. 1 (2019): 342–46. http://dx.doi.org/10.1039/c8na00095f.
Full textXiang, Zhouyang, Yong Chen, Qingguo Liu, and Fachuang Lu. "A highly recyclable dip-catalyst produced from palladium nanoparticle-embedded bacterial cellulose and plant fibers." Green Chemistry 20, no. 5 (2018): 1085–94. http://dx.doi.org/10.1039/c7gc02835k.
Full textKim, Jun-Hyun, William W. Bryan, Hae-Won Chung, Chan Young Park, Allan J. Jacobson, and T. Randall Lee. "Gold, Palladium, and Gold−Palladium Alloy Nanoshells on Silica Nanoparticle Cores." ACS Applied Materials & Interfaces 1, no. 5 (2009): 1063–69. http://dx.doi.org/10.1021/am900039a.
Full textDal Pont, Kevin, Anatoli Serghei, and Eliane Espuche. "Multifunctional Pd-Based Nanocomposites with Designed Structure from In Situ Growth of Pd Nanoparticles and Polyether Block Amide Copolymer." Polymers 13, no. 9 (2021): 1477. http://dx.doi.org/10.3390/polym13091477.
Full textMartínez, Alejandro V., Alejandro Leal-Duaso, José I. García, and José A. Mayoral. "An extremely highly recoverable clay-supported Pd nanoparticle catalyst for solvent-free Heck–Mizoroki reactions." RSC Advances 5, no. 74 (2015): 59983–90. http://dx.doi.org/10.1039/c5ra10191c.
Full text