Journal articles on the topic 'Paper-based substrates'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Paper-based substrates.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Joshi, Pushkaraj, and Venugopal Santhanam. "Paper-based SERS active substrates on demand." RSC Adv. 6, no. 72 (2016): 68545–52. http://dx.doi.org/10.1039/c6ra07280a.
Full textHe, Han, Lauri Sydänheimo, Johanna Virkki, and Leena Ukkonen. "Experimental Study on Inkjet-Printed Passive UHF RFID Tags on Versatile Paper-Based Substrates." International Journal of Antennas and Propagation 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/9265159.
Full textAndersson, Henrik, Anatoliy Manuilskiy, Britta Andres, et al. "Contacting paper-based supercapacitors to printed electronics on paper substrates." Nordic Pulp & Paper Research Journal 27, no. 2 (2012): 476–80. http://dx.doi.org/10.3183/npprj-2012-27-02-p476-480.
Full textNguyen Thi, Bich Ngoc, Viet Ha Chu, Thi Thuy Nguyen, Trong Nghia Nguyen, and Hong Nhung Tran. "Optimization and Characterization of Paper-based SERS Substrates for Detection of Melamine." Communications in Physics 30, no. 4 (2020): 345. http://dx.doi.org/10.15625/0868-3166/30/0/14832.
Full textYang, Gwangseok, Chongmin Lee, Jihyun Kim, Fan Ren, and Stephen J. Pearton. "Flexible graphene-based chemical sensors on paper substrates." Phys. Chem. Chem. Phys. 15, no. 6 (2013): 1798–801. http://dx.doi.org/10.1039/c2cp43717a.
Full textHyun, Woo Jin, O. Ok Park, and Byung Doo Chin. "Foldable Graphene Electronic Circuits Based on Paper Substrates." Advanced Materials 25, no. 34 (2013): 4729–34. http://dx.doi.org/10.1002/adma.201302063.
Full textAlder, Rhiannon, Jungmi Hong, Edith Chow, et al. "Application of Plasma-Printed Paper-Based SERS Substrate for Cocaine Detection." Sensors 21, no. 3 (2021): 810. http://dx.doi.org/10.3390/s21030810.
Full textMalik, H. I., M. Y. Ismail, S. R. Masrol, and Sharmiza Adnan. "Reflection phase analysis of reflectarray antenna based on paper substrate materials." Indonesian Journal of Electrical Engineering and Computer Science 13, no. 2 (2019): 766. http://dx.doi.org/10.11591/ijeecs.v13.i2.pp766-772.
Full textXie, Jingjin, Qiang Chen, Poornima Suresh, Subrata Roy, James F. White, and Aaron D. Mazzeo. "Paper-based plasma sanitizers." Proceedings of the National Academy of Sciences 114, no. 20 (2017): 5119–24. http://dx.doi.org/10.1073/pnas.1621203114.
Full textTeixeira, Alexandra, Juan Hernández-Rodríguez, Lei Wu, et al. "Microfluidics-Driven Fabrication of a Low Cost and Ultrasensitive SERS-Based Paper Biosensor." Applied Sciences 9, no. 7 (2019): 1387. http://dx.doi.org/10.3390/app9071387.
Full textLang, Augustus W., Anna M. Österholm, and John R. Reynolds. "Paper‐Based Electrochromic Devices Enabled by Nanocellulose‐Coated Substrates." Advanced Functional Materials 29, no. 39 (2019): 1903487. http://dx.doi.org/10.1002/adfm.201903487.
Full textPolino, Giuseppina, Alessandro Scaramella, Valerio Manca, et al. "Nanodiamond‐Based Separators for Supercapacitors Realized on Paper Substrates." Energy Technology 8, no. 6 (2020): 1901233. http://dx.doi.org/10.1002/ente.201901233.
Full textMatias, M. L., D. Nunes, A. Pimentel, et al. "Paper-Based Nanoplatforms for Multifunctional Applications." Journal of Nanomaterials 2019 (April 4, 2019): 1–16. http://dx.doi.org/10.1155/2019/6501923.
Full textGutiérrez-Capitán, Manuel, Antonio Baldi, and César Fernández-Sánchez. "Electrochemical Paper-Based Biosensor Devices for Rapid Detection of Biomarkers." Sensors 20, no. 4 (2020): 967. http://dx.doi.org/10.3390/s20040967.
Full textShaker, George, Safieddin Safavi-Naeini, Nagula Sangary, and Manos M. Tentzeris. "Inkjet Printing of Ultrawideband (UWB) Antennas on Paper-Based Substrates." IEEE Antennas and Wireless Propagation Letters 10 (2011): 111–14. http://dx.doi.org/10.1109/lawp.2011.2106754.
Full textJiang, Jie, Jia Sun, Wei Dou, and Qing Wan. "Junctionless Flexible Oxide-Based Thin-Film Transistors on Paper Substrates." IEEE Electron Device Letters 33, no. 1 (2012): 65–67. http://dx.doi.org/10.1109/led.2011.2172973.
Full textMohammadi, Saeed, Lori Shayne Alamo Busa, Masatoshi Maeki, et al. "Novel concept of washing for microfluidic paper-based analytical devices based on capillary force of paper substrates." Analytical and Bioanalytical Chemistry 408, no. 27 (2016): 7559–63. http://dx.doi.org/10.1007/s00216-016-9853-9.
Full textDogome, Kazutomo, Toshiharu Enomae, and Akira Isogai. "Method for controlling surface energies of paper substrates to create paper-based printed electronics." Chemical Engineering and Processing: Process Intensification 68 (June 2013): 21–25. http://dx.doi.org/10.1016/j.cep.2013.01.003.
Full textLan, Leilei, Xiangyu Hou, Yimeng Gao, Xingce Fan, and Teng Qiu. "Inkjet-printed paper-based semiconducting substrates for surface-enhanced Raman spectroscopy." Nanotechnology 31, no. 5 (2019): 055502. http://dx.doi.org/10.1088/1361-6528/ab4f11.
Full textWu, Guodong, Jin Zhang, Xiang Wan, Yi Yang, and Shuanghe Jiang. "Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrates." J. Mater. Chem. C 2, no. 31 (2014): 6249–55. http://dx.doi.org/10.1039/c4tc00652f.
Full textXu, Fugang, Mengren Xuan, Zixiang Ben, Wenjuan Shang, and Guangran Ma. "Surface enhanced Raman scattering analysis with filter-based enhancement substrates: A mini review." Reviews in Analytical Chemistry 40, no. 1 (2021): 75–92. http://dx.doi.org/10.1515/revac-2021-0126.
Full textElizalde, Emanuel, Raúl Urteaga, and Claudio L. A. Berli. "Rational design of capillary-driven flows for paper-based microfluidics." Lab on a Chip 15, no. 10 (2015): 2173–80. http://dx.doi.org/10.1039/c4lc01487a.
Full textQiu, Yu, Heqiu Zhang, Lizhong Hu, et al. "Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates." Nanoscale 4, no. 20 (2012): 6568. http://dx.doi.org/10.1039/c2nr31031g.
Full textCosta-Rama, Estefanía, and María Teresa Fernández-Abedul. "Paper-Based Screen-Printed Electrodes: A New Generation of Low-Cost Electroanalytical Platforms." Biosensors 11, no. 2 (2021): 51. http://dx.doi.org/10.3390/bios11020051.
Full textKlutse, Charles K., Adam Mayer, Julia Wittkamper, and Brian M. Cullum. "Applications of Self-Assembled Monolayers in Surface-Enhanced Raman Scattering." Journal of Nanotechnology 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/319038.
Full textPOWELL, ADRIAN, JASON JENNY, STEPHAN MULLER, et al. "GROWTH OF SiC SUBSTRATES." International Journal of High Speed Electronics and Systems 16, no. 03 (2006): 751–77. http://dx.doi.org/10.1142/s0129156406004016.
Full textDe Silva, Imesha W., Darren T. Converse, Lauren A. Juel, and Guido F. Verbeck. "A comparative study of microporous polyolefin silica-based paper and cellulose paper substrates utilizing paper spray-mass spectrometry in drug analysis." Analytical Methods 11, no. 24 (2019): 3066–72. http://dx.doi.org/10.1039/c9ay00641a.
Full textDing, Ruiyu, Vida Krikstolaityte, and Grzegorz Lisak. "Inorganic salt modified paper substrates utilized in paper based microfluidic sampling for potentiometric determination of heavy metals." Sensors and Actuators B: Chemical 290 (July 2019): 347–56. http://dx.doi.org/10.1016/j.snb.2019.03.079.
Full textLukacs, Peter, Alena Pietrikova, Beata Ballokova, Dagmar Jakubeczyova, and Ondrej Kovac. "Investigation of nano-inks’ behaviour on flexible and rigid substrates under various conditions." Circuit World 43, no. 1 (2017): 2–8. http://dx.doi.org/10.1108/cw-10-2016-0049.
Full textCarrijo, Mylena M. M., Hannes Lorenz, Carlos R. Rambo, Peter Greil, and Nahum Travitzky. "Fabrication of Ti3SiC2-based pastes for screen printing on paper-derived Al2O3 substrates." Ceramics International 44, no. 7 (2018): 8116–24. http://dx.doi.org/10.1016/j.ceramint.2018.01.256.
Full textWu, Guodong, Xiang Wan, Yi Yang, and Shuanghe Jiang. "Lateral-coupling coplanar-gate oxide-based thin-film transistors on bare paper substrates." Journal of Physics D: Applied Physics 47, no. 49 (2014): 495101. http://dx.doi.org/10.1088/0022-3727/47/49/495101.
Full textKavčič, Urška, Igor Karlovits, and Janja Zule. "Deinking of Screen-Printed Electrodes Printed on Invasive Plant-Based Paper." Sustainability 12, no. 4 (2020): 1350. http://dx.doi.org/10.3390/su12041350.
Full textKim, Sangkil. "Inkjet-Printed Electronics on Paper for RF Identification (RFID) and Sensing." Electronics 9, no. 10 (2020): 1636. http://dx.doi.org/10.3390/electronics9101636.
Full textYusof Ismail, Muhammad, Hasan Ijaz Malik, Sharmiza Adnan, and Shaiful Rizal Masrol. "Broadband dielectric characterization of novel organic substrates for microwave applications." MATEC Web of Conferences 192 (2018): 01047. http://dx.doi.org/10.1051/matecconf/201819201047.
Full textCraig, Paula, and Janet C. Cole. "A Comparison of Recycled Paper as a Growth Substrate in Container Production of Azaleas." HortScience 32, no. 4 (1997): 604B—604. http://dx.doi.org/10.21273/hortsci.32.4.604b.
Full textHarpaz, Dorin, Evgeni Eltzov, Timothy S. E. Ng, Robert S. Marks, and Alfred I. Y. Tok. "Enhanced Colorimetric Signal for Accurate Signal Detection in Paper-Based Biosensors." Diagnostics 10, no. 1 (2020): 28. http://dx.doi.org/10.3390/diagnostics10010028.
Full textLee, Martin, Ali Mazaheri, Herre S. J. van der Zant, Riccardo Frisenda, and Andres Castellanos-Gomez. "Drawing WS2 thermal sensors on paper substrates." Nanoscale 12, no. 43 (2020): 22091–96. http://dx.doi.org/10.1039/d0nr06036d.
Full textFierro-Mercado, Pedro M., and Samuel P. Hernández-Rivera. "Highly Sensitive Filter Paper Substrate for SERS Trace Explosives Detection." International Journal of Spectroscopy 2012 (October 17, 2012): 1–7. http://dx.doi.org/10.1155/2012/716527.
Full textLiu, Lin, and Seokheun Choi. "A Paper-Based Biological Solar Cell." SLAS TECHNOLOGY: Translating Life Sciences Innovation 25, no. 1 (2019): 75–81. http://dx.doi.org/10.1177/2472630319875403.
Full textEisermann, E., K. Höll, W. Smetana, W. Tusler, M. Unger, and J. Whitmarsh. "Comparison of low cost, insulated aluminium substrates used as integrated heat sinks with conventional technology." Microelectronics International 26, no. 2 (2009): 3–9. http://dx.doi.org/10.1108/13565360910960178.
Full textShi, Yanfeng, Yongqiang Chai, and Shengbo Hu. "Preparation and Characterization of Printed LTCC Substrates for Microwave Devices." Active and Passive Electronic Components 2019 (April 1, 2019): 1–5. http://dx.doi.org/10.1155/2019/6473587.
Full textKoşak Söz, Çağla, Zafer Özomay, Semra Unal, Muhammet Uzun, and Sinan Sönmez. "Development of a nonwetting coating for packaging substrate surfaces using a novel and easy to implement method." Nordic Pulp & Paper Research Journal 36, no. 2 (2021): 331–42. http://dx.doi.org/10.1515/npprj-2021-0017.
Full textPearton, Stephen J., Wan Tae Lim, Erica Douglas, Hyun Cho, and F. Ren. "Flexible Electronics Based on InGaZnO Transparent Thin Film Transistors." Key Engineering Materials 521 (August 2012): 141–51. http://dx.doi.org/10.4028/www.scientific.net/kem.521.141.
Full textZhu, Yiqun, Li Zhang, and Liangbao Yang. "Designing of the functional paper-based surface-enhanced Raman spectroscopy substrates for colorants detection." Materials Research Bulletin 63 (March 2015): 199–204. http://dx.doi.org/10.1016/j.materresbull.2014.12.004.
Full textSun, Jia, Jie Jiang, Aixia Lu, Wei Dou, Bin Zhou, and Qing Wan. "Low-Voltage Oxide-Based TFTs Self-Assembled on Paper Substrates With Tunable Threshold Voltage." IEEE Transactions on Electron Devices 59, no. 2 (2012): 380–84. http://dx.doi.org/10.1109/ted.2011.2173574.
Full textChung, Daehan, and Bonnie L. Gray. "Printing-based fabrication method using sacrificial paper substrates for flexible and wearable microfluidic devices." Journal of Micromechanics and Microengineering 27, no. 11 (2017): 115009. http://dx.doi.org/10.1088/1361-6439/aa8b21.
Full textZhang, Yi-Zhou, Yang Wang, Tao Cheng, Wen-Yong Lai, Huan Pang, and Wei Huang. "Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage." Chemical Society Reviews 44, no. 15 (2015): 5181–99. http://dx.doi.org/10.1039/c5cs00174a.
Full textXian, Li, Ruiyun You, Dechan Lu, Changji Wu, Shangyuan Feng, and Yudong Lu. "Surface-modified paper-based SERS substrates for direct-droplet quantitative determination of trace substances." Cellulose 27, no. 3 (2019): 1483–95. http://dx.doi.org/10.1007/s10570-019-02855-6.
Full textRudmann, Linda, Juan S. Ordonez, Hans Zappe, and Thomas Stieglitz. "Hermetic Electrical Feedthroughs Based on the Diffusion of Platinum into Silicon." International Symposium on Microelectronics 2014, no. 1 (2014): 000729–34. http://dx.doi.org/10.4071/isom-wp45.
Full textLewis, Brian J., D. F. Baldwin, P. N. Houston, et al. "Processing and Reliability Assessment of Silicon Based, Integrated Ultra High Density Substrates." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2011, DPC (2011): 002272–313. http://dx.doi.org/10.4071/2011dpc-tha23.
Full text