Academic literature on the topic 'Papyrus Rhind'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Papyrus Rhind.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Papyrus Rhind"
Michalowicz, Karen Dee. "Fractions of Ancient Egypt in the Contemporary Classroom." Mathematics Teaching in the Middle School 1, no. 10 (May 1996): 786–89. http://dx.doi.org/10.5951/mtms.1.10.0786.
Full textMiatello, Luca. "The difference 512 in a problem of rations from the Rhind mathematical papyrus." Historia Mathematica 35, no. 4 (November 2008): 277–84. http://dx.doi.org/10.1016/j.hm.2008.06.001.
Full textHoward, Christopher A. "Mathematics Problems from Ancient Egyptian Papyri." Mathematics Teacher 103, no. 5 (December 2009): 332–39. http://dx.doi.org/10.5951/mt.103.5.0332.
Full textHoward, Christopher A. "Mathematics Problems from Ancient Egyptian Papyri." Mathematics Teacher 103, no. 5 (December 2009): 332–39. http://dx.doi.org/10.5951/mt.103.5.0332.
Full textLee-Chua, Queena N. "Mathematics in Tribal Philippines and Other Societies in the South Pacific." Mathematics Teacher 94, no. 1 (January 2001): 50–55. http://dx.doi.org/10.5951/mt.94.1.0050.
Full textDorce, Carlos. "The Exact Computation of the Decompositions of the Recto Table of the Rhind Mathematical Papyrus." History Research Journal 3, no. 4 (August 23, 2019). http://dx.doi.org/10.26643/hrj.v3i4.6704.
Full textDissertations / Theses on the topic "Papyrus Rhind"
Geronimo, Rafael Rix. "Elaboração e proposta de um RPG (Role Playing Game) a partir do Papiro de Rhind." Pontifícia Universidade Católica de São Paulo, 2011. https://tede2.pucsp.br/handle/handle/10886.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
This dissertation was aimed at developing an RPG (Role Playing Game), inspired on the Rhind Papyrus, to introduce the idea of unknown number to students of the seventh grade of elementary school. To this end, we discoursed on the pedagogical potential of the RPG found in some studies, which explore the game as a pedagogical tool. We also presented a brief description of the Rhind Mathematical Papyrus, as far as their parts, organization and content are concerned. From the method of false position, present in the Rhind Papyrus, we tried to develop issues, which were incorporated in the RPG, to introduce the idea of the unknown number. We present, thus, an account of the game application to a group of five students in a public school of Sao Paulo state. This report points to some strategies used by students to solve problems and to the positive and negative aspects of the game. Among the negative aspects we can list the difficulties related to non-linear narrative of the games, the language used in the game besides the fact that not all the students feel motivated to play RPG. With regard to the positive aspects, one can highlight the involvement of some students with problems in the game, which is noted at their attempt to solving problems, showing that the students faced the errors in a positive way
Essa dissertação teve como objetivo a elaboração de um RPG (Role Playing Game), inspirado no Papiro de Rhind, para introduzir a noção de incógnita para alunos do sétimo ano do ensino fundamental. Para tanto, discorremos sobre as potencialidades pedagógicas do RPG presentes em alguns estudos que exploram o jogo como ferramenta pedagógica. Apresentamos também uma breve descrição do Papiro Matemático de Rhind, considerando suas partes, organização e conteúdo. A partir do método de falsa posição, presente no Papiro de Rhind, tentamos elaborar problemas, que foram incorporados no RPG, para introduzir a noção de incógnita. Apresentamos, assim, um relato da aplicação do jogo a um grupo de cinco alunos de uma escola publica estadual da grande São Paulo. Este relato aponta para algumas estratégias utilizadas pelos alunos para resolver os problemas e para os aspectos positivos e negativos do jogo. Dentre os aspectos negativos podemos listar as dificuldades relacionadas com a narrativa não linear das partidas, a linguagem que utilizamos no jogo além do fato de quem nem todos os estudantes se sentem motivados para jogar RPG. Como pontos positivos, podemos apontar para o envolvimento de alguns estudantes com os problemas presentes no jogo, o que é notório nas tentativas que os alunos fizeram para resolver os problemas, denotando que os alunos encararam os erros de uma maneira positiva
Carter, Mary Donette. "The Role of the History of Mathematics in Middle School." Digital Commons @ East Tennessee State University, 2006. https://dc.etsu.edu/etd/2224.
Full textSILVA, Fabr?cio de Azevedo. "O m?todo da Falsa Posi??o: Uma alternativa para o ensino de resolu??o de problemas envolvendo equa??es do 1? grau." Universidade Federal Rural do Rio de Janeiro, 2015. https://tede.ufrrj.br/jspui/handle/jspui/2314.
Full textMade available in DSpace on 2018-05-17T18:02:04Z (GMT). No. of bitstreams: 1 2015 - Fabr?cio de Azevedo Silva.pdf: 2083796 bytes, checksum: d9a26681bab37d5289f5f06f93a62cc8 (MD5) Previous issue date: 2015-08-31
CAPES
The main objective of this research is to see whether the false position method, used to solve some problems Rhind Papyrus, can be an alternative for solving problems that involve the 1st degree equations with one unknown for students from the 7th grade of elementary school. The Egyptians used this method and this is a way to find the solution of the problem by requiring an initial value, considered the false position, which should be adjusted immediately to obtain the correct value. As we noted not rare that this strategy is adopted by students nowadays, we believe this is a plausible alternative to the teaching content. To check the effectiveness of the method, We conducted a case study ? adopting a qualitative approach to analyze the data collected in search ? with a group of the 7th grade in a municipal school in Rio de Janeiro. We propose a sequence of three activities, applied in a single meeting, where after the resolution of problems by students, we began a discussion of what strategies adopted. After the resolution of the first activity, a problem taken from the Rhind Papyrus, during the period for the discussion of the problem, we show how the Egyptians resolved. We can see that a considerable amount of them identified with the method, by the way they decided later activities.
O principal objetivo desta pesquisa ? verificar se o m?todo da falsa posi??o, utilizado para resolver alguns problemas do Papiro de Rhind, pode ser uma alternativa para resolu??o de problemas que envolvem equa??es do 1? grau com uma inc?gnita para alunos do 7? ano do ensino fundamental. Esse m?todo era utilizado pelos eg?pcios e trata-se de um caminho para encontrar a solu??o do problema atrav?s da estipula??o de um valor inicial, considerado a falsa posi??o, que dever? ser ajustado imediatamente ap?s para se obter o valor correto. Como observamos n?o ser raro que essa estrat?gia seja adotada pelos discentes nos dias atuais, acreditamos ser essa uma alternativa plaus?vel para o ensino do conte?do. Para verificar a efic?cia do m?todo, realizamos um estudo de caso ? adotando uma abordagem qualitativa para analisar os dados recolhidos na pesquisa ? com uma turma do 7? ano em uma escola da rede municipal do Rio de Janeiro. Propomos uma sequ?ncia de tr?s atividades, aplicada em um ?nico encontro, onde ap?s a resolu??o dos problemas pelos discentes, inici?vamos uma discuss?o sobre quais estrat?gias adotaram. Ap?s a resolu??o da primeira atividade, um problema retirado do Papiro de Rhind, durante o per?odo destinado ? discuss?o do problema, mostramos como os eg?pcios o resolviam. Podemos perceber que uma quantidade consider?vel deles se identificou com o m?todo, pela forma como resolveram as atividades posteriores.
Books on the topic "Papyrus Rhind"
Lustman, Jacqueline. Etude grammaticale du Papyrus Bremner-Rhind. Paris: J. Lustman, 1999.
Find full textShute, Charles Cameron Donald, 1917-, British Museum, and British Museum Trustees, eds. The Rhind mathematical papyrus: An ancient Egyptian text. London: Published for the Trustees of the British Museum by British Museum Publications, 1987.
Find full textRobins, Gay. The Rhind mathematical papyrus: An ancient Egyptian text. New York: Dover, 1990.
Find full textShute, Charles, and Gay Robins. The Rhind Mathematical Papyrus (Egyptian). British Museum Press, 1987.
Find full textBook chapters on the topic "Papyrus Rhind"
Fulton, Kristy. "The Rhind Papyrus." In More Math Puzzles and Patterns For Kids, 34–35. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003236733-13.
Full textBerggren, Lennart, Jonathan Borwein, and Peter Borwein. "Extract from the Rhind Papyrus." In Pi: A Source Book, 1–2. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4217-6_1.
Full textBerggren, Lennart, Jonathan Borwein, and Peter Borwein. "The Rhind Mathematical Papyrus-Problem 50 (~ 1650 B.C.)." In Pi: A Source Book, 1–2. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4757-2736-4_1.
Full textBerggren, Lennart, Jonathan Borwein, and Peter Borwein. "The Rhind Mathematical Papyrus-Problem 50 ( ~ 1650 B.C.)." In Pi: A Source Book, 1–2. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-3240-5_1.
Full textMazur, Joseph. "Curious Beginnings." In Enlightening Symbols. Princeton University Press, 2016. http://dx.doi.org/10.23943/princeton/9780691173375.003.0001.
Full textMichel, Marianne. "A new reading of Problem No. 53 in the Rhind Mathematical Papyrus. The limits of proportionality." In Proceedings of the XI International Congress of Egyptologists, Florence, Italy 23-30 August 2015, 410–15. Archaeopress Publishing Ltd, 2017. http://dx.doi.org/10.2307/j.ctv177tjnf.78.
Full textImhausen, Annette. "Der mathematische Papyrus Rhind – damals (im 19. Jahrhundert v. Chr.), früher (im 19./20. Jahrhundert n. Chr.) und heute (im 21. Jahrhundert)." In Wissenschaft und Wissenschaftler im Alten Ägypten, 35–68. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110629903-004.
Full text