Academic literature on the topic 'Parabolic-hyperbolic coupling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Parabolic-hyperbolic coupling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Parabolic-hyperbolic coupling"
AGUILAR, GLORIA, LAURENT LÉVI, and MONIQUE MADAUNE-TORT. "COUPLING OF MULTIDIMENSIONAL PARABOLIC AND HYPERBOLIC EQUATIONS." Journal of Hyperbolic Differential Equations 03, no. 01 (March 2006): 53–80. http://dx.doi.org/10.1142/s0219891606000720.
Full textCHOQUET, CATHERINE. "PARABOLIC AND DEGENERATE PARABOLIC MODELS FOR PRESSURE-DRIVEN TRANSPORT PROBLEMS." Mathematical Models and Methods in Applied Sciences 20, no. 04 (April 2010): 543–66. http://dx.doi.org/10.1142/s0218202510004337.
Full textAvalos, George. "The exponential stability of a coupled hyperbolic/parabolic system arising in structural acoustics." Abstract and Applied Analysis 1, no. 2 (1996): 203–17. http://dx.doi.org/10.1155/s1085337596000103.
Full textHan, Zhong-Jie, Gengsheng Wang, and Jing Wang. "Explicit decay rate for a degenerate hyperbolic-parabolic coupled system." ESAIM: Control, Optimisation and Calculus of Variations 26 (2020): 116. http://dx.doi.org/10.1051/cocv/2020040.
Full textGastaldi, Fabio, and Alfio Quarteroni. "On the coupling of hyperbolic and parabolic systems: analytical and numerical approach." Applied Numerical Mathematics 6, no. 1-2 (December 1989): 3–31. http://dx.doi.org/10.1016/0168-9274(89)90052-4.
Full textAMIRAT, Y., K. HAMDACHE, and A. ZIANI. "MATHEMATICAL ANALYSIS FOR COMPRESSIBLE MISCIBLE DISPLACEMENT MODELS IN POROUS MEDIA." Mathematical Models and Methods in Applied Sciences 06, no. 06 (September 1996): 729–47. http://dx.doi.org/10.1142/s0218202596000316.
Full textAvalos, George, Irena Lasiecka, and Roberto Triggiani. "Higher Regularity of a Coupled Parabolic-Hyperbolic Fluid-Structure Interactive System." gmj 15, no. 3 (September 2008): 403–37. http://dx.doi.org/10.1515/gmj.2008.403.
Full textAloui, Lassaad, and Amal Arama. "Diffusion phenomenon for indirectly damped hyperbolic systems coupled by velocities in exterior domains." Journal of Hyperbolic Differential Equations 17, no. 03 (September 2020): 475–500. http://dx.doi.org/10.1142/s0219891620500137.
Full textBulíček, Miroslav, Piotr Gwiazda, Endre Süli, and Agnieszka Świerczewska-Gwiazda. "Analysis of a viscosity model for concentrated polymers." Mathematical Models and Methods in Applied Sciences 26, no. 08 (June 7, 2016): 1599–648. http://dx.doi.org/10.1142/s0218202516500391.
Full textMajumdar, Angshuman, Chintan Kumar Mandal, and Sankar Gangopadhyay. "Laser Diode to Single-Mode Circular Core Parabolic Index Fiber Coupling via Upside-Down Tapered Hyperbolic Microlens on the Tip of the Fiber: Prediction of Coupling Optics by ABCD Matrix Formalism." Journal of Optical Communications 40, no. 3 (July 26, 2019): 171–80. http://dx.doi.org/10.1515/joc-2017-0040.
Full textDissertations / Theses on the topic "Parabolic-hyperbolic coupling"
Santatriniaina, Nirina. "Thermomécanique des milieux continus : modèles théoriques et applications au comportement de l'hydrogel en ingénierie biomédicale." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S047/document.
Full textIn the first part, we propose a mathematical tool for treating the dynamic boundary conditions. The simulation within dynamic boundary condition requires sometimes ''switch'' condition in time of the Dirichlet to Neumann boundary condition (St DN). We propose a numerical method validated with experimental measurements for the case of cross-contamination in microelectronics industry. This tool will be used to compute self-heating in the polymers and hydrogels under dynamic loading. In the second part we focus on modeling the self-heating phenomenon in polymers, hydrogels and biological tissues. We develop constitutive law of the hydrogel type HEMA-EGDMA, focusing on the heat e.ects (dissipation) in this material. Then we set up a theoretical model of coupled thermo-mechanical classic continuum for a better understanding of the heat production in this media. We use polynomial invariants theory to define the constitutive law of the media. Two original thermodynamic potentials are proposed. Original non-linear and coupled governing equations were obtained and identified with the experimental measurements (non-linear parabolic-hyperbolic system with the dynamic boundary condition). In the third part, numerical methods were used to solve thermo-mechanical formalism for the model. This step deals with a numerical method of a coupled partial di.erential equation system of the self-heating (parabolic-hyperbolic coupling). Then, is step allows us, among other things, to propose an appropriate numerical methods to solve this system. The numerical method is based on the finite element methods. Numerous experimental results on the self-heating phenomenon are presented in this work together with correlations studies between the theoretical and experimental results. In the last part of the thesis, these various results will be presented and their impact on the modeling of the behavior of the natural hydrogel used in the biomedical field will be discussed
Jordão, Daniela Sofia Domingues. "Coupling hyperbolic and parabolic equations." Master's thesis, 2016. http://hdl.handle.net/10316/48035.
Full textNesta tese estudamos um sistema de equações diferenciais parciais constituído por uma equação hiperbólica e uma equação parabólica que surge, frequentemente, na descrição da libertação controlada de fármacos. Neste contexto, a evolução da concentração é definida por uma equação de difusão-convecção-reação em que a velocidade convectiva é induzida por um campo elétrico. Apresentamos um estudo qualitativo e quantitativo para o modelo contínuo e para o modelo discreto construído de forma conveniente. Realçamos que, para este último, estabelecemos resultados de convergência que mostram que os métodos numéricos propostos são supraconvergentes.
In this work we study a system of two PDEs: a hyperbolic and a parabolic equation. This system arise often in the mathematical modelling of the controlled drug release. In this scope, the time and space evolution of the concentration is described by a convective-diffusion-reaction equation, where the convective velocity is induced by an electric field. We present a qualitative and quantitative study for the continuous and the proposed discrete models. We remark that in the quantitative analysis we include supraconvergence results.
Jordão, Daniela Sofia Domingues. "Coupling Hyperbolic and Parabolic IBVP: Applications to Drug Delivery." Doctoral thesis, 2020. http://hdl.handle.net/10316/94361.
Full textIn this thesis, we study a system of partial differential equations defined by a hyperbolic equation - a wave equation, and two parabolic equations - a quasilinear diffusion-reaction equation and a convection-diffusion-reaction equation. In this system, the reaction term of the first parabolic equation depends on the solution of the wave equation, the convective velocity of the second parabolic equation depends on the solution of the wave equation and its gradient, and the diffusion coefficient of the convection-diffusion-reaction equation depends on the solutions of the other two equations. This system arises in the mathematical modeling of several multiphysics processes, as for instance in ultrasound enhanced drug delivery. In this case, the propagation of the acoustic pressure wave, which is described by the hyperbolic equation, induces an increase in the temperature of the target tissue, an increase of the convective drug transport, and the increase of the temperature induces an increase of the diffusion drug transport. Here we propose an algorithm to solve this coupled problem defined in a two-dimensional spatial domain. Our numerical method can be seen, simultaneously, as a fully discrete in space, piecewise linear finite element method, where special quadrature rules are considered, and as a finite difference method defined in nonuniform rectangular grids. We provide the theoretical convergence support where we show that the numerical approximations for the solution of the hyperbolic equation are second order convergent with respect to a discrete $H^1$- norm. This result allows us to conclude that the numerical approximations for the gradient do not deteriorate the quality of the numerical approximations for the solution of the last parabolic equation. For the numerical approximations for the two parabolic equations, we also establish second order convergence but with respect to a discrete $L^2$- norm. These convergence results are proved assuming lower regularity conditions than those usually imposed. In the scope of the finite difference methods, our results can be seen as supraconvergence results because the method uses nonuniform rectangular grids where the correspondent truncation errors are only first order convergent with respect to the norm $\| . \|_\infty$. As the method can be constructed considering piecewise linear finite element method, in the language of the finite element methods our results can be seen as superconvergence results. In fact, it is well known that piecewise linear finite element methods for elliptic equations lead to first order convergent approximations with respect to the usual $H^1$- norm. Numerical results illustrating the theoretical support are also included, highlighting the sharpness of the smoothness assumption on the solutions of the multiphysics problem. It is reported in the literature the use of ultrasound to increase the drug transport and its absorption within the target tissue in different contexts, as for instance in cancer treatment. A simple version of the mathematical problem studied in this work is considered to illustrate the effectiveness of the use of ultrasound to enhance the drug transport.
Nesta tese estudamos um sistema de equações diferenciais de derivadas parciais definido por uma equação hiperbólica – uma equação de onda, e duas equações parabólicas – uma equação de difusão-reação quase linear e uma equação de convecção-difusão-reação. Neste sistema, o termo reativo da primeira equação parabólica depende da solução da equação da onda, e a velocidade convectiva da segunda equação parabólica depende da solução da primeira equação e do seu gradiente. O coeficiente de difusão da última equação depende também das soluções das duas primeiras equações. O problema matemático que motivou esta dissertação surge no contexto de diversos problemas físicos, como por exemplo, no contexto da libertação controlada de fármacos estimulada por ultrassons. Neste caso, a propagação da onda de pressão acústica descrita pela equação hiperbólica, induz um aumento da temperatura no tecido alvo, um aumento no transporte do fármaco, e o aumento da temperatura induz um aumento do transporte difusivo do fármaco. Neste trabalho, propomos um método numérico para o sistema diferencial definido num domínio espacial de duas dimensões. O nosso método pode ser visto, simultaneamente, como um método de elementos finitos segmentado linear discreto no espaço, e como um método de diferenças finitas definido em malhas retangulares não uniformes. Para este método provamos a segunda ordem de convergência, relativamente a uma norma que pode ser vista como uma versão discreta da norma usual de $H^1$, para a discretização da equação hiperbólica. Este resultado permite concluir que a aproximação para o gradiente não deteriora a qualidade da aproximação para a concentração. Estabelecemos que as aproximações para a temperatura e para a concentração também são de segunda ordem, mas relativamente a uma norma que pode ser vista como uma discretização da norma usual de $L^2$. Os resultados de convergência são demonstrados utilizando condições de regularidade mais fracas do que as usadas usualmente. No contexto dos métodos de diferenças finitas, uma vez que consideramos malhas não uniformes onde os erros de truncatura associados são de primeira ordem relativamente à norma $\| . \|_\infty$, os nossos resultados podem ser vistos como resultados de supraconvergência. Visto que o método proposto pode ser visto como um método de elementos finitos segmentado linear, no contexto dos métodos de elementos finitos os nossos resultados podem ser vistos como resultados de superconvergência. De facto, é bem conhecido que os métodos de elementos finitos segmentados lineares para equações elípticas levam a aproximações convergentes de primeira ordem, relativamente à norma usual de $H^1$. Os resultados teóricos obtidos são ilustrados numericamente. A precisão das condições de regularidade impostas às soluções do sistema diferencial contínuo é também analisada numericamente. Podemos encontrar na literatura que o uso de ultrassons leva a um aumento do transporte do fármaco e da sua absorção pelo tecido alvo em diferentes contextos, como por exemplo em tratamentos de cancro. Uma versão simples do sistema estudado neste trabalho é considerada para ilustrar a eficiência do uso dos ultrassons como estímulo ao transporte de fármacos.
Books on the topic "Parabolic-hyperbolic coupling"
Gastaldi, Fabio. On the coupling of hyperbolic and parabolic systems: Analytical and numerical approach. Hampton, Va: ICASE, 1988.
Find full textAlfio, Quarteroni, and Langley Research Center, eds. On the coupling of hyperbolic and parabolic systems: Analytical and numerical approach. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Find full textBook chapters on the topic "Parabolic-hyperbolic coupling"
Aguillon, Nina. "Numerical Simulations of a Fluid-Particle Coupling." In Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, 759–67. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05591-6_76.
Full textGaldi, Giovanni Paolo, Mahdi Mohebbi, Rana Zakerzadeh, and Paolo Zunino. "Hyperbolic–Parabolic Coupling and the Occurrence of Resonance in Partially Dissipative Systems." In Fluid-Structure Interaction and Biomedical Applications, 197–256. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0822-4_3.
Full textGastaldi, Fabio, and Alfio Quarteroni. "On the Coupling of Hyperbolic and Parabolic Systems: Analitical and Numerical Approach." In Proceedings of the Third German-Italian Symposium Applications of Mathematics in Industry and Technology, 123–65. Wiesbaden: Vieweg+Teubner Verlag, 1989. http://dx.doi.org/10.1007/978-3-322-96692-6_8.
Full textRybak, Iryna. "Coupling Free Flow and Porous Medium Flow Systems Using Sharp Interface and Transition Region Concepts." In Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, 703–11. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05591-6_70.
Full textFuhrmann, Jürgen, Alexander Linke, and Christian Merdon. "Coupling of Fluid Flow and Solute Transport Using a Divergence-Free Reconstruction of the Crouzeix-Raviart Element." In Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, 587–95. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05591-6_58.
Full textBrenner, Konstantin, Roland Masson, Laurent Trenty, and Yumeng Zhang. "Coupling of a Two Phase Gas Liquid Compositional 3D Darcy Flow with a 1D Compositional Free Gas Flow." In Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, 517–25. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05591-6_51.
Full textCrestetto, Anaïs, Nicolas Crouseilles, and Mohammed Lemou. "Asymptotic-Preserving Scheme Based on a Finite Volume/Particle-In-Cell Coupling for Boltzmann-BGK-Like Equations in the Diffusion Scaling." In Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, 827–35. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05591-6_83.
Full textConference papers on the topic "Parabolic-hyperbolic coupling"
Chouly, Franz, Miguel A. Fernández, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "An Enhanced Parareal Algorithm for Partitioned Parabolic-Hyperbolic Coupling." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241387.
Full textDutta, Ashim, Kyunghan Kim, Kunal Mitra, and Zhixiong Guo. "Experimental Measurements and Numerical Modeling Validation of Temperature Distribution in Tissue Medium During Short Pulse Laser Irradiation." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41295.
Full textHagani, Fouad, M'hamed Boutaous, Ronnie Knikker, Shihe Xin, and Dennis Siginer. "Numerical Modeling of Non-Affine Viscoelastic Fluid Flow Including Viscous Dissipation Through a Square Cross-Section Duct: Heat Transfer Enhancement due to the Inertia and the Elastic Effects." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23558.
Full textBahmani, Bahador, and Amir R. Khoei. "Modeling Convective Heat Propagation in a Fractured Domain With X-FEM and Least Square Method." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71167.
Full text