Academic literature on the topic 'Parabolic Variational Inequalities'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Parabolic Variational Inequalities.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Parabolic Variational Inequalities"

1

Ženíšek, Alexander. "Approximations of parabolic variational inequalities." Applications of Mathematics 30, no. 1 (1985): 11–35. http://dx.doi.org/10.21136/am.1985.104124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eldessouky, A. T. "Strongly Nonlinear Parabolic Variational Inequalities." Journal of Mathematical Analysis and Applications 181, no. 2 (January 1994): 498–504. http://dx.doi.org/10.1006/jmaa.1994.1039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ito, Kazufumi, and Karl Kunisch. "Optimal control of parabolic variational inequalities." Journal de Mathématiques Pures et Appliquées 93, no. 4 (April 2010): 329–60. http://dx.doi.org/10.1016/j.matpur.2009.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Friedman, Avner. "Optimal Control for Parabolic Variational Inequalities." SIAM Journal on Control and Optimization 25, no. 2 (March 1987): 482–97. http://dx.doi.org/10.1137/0325027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Haussmann, U. G., and E. Pardoux. "Stochastic variational inequalities of parabolic type." Applied Mathematics & Optimization 20, no. 1 (July 1989): 163–92. http://dx.doi.org/10.1007/bf01447653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kulieva, Gulchehra, and Komil Kuliev. "ON EXTENDED ROTHE’S METHOD FOR NONLINEAR PARABOLIC VARIATIONAL INEQUALITIES IN NONCYLINDRICAL DOMAINS." Eurasian Mathematical Journal 11, no. 3 (2020): 51–65. http://dx.doi.org/10.32523/2077-9879-2020-11-3-51-65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Quittner, Pavol. "A remark on the stability of stationary solutions of parabolic variational inequalities." Czechoslovak Mathematical Journal 40, no. 3 (1990): 472–74. http://dx.doi.org/10.21136/cmj.1990.102400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boulaaras, Salah, and Mohamed Haiour. "A New Approach to Asymptotic Behavior for a Finite Element Approximation in Parabolic Variational Inequalities." ISRN Mathematical Analysis 2011 (July 7, 2011): 1–15. http://dx.doi.org/10.5402/2011/703670.

Full text
Abstract:
The paper deals with the theta time scheme combined with a finite element spatial approximation of parabolic variational inequalities. The parabolic variational inequalities are transformed into noncoercive elliptic variational inequalities. A simple result to time energy behavior is proved, and a new iterative discrete algorithm is proposed to show the existence and uniqueness. Moreover, its convergence is established. Furthermore, a simple proof to asymptotic behavior in uniform norm is given.
APA, Harvard, Vancouver, ISO, and other styles
9

Jeong, Jin-Mun, and Jong-Yeoul Park. "Nonlinear variational inequalities of semilinear parabolic type." Journal of Inequalities and Applications 2001, no. 2 (2001): 896837. http://dx.doi.org/10.1155/s1025583401000133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rudd, Matthew, and Klaus Schmitt. "VARIATIONAL INEQUALITIES OF ELLIPTIC AND PARABOLIC TYPE." Taiwanese Journal of Mathematics 6, no. 3 (September 2002): 287–322. http://dx.doi.org/10.11650/twjm/1500558298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Parabolic Variational Inequalities"

1

Kulieva, Gulchehra. "Some special problems in elliptic and parabolic variational inequalities." Licentiate thesis, Luleå : Department of Mathematics, Luleå University of Technology, 2006. http://epubl.ltu.se/1402-1757/2006/77/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Glas, Silke [Verfasser]. "Noncoercive and parabolic variational inequalities : analysis, applications and model reduction / Silke Glas." Ulm : Universität Ulm, 2018. http://d-nb.info/1166756882/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eriksson, Jonatan. "On the pricing equations of some path-dependent options." Doctoral thesis, Uppsala : Department of Mathematics, Univ. [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Coelho, Afonso Valente Ricardo de Seabra. "American options and the Black-Scholes Model." Master's thesis, Instituto Superior de Economia e Gestão, 2020. http://hdl.handle.net/10400.5/20735.

Full text
Abstract:
Mestrado em Mathematical Finance
Os problemas de apreçamento de opções têm sido um dos principais assuntos de em Matemática Financeira, desde a criação desse conceito nos anos 70. Mais especificamente, as opções americanas são de grande interesse nesta área do conhecimento porque são matematicamente muito mais complexas do que as opções europeias padrão e o modelo de Black-Scholes não fornece, na maioria dos casos, uma fórmula explícita para a determinação do preço deste tipo de opções. Nesta dissertação, mostramos como o estudo de opções americanas conduz à análise de problemas de fronteira livre devido à possibilidade de exercício antecipado, onde nosso principal objetivo é encontrar o preço de exercício ótimo. Também apresentamos a reformulação do problema em termos de um problema de complementaridade linear e de desigualdade variacional parabólica. Além disso, também abordamos a caracterização probabilística das opções americanas com base no conceito de tempos de paragem ótima. Essas formulações, aqui tratadas em termos analíticos ou probabilísticos, podem ser muito úteis na aplicação de métodos numéricos ao problema de precificação de opções do estilo americano, uma vez que, na maioria dos casos, é quase impossível encontrar soluções explícitas. Além disso, utilizamos o Método da Árvore Binomial, que é um método numérico muito simples do ponto de vista matemático, para ilustrar alguns aspectos da teoria estudada ao longo desta tese e para comparar as opções americanas com as opções europeias e bermudas, por meio de alguns exemplos numéricos.
Option pricing problems have been one of the main focuses in the field of Mathematical Finance since the creation of this concept in the 1970s. More specifically, American options are of great interest in this area of knowledge because they are much more complex mathematically than the standard European options and the Black-Scholes model cannot give an explicit formula to value this style options in most cases. In this dissertation, we show how pricing American options leads to free boundary problems because of the possibility of early exercise, where our main goal is to find the optimal exercise price. We also present how to reformulate the problem into a linear complementarity problem and a parabolic variational inequality. Moreover, we also address the probabilistic characterization of American options based on the concept of stopping times. These formulations, here viewed from the analytical and probabilistic point of view, can be very useful for applying numerical methods to the problem of pricing American style options since, in most cases, it is almost impossible to find explicit solutions. Furthermore, we use the Binomial Tree Method, which is a very simple numerical method from the mathematical point of view, to illustrate some aspects of the theory studied throughout this thesis and to compare American options with European and Bermudan Options, by means of a few numerical examples.
info:eu-repo/semantics/publishedVersion
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Parabolic Variational Inequalities"

1

Goeleven, D., and D. Motreanu. "Parabolic Unilateral Problems." In Variational and Hemivariational Inequalities, 77–121. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8758-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carl, Siegfried, and Vy Khoi Le. "Multi-Valued Parabolic Variational Inequalities on Convex Sets." In Springer Monographs in Mathematics, 287–354. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65165-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marino, Antonio. "The Calculus of Variations and Some Semilinear Variational Inequalities of Elliptic and Parabolic Type." In Partial Differential Equations and the Calculus of Variations, 787–822. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4615-9831-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marino, Antonio. "The Calculus of Variations and Some Semilinear Variational Inequalities of Elliptic and Parabolic Type." In Partial Differential Equations and the Calculus of Variations, 787–822. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4684-9196-8_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Talay, Denis. "Derivatives of Solutions of Semilinear Parabolic PDEs and Variational Inequalities with Neumann Boundary Conditions." In Springer Proceedings in Mathematics & Statistics, 153–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29982-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boukrouche, Mahdi, and Domingo A. Tarzia. "On Existence, Uniqueness, and Convergence of Optimal Control Problems Governed by Parabolic Variational Inequalities." In IFIP Advances in Information and Communication Technology, 76–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36062-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maksimov, Vyacheslav. "Method of Extremal Shift in Problems of Reconstruction of an Input for Parabolic Variational Inequalities." In Analysis and Optimization of Differential Systems, 259–68. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-0-387-35690-7_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"10. Parabolic Variational Inequalities." In Lagrange Multiplier Approach to Variational Problems and Applications, 277–304. Society for Industrial and Applied Mathematics, 2008. http://dx.doi.org/10.1137/1.9780898718614.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gupta, S. C. "Elliptic and Parabolic Variational Inequalities." In The Classical Stefan Problem, 139–82. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-444-63581-5.00007-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Elliptic and Parabolic Variational Inequalities." In North-Holland Series in Applied Mathematics and Mechanics, 148–95. Elsevier, 2003. http://dx.doi.org/10.1016/s0167-5931(03)80010-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Parabolic Variational Inequalities"

1

Murase, Yusuke. "Abstract quasi-variational inequalities of elliptic type and applications." In Nonlocal and Abstract Parabolic Equations and their Applications. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2009. http://dx.doi.org/10.4064/bc86-0-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kano, Risei. "Applications of abstract parabolic quasi-variational inequalities to obstacle problems." In Nonlocal and Abstract Parabolic Equations and their Applications. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2009. http://dx.doi.org/10.4064/bc86-0-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kulieva, Gulchehra, and Komil Kuliev. "Rothe’s method for nonlinear parabolic variational inequalities in noncylindrical domains." In INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0057466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

SHIRAKAWA, KEN, MASAHIRO KUBO, and NORIAKI YAMAZAKI. "WELL-POSEDNESS AND PERIODIC STABILITY FOR QUASILINEAR PARABOLIC VARIATIONAL INEQUALITIES WITH TIME-DEPENDENT CONSTRAINTS." In Proceedings of the International Conference on Nonlinear Analysis. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812709257_0012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography