Academic literature on the topic 'Parasite-host relationship'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Parasite-host relationship.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Parasite-host relationship"

1

Montenegro, Mario R. "Host Parasite Relationship in Paracoccidioidomycosis." Nippon Ishinkin Gakkai Zasshi 36, no. 3 (1995): 209–13. http://dx.doi.org/10.3314/jjmm.36.209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ambroise-Thomas, Pierre. "Emerging parasite zoonoses: the role of host–parasite relationship." International Journal for Parasitology 30, no. 12-13 (November 2000): 1361–67. http://dx.doi.org/10.1016/s0020-7519(00)00131-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Waldorf, Alayn R. "Host-Parasite Relationship in Opportunistic Mycoses." CRC Critical Reviews in Microbiology 13, no. 2 (January 1986): 133–72. http://dx.doi.org/10.3109/10408418609108737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hasegawa, Hideo. "Phylogeny, host-parasite relationship and zoogeography." Korean Journal of Parasitology 37, no. 4 (1999): 197. http://dx.doi.org/10.3347/kjp.1999.37.4.197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vaughn, Caryn C., and Christopher M. Taylor. "Macroecology of a host-parasite relationship." Ecography 23, no. 1 (February 2000): 11–20. http://dx.doi.org/10.1034/j.1600-0587.2000.230102.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vaughn, Caryn C., and Christopher M. Taylor. "Macroecology of a host-parasite relationship." Ecography 23, no. 1 (February 2000): 11–20. http://dx.doi.org/10.1111/j.1600-0587.2000.tb00256.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Innes, Elisabeth A., Steve Wright, Paul Bartley, Stephen Maley, Colin Macaldowie, Irma Esteban-Redondo, and David Buxton. "The host–parasite relationship in bovine neosporosis." Veterinary Immunology and Immunopathology 108, no. 1-2 (October 2005): 29–36. http://dx.doi.org/10.1016/j.vetimm.2005.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cheeseman, Kevin, and Jonathan B. Weitzman. "Host-parasite interactions: an intimate epigenetic relationship." Cellular Microbiology 17, no. 8 (July 20, 2015): 1121–32. http://dx.doi.org/10.1111/cmi.12471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mathews, John D. "Streptococcal disease and the host–parasite relationship." International Congress Series 1289 (April 2006): 9–13. http://dx.doi.org/10.1016/j.ics.2005.11.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mungomba, L. M., D. H. Molyneux, and K. R. Wallbanks. "Host-parasite relationship ofTrypanosoma corvi inOrnithomyia avicularia." Parasitology Research 75, no. 3 (1989): 167–74. http://dx.doi.org/10.1007/bf00931269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Parasite-host relationship"

1

Mubarak, Jamil Salim. "The host-parasite relationship of schistosomes in mice." Thesis, Bangor University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McHugh, Timothy Daniel. "Immunological and ultrastructural studies of Strongyloides ratti (Nematoda: Rhabditoidea)." Thesis, University of Portsmouth, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

López, Gómez Manuel Francisco. "Meloidogyne species in cucurbit crops : characterization and quantification of the host-parasite relationship." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/316398.

Full text
Abstract:
The infection process of Meloidogyne arenaria, M. incognita and M. javanica was compared on zucchini squash, cucumber, melon, pumpkin and watermelon in a growth chamber. All cucurbits were susceptible to the three isolates although M. javanica showed higher invasion rates, faster development and egg production than M. arenaria. Differences among cucurbits were primarily due to root invasion rates and formation of egg masses. Cucumber and melon were better hosts for nematode invasion and reproduction than zucchini followed by watermelon. The suitability of five zucchini, three cucumber, eight watermelon and seven cucurbit rootstocks genotypes to M. incognita (MiPM26) and M. javanica (Mj05) was determined. The number of egg masses did not differ among the genotypes of zucchini or cucumber, but the reproduction factor did slightly. A marked differenced was observed between the nematode isolates; M. incognita MiPM26 showed lower reproduction traits than M. javanica Mj05, and, in zucchini, only 22% of the females of M. incognita produced egg masses compared to 95% of the M. javanica females. In cucumber, 86% of the M. incognita and 99% of the M. javanica females produced egg masses. Also, populations of the three Meloidogyne species were tested on zucchini and cucumber. A greater parasitic variation was observed on zucchini than cucumber. Zucchini responded as a poor host for M. incognita MiPM26, MiAL09 and MiAL48, but as a good host for MiAL10 and MiAL15. Cucumber was a good host for all the tested populations. The watermelon cultivars did not differ in host status within each nematode isolate, supporting lower reproduction than the cucurbit rootstocks. The top development of field-grown non-grafted watermelon plants was significantly delayed in plots where the nematodes were detected at planting. However, no differences were observed in plots with grafted plants. In plots with nematodes, non-grafted and Titan-grafted plants had similar yield, which was higher than that of RS841-grafted plants. The Titan-Sugar Baby combination was tolerant to M. javanica. The relationship between the Pi and final (Pf) population densities of M. javanica in response to increasing initial inoculum levels and the effect on yield in zucchini cv. Amalthee were determined using a geometric series of 12 Pi from 0 to 51,200 eggs/100 cm3 of soil. The maximum multiplication rate of the nematode was 425, and the equilibrium density was 701,951 eggs/100 cm3 soil. The relative yield, represented as dry top weight, fitted the Seinhorst damage function model and the minimum relative yield (m) was 0.82 and the tolerance limit (T) was 402 J2/100 cm3 soil. Regression analyses indicated a negative relationship between the Pi and the leaf chlorophyll content, fitting the Seinhorst damage-function model. Zucchini cv. Dyamant was planted in a plastic greenhouse with a range of M. javanica Pi from 0 to 861 J2/100 cm3 soil. The maximum multiplication rate of M. javanica under field conditions was 3,093, and the equilibrium density was 1,485 J2/100 cm3 soil. The relationship between Pi and relative yield, represented as fruit weight, fitted the Seinhorst damage function model and m was 0.48, and T was 0.02 J2/100 cm3 soil. The relationship between the Pi and Pf of M. javanica in response to increasing initial inoculum levels and the effect on yield in watermelon cv. Sugar Baby were determined. The maximum reproduction rate of the nematode was 14, and the equilibrium density 49,400 eggs/100 cm3 of soil. Yield data represented as fresh top weight fitted the Seinhorst damage function, and m was 0.65 and T was 74 eggs/100 cm3 of soil. In the field experiments (2011 and 2012), the maximum reproduction rate was 73 and 70, and the equilibrium density 32 and 35 J2/100 cm3 soil. Yield data, represented as fruit weight, fitted the Seinhorst damage function in 2011 and the m and T values were 0.63 and 20 J2/100 cm3 of soil, respectively
Se estudió el proceso infectivo y el desarrollo post-infeccional de Meloidogyne arenaria, M. incognita y M. javanica en calabacín, pepino, melón, calabaza y sandía. Como resultado indicar que todas las cucurbitáceas ensayadas fueron susceptibles a los tres aislados, aunque M. javanica mostró mayor tasa de invasión, desarrollo más rápido y mayor producción de huevos que M. arenaria. El pepino y el melón presentaron mayor tasa de invasión y reproducción que el calabacín y la calabaza, seguidos de la sandía. La susceptibilidad de cinco genotipos de calabacín, tres de pepino, ocho de sandia y siete de patrones de cucurbitáceas a dos poblaciones de Meloidogyne: M. incognita (MiPM26) y M. javanica (Mj05). El calabacín proporciona condiciones inadecuadas para el desarrollo de M. incognita, ya que sólo el 22% de las hembras produjo masas de huevos en comparación con el 95% de las hembras de M. javanica. En pepino, el 86% de las hembras de M. incognita y el 99% de M. javanica produjeron masas de huevos. Además, poblaciones de tres especies de Meloidogyne se estudiaron en calabacín y pepino. En calabacín se observo una mayor variación parasitaria que en pepino, comportándose como huésped pobre para las poblaciones de M. incognita MiPM26, MiAL09 y MiAL48, mientras que respondía como buen huésped para las poblaciones MiAL10 y MiAL15. M. incognita mostró mayor reproducción que M. javanica en los cultivares de sandía y patrones de cucurbitáceas. Los cultivares de sandía no difirieron en la idoneidad del huésped para cada aislado del nematodo y soportaron menos reproducción que los patrones de cucurbitáceas. Las sandías no injertadas mostraron un retrasó significativo en su desarrollo aéreo en las parcelas donde se detecto el nematodo al inicio del cultivo. Sin embargo, no se observo tal efecto en las sandías injertadas. En las parcelas donde se detectó en el nematodo al inicio del cultivo, las sandías no injertadas y las injertadas sobre Titan mostraron un producción similar, mayor que la de las plantas injertadas sobre RS841 en parcelas con presencia del nematodo al inicio del cultivo. El injerto de la sandía sobre Titan proporciono tolerancia frente a M. javanica. La relación entre Pi y Pf de M. javanica en respuesta a niveles crecientes de Pi, y el efecto sobre la producción de calabacín cv. Amalthee utilizando una serie geométrica de 12 Pi crecientes comprendidas entre 0 y 51.200 huevos/100 cm3 de suelo. La tasa máxima de multiplicación del nematodo fue 425, y la densidad de equilibrio fue 701.951 huevos/100 cm3 suelo. La producción se ajustó al modelo de daño de Seinhorst, dando como resultado una producción mínima (m) de 0,82 y un límite de tolerancia (T) de 402 J2/100 cm3 de suelo. El calabacín cv. Dyamant se plantó en un invernadero infestado con M. javanica con Pi que oscilaba entre 0 y 861 J2/100 cm3 de suelo. La tasa máxima de multiplicación fue 3093, y la densidad de equilibrio fue de 1485 J2/100 cm3 de suelo. La relación entre la Pi y la producción se ajustó al modelo de daño de Seinhorst; el valor de m fue 0,48, y el de T fue 0,02 J2/100 cm3 de suelo. La relación entre la Pi y la Pf de M. javanica en respuesta inóculos iniciales crecientes y el efecto en producción de sandía cv. Sugar Baby se determinó en experimentos en maceta y en campo. En maceta, la tasa máxima de reproducción del nematodo fue de 14, y la densidad de equilibrio fue de 49.400 huevos/100 cm3 de suelo. Los datos de producción, representados como peso fresco de la biomasa aérea, se ajustaron al modelo de daño de Seinhorst, siendo m igual a 0,65 y T igual a 74 huevos/100 cm3 de suelo. En los experimentos de campo (años 2011 y 2012), la tasa máxima de reproducción fue de 73 y 70, y la densidad de equilibrio de 32 y 35 J2/100 cm3 de suelo. Los datos de producción, expresada en peso de los frutos/ parcela elemental, se ajustó a la función de daño de Seinhorst en 2011, siendo los valores m y T 0,63 y 20 J2/100 cm3 de suelo, respectivamente.
APA, Harvard, Vancouver, ISO, and other styles
4

Farmer, Kristy Lynn Roberts Sharon R. "Study of a novel host-parasite relationship Mycoplasma gallisepticum in house finches (Carpodacus Mexicanus) /." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Summer/Dissertations/FARMER_KRISTY_6.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Garside, Paul. "The host-parasite relationship in the Ancylostoma ceylanicum/hamster model of human hookworm infection." Thesis, University of Nottingham, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Norozian, Seyed Mohammed Bagher. "Aspect of the host-parasite relationship of hookworms 'N. americanus and A. ceylanicum' in hamsters." Thesis, University of Nottingham, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shāhid, Muḥammad. "Studies on the host-parasite relationship between Pasteuria penetrans and root-knot nematodes (Meloidogyne spp.)." Thesis, University of Reading, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gu, Henry Yuekun. "The role of microRNAs in the host-parasite relationship in the veterinary nematode Haemonchus contortus." Thesis, University of Glasgow, 2016. http://theses.gla.ac.uk/7786/.

Full text
Abstract:
Haemonchus contortus is one of the most pathogenic nematodes of small ruminants, particularly sheep, and has a major impact on welfare as well as causing significant economic losses to farmers worldwide. In this project, the possible interaction of parasite microRNAs with the host’s immune response was investigated with a view to determining whether microRNAs may enhance parasite survival. microRNAs are 22 nucleotides long, non-coding RNA molecules that bind to target sites with complementary sequences on mRNAs, usually in the 3' UTR. This interaction causes degradation of the mRNA or suppression of protein synthesis (Bartel, 2009; Selbach et al., 2008). A previous study identified 192 microRNAs in H. contortus, a large proportion of which were unique to parasitic nematodes (Winter et al., 2012). One particular microRNA, Hco-miR-5352 is of particular interest and is the major focus of this study. This microRNA is one of a cluster of four microRNAs (the miR-5352 cluster) which is conserved predominantly in nematodes that reside within the gastro-intestinal tract. Microarray and qRT-PCR data show that the miR-5352 cluster was most highly expressed in parasitic stages of the H. contortus life cycle. Some members of the cluster were detected in the excretory-secretory products of H. contortus as well as in abomasal and lymph node tissues taken from sheep infected with H. contortus. Transmission electron microscopy of the excretory-secretory products showed the presence of small vesicle-like structures. The data presented here showed that H. contortus releases a range of microRNAs in the excretory-secretory products, some of which were present within extracellular vesicles. Bioinformatic target prediction methods identified CD69 as a likely target of Hco-miR-5352 and this interaction was demonstrated experimentally using a dual luciferase assay. However the interaction was not confirmed using an inducible CD69 system in Jurkat T cells. The impact of Hco-miR-5352 on global gene expression of an intestinal epithelial cell line identified several interesting targets with important roles in the host immune response against H. contortus, the regulation of which may be important in parasite survival within the host.
APA, Harvard, Vancouver, ISO, and other styles
9

Belosevic, Miodrag. "Biological and immunological aspects of the host-parasite relationship in infections of mice with Giardia muris." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=72072.

Full text
Abstract:
Biological and immunological aspects of the host-parasite relationship were examined in mice which are susceptible (A/J) and resistant (B10.A) to Giardia muris. B10.A exhibited a shorter latent period, lower cyst output during the acute phase of the infection and shorter period of cyst release compared to A/J. Characteristics of the infection transmitted from mouse-to-mouse and those induced by oral inoculation with cysts or trophozoites were similar. The infection was longer in male A/J and B10.A mice compared to females. Susceptibility and resistance during both the acute and elimination phases of the infection were under non-H-2-linked multigenic control. A/J and B10.A differed in non-specific serum IgG and IgA, but not in the specific IgG and IgA to G. muris. Specific antibodies participated in complement-mediated killing of trophozoites. Spleen, mesenteric lymph node and peritoneal cells from A/J and B10.A mice had a similar ability to kill trophozoites. The capacity of B10.A to mount inflammatory responses was greater than that of A/J. A/J were more immunosuppressed than B10.A during the infection, particularly at mucosal sites. Macrophage-like suppressor cells were shown to be the mediators of this suppression.
APA, Harvard, Vancouver, ISO, and other styles
10

Brailsford, T. J. "The effects of malnutrition upon the host : Parasite relationship of Heligmosomoides polygyrus (nematoda, trichostrongylidae) in mice." Thesis, University of Bristol, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Parasite-host relationship"

1

Adam, Dieter, Helmut Hahn, and Wolfgang Opferkuch, eds. The Influence of Antibiotics on the Host-Parasite Relationship II. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70748-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gillissen, Günther, Wolfgang Opferkuch, Georg Peters, and Gerhard Pulverer, eds. The Influence of Antibiotics on the Host-Parasite Relationship III. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73653-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vahid, Aaron C. Scallop sponge relationship: Mutualism, commensalism, parasitism. Bellingham, WA: Huxley College of Environmental Studies, Western Washington University, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

H. J. W. van Roermund. The parasite-host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Wageningen [The Netherlands]: Agricultural University, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sims, Thomas Anthony. A light and electron microscope investigation of the host-parasite relationship in the brains of mice with congenital toxoplasmosis. Leicester: Leicester Polytechnic, Department of Pharmacy, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Akira, Wake. Host-parasite relationships and the Yersinia model. New York: Springer-Verlag, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wake, Akira, and Herbert R. Morgan. Host-Parasite Relationships and the Yersinia Model. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71344-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

service), ScienceDirect (Online, ed. Natural history of host-parasite interactions. Oxford: Academic, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Living together: The biology of animal parasitism. New York: Plenum Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

The biogeography of host-parasite interactions. Oxford: Oxford University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Parasite-host relationship"

1

Wake, Akira, and Herbert R. Morgan. "Host-Parasite Relationship." In Host-Parasite Relationships and the Yersinia Model, 9–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71344-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dalhoff, A. "Interaction of Quinolones with Host—Parasite Relationship." In Quinolone Antibacterials, 233–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80364-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Raeburn, J. A., R. Sutherland, R. T. Cullen, and A. Greening. "Antibiotics and the Host-Parasite Relationship in Cystic Fibrosis." In The Influence of Antibiotics on the Host-Parasite Relationship III, 216–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73653-7_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Overbeek, B. P., and J. Verhoef. "Antibiotic Modulation of Host Defense." In The Influence of Antibiotics on the Host-Parasite Relationship III, 106–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73653-7_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pfefferkorn, E. R., Joseph D. Schwartzman, and Lloyd H. Kasper. "Toxoplasma gondii : Use of Mutants to Study the Host-Parasite Relationship." In Ciba Foundation Symposium 99 - Cytopathology of Parasitic Disease, 74–91. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470720806.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Midtvedt, T. "Influence of Antibiotics on Biochemical Intestinal Microflora-Associated Characteristics in Man and Animals." In The Influence of Antibiotics on the Host-Parasite Relationship III, 209–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73653-7_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Forsgren, A. "Effect of 4-Quinolone Antibiotics on Cell Function, Cell Growth, and Pyrimidine Nucleotide Biosynthesis in Human Lymphocytes In Vitro." In The Influence of Antibiotics on the Host-Parasite Relationship III, 255–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73653-7_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stephens, D. S., and Zell A. McGee. "Effect of Subinhibitory Concentrations of Antibiotics on Surface Proteins of Neisseria gonorrhoeae and Neisseria meningitidis: Changes that Alter Attachment to Human Cells." In The Influence of Antibiotics on the Host-Parasite Relationship II, 3–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70748-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hahn, H., Beate Wos, and U. Sperling. "Influence of Ciprofloxacin on Specific Interactions on Listeria-specific T Cells with Antigen in vitro." In The Influence of Antibiotics on the Host-Parasite Relationship II, 96–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70748-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Siegmund-Schultze, Nicola, H. H. Martin, and Kathryn Nixdorff. "Effects of Antibiotics on the Sensitivity of Proteus mirabilis to the Bactericidal Action of Normal Human Serum." In The Influence of Antibiotics on the Host-Parasite Relationship II, 107–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70748-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Parasite-host relationship"

1

Di Giulio, Andrea. "Beetles breaking the ant acoustical code: New insights into a host-parasite relationship." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.105424.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Parasite-host relationship"

1

Vaage, Jan. Comparative Aspects of Host-Parasite and Host-Tumor Relationships. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada224495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography