Academic literature on the topic 'Parasitic protozoan'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Parasitic protozoan.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Parasitic protozoan"
SCHAUMBURG, F., D. HIPPE, P. VUTOVA, and C. G. K. LÜDER. "Pro- and anti-apoptotic activities of protozoan parasites." Parasitology 132, S1 (March 2006): S69—S85. http://dx.doi.org/10.1017/s0031182006000874.
Full textKhanum, H., S. Shanjida Khanam, M. Sultana, M. H. Uddin, R. Chandra Dhar, and M. S. Islam. "Protozoan parasites in a wastewater treatment plant of Bangladesh." University Journal of Zoology, Rajshahi University 31 (June 18, 2013): 05–08. http://dx.doi.org/10.3329/ujzru.v31i0.15372.
Full textKabita, Fatima Nahar, Md Aminul Islam Bhuiyan, and Zannatun Nahar Jhinu. "A Checklist on the Protozoan Parasites of Freshwater Fishes of Bangladesh." Bangladesh Journal of Zoology 48, no. 1 (June 29, 2020): 21–35. http://dx.doi.org/10.3329/bjz.v48i1.47873.
Full textHowells, R. E. "The modes of action of some anti-protozoal drugs." Parasitology 90, no. 4 (April 1985): 687–703. http://dx.doi.org/10.1017/s0031182000052318.
Full textMORGAN, U. M., and R. C. A. THOMPSON. "Molecular detection of parasitic protozoa." Parasitology 117, no. 7 (November 1999): 73–85. http://dx.doi.org/10.1017/s0031182099004102.
Full textKarpiyevich, Maryia, and Katerina Artavanis-Tsakonas. "Ubiquitin-Like Modifiers: Emerging Regulators of Protozoan Parasites." Biomolecules 10, no. 10 (October 3, 2020): 1403. http://dx.doi.org/10.3390/biom10101403.
Full textD'Ambrosio, Katia, Claudiu T. Supuran, and Giuseppina De Simone. "Are Carbonic Anhydrases Suitable Targets to Fight Protozoan Parasitic Diseases?" Current Medicinal Chemistry 25, no. 39 (January 17, 2019): 5266–78. http://dx.doi.org/10.2174/0929867325666180326160121.
Full textSalehi Kahyesh, Roya, Arash Alghasi, Shekoufe Haddadi, and Asaad Sharhani. "Intestinal Parasites Infection in Children with Cancer in Ahvaz, Southwest Iran." Interdisciplinary Perspectives on Infectious Diseases 2020 (December 24, 2020): 1–4. http://dx.doi.org/10.1155/2020/8839740.
Full textDumetz, Franck, and Catherine Merrick. "Parasitic Protozoa: Unusual Roles for G-Quadruplexes in Early-Diverging Eukaryotes." Molecules 24, no. 7 (April 5, 2019): 1339. http://dx.doi.org/10.3390/molecules24071339.
Full textSultana, Yasmin, Sabina Karim, Gouri Rani Banik, Harunor Rashid, and Rogan Lee. "Parasitic Infections in Children with Disability in Resource Poor Settings: The Research Gaps." Infectious Disorders - Drug Targets 20, no. 3 (July 20, 2020): 267–72. http://dx.doi.org/10.2174/1871526518666181022103750.
Full textDissertations / Theses on the topic "Parasitic protozoan"
Martínez, Flórez Alba. "Drug repurposing of bioenergetic modulators: use in treatment and vaccination of protozoan parasitic diseases." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/458381.
Full textLeishmaniases, African and American trypanosomiases and malaria are parasitic diseases that constitute a major global health problem. The increasing number of drug‐resistances to their current treatments, toxicity cases and the health assistance often required for their administration, makes it urgently necessary to develop efficient vaccines for humans and new affordable therapies, easy to apply and resistant to harsh storage conditions. Due to the fact that these diseases share similar metabolic requirements with better studied diseases, we chose drug repurposing as a potentially effective approach against them. With this purpose, six different compounds used in anti‐cancer research —dichloroacetate (DCA), 3‐bromopyruvate (3BP), 2‐deoxy‐D‐glucose (2DG), lonidamine (LND), metformin (MET), and sirolimus (SIR)— were selected according to their ability to modulate energy production and proliferation related metabolic pathways. The aim of this study was to validate the suitability of these bioenergetics modulators for the management of visceral leishmaniasis, malaria and African and American trypanosomiasis as a treatment, or as a preventive tool by enhancing the protective power of a vaccine against L. infantum. The effectiveness of these compounds was first evaluated on in vitro models of each parasite ― Chagas disease (Trypanosoma cruzi), human African trypanosomiasis (Trypanosoma brucei), visceral leishmaniasis (Leishmania infantum) and malaria (Plasmodium falciparum)―. L. infantum promastigotes were not susceptible to these compounds, whereas L. infantum intracellular amastigote growth was dose‐dependently reduced by 3BP (IC50 = 17.19 μM) and DCA (IC50 = 631.5 μM). In the T. brucei in vitro model all the tested compounds, with the exception of 2DG, affected parasite survival with IC50 values of 1.24 mM for DCA, 76.57 μM for 3BP, 26.76 μM for LND, 2.14 μM for SIR, and 17.30 mM for MET. In the case of T. cruzi, DCA, 3BP, 2DG, LND, and MET showed parasite‐killing activity with IC50 values of 27.07 mM, 27.63 μM, 7.27 mM, 78.37 μM, and 18.48 mM, respectively. For P. falciparum DCA (IC50 = 5.39 mM), 2DG (IC50 = 4.19 mM), LND (IC50 = 209.13 μM), MET (IC50 = 1.32 mM), and SIR (IC50 = 2.50 μM), showed antiplasmodial activity. These results reinforce the hypothesis that drugs with proven efficacy in the treatment of cancer by interfering with energy production might be useful in treating threatening parasitic diseases and provide new opportunities for their repurposing. However, when compounds that were effective in the in vitro approach were administered to the in vivo rodent models of these diseases, none of them contributed to disease management or parasite load control. Immunological analysis in the VL hamster model revealed a significant downregulation of immune‐activation in infected animals treated with DCA and 3BP, which may also contribute to treatment failure. In the last chapter of this work, the suitability of sirolimus as an immunomodulatory compound to boost the activity of a preventive vaccine against VL was analyzed. Sirolimus is an already marketed compound that has been described to boost immune protection against different disease models. In our study, Syrian hamsters were treated with sirolimus concomitantly with the administration of a plasmid DNA vaccine carrying the Leishmania genes LACK, TRYP, PAPLE22 and KMPII, and the subsequent response towards a L. infantum challenge was studied. Our results show that the DNA vaccine itself efficiently reduced the burden of parasites in skin (P = 0.0004) and lymph nodes (P = 0.0452), which was potentiated by SIR administration by also inducing parasitological protection in the spleen (P = 0.0004). The study of immune markers in spleen suggests that lower production of IFN‐γ and the concurrent increase of FoxP3+ expression may be responsible for the protection mediated by the DNA vaccine that was potentiated by sirolimus.
Griffiths, Samantha. "Host innate immune interactions with the parasitic protozoan trypanosoma brucei." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445765.
Full textYichoy, Mayte. "Lipid uptake and metabolism in the parasitic protozoan giardia lamblia." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textChalmers, Rachel. "The distribution of Cryptosporidium in livestock and wild animal populations on a Warwickshire farm." Thesis, Coventry University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318154.
Full textFazaeli, Asghar. "Development of molecular markers for the typing and genetic analysis of Toxoplasma gondii." Thesis, University of Aberdeen, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367484.
Full textCox, Sian Sarah Eileen. "Characterisation of putative phosphatidylinositol-3 kinases in the parasitic protozoan giardia instestinalis." Thesis, Royal Holloway, University of London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.498208.
Full textPetersen, Eskild. "Diagnosis of infection with toxoplasma gondii in pregnant women, neonates and immunocompromised patients /." Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-456-2/.
Full textRenteria, Flores Axel. "Novel drugs against protozoan parasites." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116979.
Full textCryptosporidium parvum et Trypanosoma brucei sont deux parasites protozoaires qui peuvent causer des maladies mortelles chez les humains. Confinées au continent africain, les infections dues à T.brucei affectent plus de 70 millions d'habitants. Dans le cas de C.parvum, les infections qui sont cosmopolites causent un problème majeur puisque la dose infectieuse n'est que de 10 oocysts. De plus, ce parasite peut être obtenu facilement et peut mettre en danger plusieurs villes, s'il est relâché dans les eaux potables. C'est un des raisons pourquoi ce parasite a été catégorisé comme une arme bio-terroriste de classe B. Malgré les risques majeurs associés à C.parvum et la maladie sévère de T.brucei, aucun progrès n'a été fait pour améliorer les traitements actuels. Ceux-ci n'ont toujours pas réussi à démontrer leur efficacité en plus de causer des effets secondaires sérieux. Vu le besoin urgent de trouver de meilleurs traitements, nous avons testé l'activité de TH-III-149, un indole-cyclopropane, contre T.brucei dans une étude in vivo ainsi que le oleyl-PC, un analogue de la phosphocholine, contre C.parvum dans des études in vitro et in vivo. Pour commencer, nous avons observé les effets du TH-III-149 contre T.brucei dans un modèle de souris CD1. Les résultats in vivo ont démontré qu'un traitement de trois jours en utilisant 8 mg/kg cause une réduction significative dans le taux de réplication du parasite en comparaison aux souris non-traitées. En utilisant le PCR en temps réel comme méthode de quantification, nous avons démontré que la charge en parasite dans le sang des souris non-traitées a augmenté de mille fois entre les jours 2 et 4, tandis qu'elle n'a augmenté que de 7.5 fois dans les souris qui ont été traitées. Les résultats des frottis sanguins ont confirmé cette réduction dans le taux de réplication des parasites. En effet, l'apparition de parasites dans les frottis sanguins a été observée dès le jour 4 de l'infection dans les souris non-traitées, tandis qu'elle n'a pu être observée qu'à partir du jour 6 dans les souris traitées avec le TH-III-149. De plus, ce composé n'a pas révélé de signes de toxicité car les groupes de souris non-infectées traitées pendant trois jours avec 8 mg/kg n'ont pas démontré de splénomégalie, d'hépatomégalie ni de perte de poids. Donc, nos résultats supportent le développement de TH-III-149 en tant que nouveau traitement contre les infections de T.brucei. En parallèle, nous avons aussi testé l'oleyl-PC contre C.parvum. Nos résultats in vitro démontrent que la concentration nécessaire pour réduire de 50% le taux de réplication du parasite (IC50) est de 25nM. La toxicité a été évaluée en utilisant une culture entérique humaine en couche monocellulaire (HCT-8). Les résultats de celle-ci démontrent que les premiers signes de toxicité apparaissent à partir de 100µM (TC50=123µM). Le ratio entre le TC50 et le IC50 a permis de calculer un index thérapeutique de 5x103. Les résultats in vivo ont servis à confirmer l'activité in vitro de oleyl-PC. En effet, le traitement de dix jours des souris C57BL/6 IFNγR-KO avec 40mg/kg de oleyl-PC a réussi à guérir (absence de parasitémie sanguine) 75% des souris, tout en gardant un taux de survie de 100% après le jour 30 (P<0.001). En contraste, toutes les souris non-traitées ont succombées à l'infection à la fin du jour 11. En utilisant le PCR en temps réel, aucune trace d'ADN provenant de C.parvum n'a pu être détectée dans les intestins de ces souris 30 jours après l'infection. Ces résultats ont été confirmés par l'analyse des lamelles histologique de l'ilium de ces souris où l'absence d'oocyst de C.parvum a été observée. De plus, chez les souris non-infectées, un traitement de dix jours avec 40 mg/kg de oleyl-PC n'a pas causé d'effets secondaires visibles tels qu'une perte de poids. Donc, nos résultats supportent le développement de l'oleyl-PC en tant que nouveau traitement sécuritaire et efficace contre les infections de C.parvum.
O'Donoghue, Peter John. "Characterization of parasitic protozoa in Australia /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe.pdf.
Full textFeener, Troy Douglass. "Ingestion of waterborne protozoan parasites by Daphnia." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0020/MQ55205.pdf.
Full textBooks on the topic "Parasitic protozoan"
Clark, C. Graham. Anaerobic parasitic protozoa: Genomics and molecular biology. Wymondham: Caister Academic Press, 2010.
Find full textChermette, R. Cryptosporidiosis: A cosmopolitan disease in animals and in man. 2nd ed. Paris, France: Office international des epizooties, 1988.
Find full textKreier, J. P., and J. R. Baker. Parasitic Protozoa. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-011-6847-2.
Full textMandal, F. B. Catalouge [i.e. Catalogue] of the protozoans occurring in reptiles from India. Calcutta: Zoological Survey of India, 1993.
Find full textVasil, Golemanski, and Margaritov Nikola, eds. Protozoan parasites of fishes. Sofia: Professor Marin Drimov Academic Pub. House, 2006.
Find full textMeyer, Fred P. Protozoan parasites of freshwater fishes. [Washington, DC]: Dept. of the Interior, U.S. Fish and Wildlife Service, 1990.
Find full textFlorin-Christensen, Monica, and Leonhard Schnittger, eds. Parasitic Protozoa of Farm Animals and Pets. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70132-5.
Full textBook chapters on the topic "Parasitic protozoan"
Salfelder, K., T. R. de Liscano, and E. Sauerteig. "Protozoan Diseases." In Atlas of Parasitic Pathology, 13–95. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2228-3_2.
Full textGuiliano, David B., and Tracey J. Lamb. "Introduction to Protozoan Infections." In Immunity to Parasitic Infection, 59–89. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118393321.ch2.
Full textGeary, Timothy G., and James B. Jensen. "Protozoan Infections of Man: Malaria." In Chemotherapy of Parasitic Diseases, 87–114. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-1233-8_3.
Full textRew, Robert S. "Protozoan Infections of Man: African Trypanosomiasis." In Chemotherapy of Parasitic Diseases, 129–37. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-1233-8_5.
Full textKovacs, Joseph A., and Henry Masur. "Protozoan Infections of Man: Other Infections." In Chemotherapy of Parasitic Diseases, 139–58. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-1233-8_6.
Full textMcGreevy, Patrick B., and Philip D. Marsden. "Protozoan Infections of Man: American Trypanosomiasis and Leishmaniasis." In Chemotherapy of Parasitic Diseases, 115–27. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-1233-8_4.
Full textMcDougald, L. R. "Protozoan Infections of Domestic Animals: Coccidian and Related Infections." In Chemotherapy of Parasitic Diseases, 159–70. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-1233-8_7.
Full textTsutsumi, Yutaka. "Histopathological Diagnosis of Protozoan Infection Using Patients’ Sera." In Host Response to International Parasitic Zoonoses, 69–81. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-68281-3_7.
Full textMasoud, Nagham Gamal, Nagwa Mostafa El-Sayed, and Manar Ezz Elarab Ramadan. "Implications of Extracellular Vesicles in Blood Protozoan Parasitic Diseases." In Role of Exosomes in Biological Communication Systems, 261–76. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6599-1_12.
Full textMehta, Riti, and Souvik Sengupta. "Application of Nanotherapeutics for Combating Human Protozoan Parasitic Infections." In Emerging Trends in Nanomedicine, 203–34. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9920-0_7.
Full textConference papers on the topic "Parasitic protozoan"
Kataev, Alexander, and Dmitriy Kadochnikov. "Hidden causal factors of a medical nature affecting qualifying signs for determining the severity of harm caused to human health when committing crimes against sexual inviolability and sexual freedom of an individual." In Issues of determining the severity of harm caused to human health as a result of the impact of a biological factor. ru: Publishing Center RIOR, 2020. http://dx.doi.org/10.29039/conferencearticle_5fdcb03a8e0864.60330005.
Full textLivage, Jacques, J. Y. Barreau, J. M. Da Costa, and I. Desportes. "Optical detection of parasitic protozoa in sol-gel matrices." In SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, edited by John D. Mackenzie. SPIE, 1994. http://dx.doi.org/10.1117/12.188984.
Full textSullivan, Adam, Xiaopeng Zhao, and Chunlei Su. "Mathematical Modeling of Within-Host Dynamics of Toxoplasma Gondii." In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-6133.
Full textMorris, Arthur, Justin Pachebat, Guy Robinson, Rachel Chalmers, and Martin Swain. "Identifying and Resolving Genome Misassembly Issues Important for Biomarker Discovery in the Protozoan Parasite, Cryptosporidium." In 10th International Conference on Bioinformatics Models, Methods and Algorithms. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0007397200900100.
Full textAbdalla, Mohamed A. E., and Huseyin Seker. "Recognition of protozoan parasites from microscopic images: Eimeria species in chickens and rabbits as a case study." In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2017. http://dx.doi.org/10.1109/embc.2017.8037124.
Full text