To see the other types of publications on this topic, follow the link: Parcimonie, méthodes.

Dissertations / Theses on the topic 'Parcimonie, méthodes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 38 dissertations / theses for your research on the topic 'Parcimonie, méthodes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Le, Van Luong. "Identification de systèmes dynamiques hybrides : géométrie, parcimonie et non-linéarités." Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00874283.

Full text
Abstract:
En automatique, l'obtention d'un modèle du système est la pierre angulaire des procédures comme la synthèse d'une commande, la détection des défaillances, la prédiction... Cette thèse traite de l'identification d'une classe de systèmes complexes, les systèmes dynamiques hybrides. Ces systèmes impliquent l'interaction de comportements continus et discrets. Le but est de construire un modèle à partir de mesures expérimentales d'entrée et de sortie. Une nouvelle approche pour l'identification de systèmes hybrides linéaires basée sur les propriétés géométriques des systèmes hybrides dans l'espace des paramètres est proposée. Un nouvel algorithme est ensuite proposé pour le calcul de la solution la plus parcimonieuse (ou creuse) de systèmes d'équations linéaires sous-déterminés. Celui-ci permet d'améliorer une approche d'identification basée sur l'optimisation de la parcimonie du vecteur d'erreur. De plus, de nouvelles approches, basées sur des modèles à noyaux, sont proposées pour l'identification de systèmes hybrides non linéaires et de systèmes lisses par morceaux.
APA, Harvard, Vancouver, ISO, and other styles
2

Ruta, Christine. "Descriptions et relations cladistiques des hésionidae (Aciculata, Polychaeta)." Paris 6, 2006. http://www.theses.fr/2006PA066082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guedj, Benjamin. "Agrégation d'estimateurs et de classificateurs : théorie et méthodes." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00922353.

Full text
Abstract:
Ce manuscrit de thèse est consacré à l'étude des propriétés théoriques et méthodologiques de différentes procédures d'agrégation d'estimateurs. Un premier ensemble de résultats vise à étendre la théorie PAC-bayésienne au contexte de la grande dimension, dans les modèles de régression additive et logistique. Nous prouvons dans ce contexte l'optimalité, au sens minimax et à un terme logarithmique près, de nos estimateurs. La mise en \oe uvre pratique de cette stratégie, par des techniques MCMC, est étayée par des simulations numériques. Dans un second temps, nous introduisons une stratégie originale d'agrégation non linéaire d'estimateurs de la fonction de régression. Les qualités théoriques et pratiques de cette approche --- dénommée COBRA --- sont étudiées, et illustrées sur données simulées et réelles. Enfin, nous présentons une modélisation bayésienne --- et l'implémentation MCMC correspondante --- d'un problème de génétique des populations. Les différentes approches développées dans ce document sont toutes librement téléchargeables depuis le site de l'auteur.
APA, Harvard, Vancouver, ISO, and other styles
4

Ngolè, Mboula Fred Maurice. "Méthodes et algorithmes avancés pour l'imagerie astronomique de haute précision." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS343/document.

Full text
Abstract:
L'un des challenges majeurs de la cosmologie moderne réside en la nature même de la matière et de l'énergie noire. La matière noire peut être directement tracée à travers son effet gravitationnel sur les formes des galaxies. La mission Euclid de l'Agence Spatiale Européenne fournira précisément des données à cette fin. L'exploitation de telles données requiert une modélisation précise de la Fonction d'Étalement du Point (FEP) de l'instrument d'observation, ce qui constitue l'objectif de cette thèse.Nous avons développé des méthodes non-paramétriques permettant d'estimer de manière fiable la FEP sur l'ensemble du champ de vue d'un instrument, à partir d'images non résolues d'étoiles, ceci en tenant compte du bruit, d'un possible sous-échantillonnage des observations et de la variabilité spatiale de la FEP. Ce travail tire avantage d'outils et concepts mathématiques modernes parmi lesquelles la parcimonie. Une extension importante de ce travail serait de prendre en compte la dépendance en longueur d'onde de la FEP<br>One of the biggest challenges of modern cosmology is to gain a more precise knowledge of the dark energy and the dark matter nature. Fortunately, the dark matter can be traced directly through its gravitational effect on galaxies shapes. The European Spatial Agency Euclid mission will precisely provide data for such a purpose. A critical step is analyzing these data will be to accurately model the instrument Point Spread Function (PSF), which the focus of this thesis.We developed non parametric methods to reliably estimate the PSFs across an instrument field-of-view, based on unresolved stars images and accounting for noise, undersampling and PSFs spatial variability. At the core of these contributions, modern mathematical tools and concepts such as sparsity. An important extension of this work will be to account for the PSFs wavelength dependency
APA, Harvard, Vancouver, ISO, and other styles
5

Lecué, Guillaume. "Interplay between concentration, complexity and geometry in learning theory with applications to high dimensional data analysis." Habilitation à diriger des recherches, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00654100.

Full text
Abstract:
In this document I present the works I undertook since the end of my Ph.D. I started my Ph.D in September 2004 at the Laboratoire de Probabilit{é}s et Mod{é}les Al{é}atoires of Universit{é} Paris 6. I was then hired in October 2007 by the CNRS and spent my first two years at the Laboratoire d'Analyse, Topologie et Probabilit{é} in Marseille. In 2009, I moved to the Laboratoire d'Analyse et Math{é}matiques Appliqu{é}es at the Universit{é} Paris-Est Marne-la-vall{é}e. I will also use the opportunity of writing this manuscript to add some remarks and extensions to these works.
APA, Harvard, Vancouver, ISO, and other styles
6

Paris, Silvia. "Méthodes de détection parcimonieuses pour signaux faibles dans du bruit : application à des données hyperspectrales de type astrophysique." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00933827.

Full text
Abstract:
Cette thèse contribue à la recherche de méthodes de détection de signaux inconnus à très faible Rapport Signal-à-Bruit. Ce travail se concentre sur la définition, l'étude et la mise en œuvre de méthodes efficaces capables de discerner entre observations caractérisées seulement par du bruit de celles qui au contraire contiennent l'information d'intérêt supposée parcimonieuse. Dans la partie applicative, la pertinence de ces méthodes est évaluée sur des données hyperspectrales. Dans la première partie de ce travail, les principes à la base des tests statistiques d'hypothèses et un aperçu général sur les représentations parcimonieuses, l'estimation et la détection sont introduits. Dans la deuxième partie du manuscrit deux tests d'hypothèses statistiques sont proposés et étudiés, adaptés à la détection de signaux parcimonieux. Les performances de détection des tests sont comparés à celles de méthodes fréquentistes et Bayésiennes classiques. Conformément aux données tridimensionnelles considérées dans la partie applicative, et pour se rapprocher de scénarios plus réalistes impliquant des systèmes d'acquisition de données, les méthodes de détection proposées sont adaptées de façon à exploiter un modèle plus précis basé sur des dictionnaires qui prennent en compte l'effet d'étalement spatio-spectral de l'information causée par les fonctions d'étalement du point de l'instrument. Les tests sont finalement appliqués à des données astrophysiques massives de type hyperspectral dans le contexte du Multi Unit Spectroscopic Explorer de l'Observatoire Européen Austral.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Han. "Méthodes de reconstruction d'images à partir d'un faible nombre de projections en tomographie par rayons x." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00680100.

Full text
Abstract:
Afin d'améliorer la sûreté (dose plus faible) et la productivité (acquisition plus rapide) du système de la tomographie par rayons X (CT), nous cherchons à reconstruire une image de haute qualitée avec un faible nombre de projections. Les algorithmes classiques ne sont pas adaptés à cette situation et la reconstruction est instable et perturbée par des artefacts. L'approche "Compressed Sensing" (CS) fait l'hypothèse que l'image inconnue est "parcimonieuse" ou "compressible", et la reconstruit via un problème d'optimisation (minimisation de la norme TV/L1) en promouvant la parcimonie. Pour appliquer le CS en CT, en utilisant le pixel/voxel comme base de representation, nous avons besoin d'une transformée parcimonieuse, et nous devons la combiner avec le "projecteur du rayon X" appliqué sur une image pixelisée. Dans cette thèse, nous avons adapté une base radiale de famille Gaussienne nommée "blob" à la reconstruction CT par CS. Elle a une meilleure localisation espace-fréquentielle que le pixel, et des opérations comme la transformée en rayons-X, peuvent être évaluées analytiquement et sont facilement parallélisables (sur plateforme GPU par exemple). Comparé au blob classique de Kaisser-Bessel, la nouvelle base a une structure multi-échelle : une image est la somme des fonctions translatées et dilatées de chapeau Mexicain radiale. Les images médicales typiques sont compressibles sous cette base. Ainsi le système de representation parcimonieuse dans les algorithmes ordinaires de CS n'est plus nécessaire. Des simulations (2D) ont montré que les algorithmes TV/L1 existants sont plus efficaces et les reconstructions ont des meilleures qualités visuelles que par l'approche équivalente basée sur la base de pixel-ondelettes. Cette nouvelle approche a également été validée sur des données expérimentales (2D), où nous avons observé que le nombre de projections en général peut être réduit jusqu'à 50%, sans compromettre la qualité de l'image.
APA, Harvard, Vancouver, ISO, and other styles
8

Lassami, Nacerredine. "Représentations parcimonieuses et analyse multidimensionnelle : méthodes aveugles et adaptatives." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2019. http://www.theses.fr/2019IMTA0139.

Full text
Abstract:
Au cours de la dernière décennie, l’étude mathématique et statistique des représentations parcimonieuses de signaux et de leurs applications en traitement du signal audio, en traitement d’image, en vidéo et en séparation de sources a connu une activité intensive. Cependant, l'exploitation de la parcimonie dans des contextes de traitement multidimensionnel comme les communications numériques reste largement ouverte. Au même temps, les méthodes aveugles semblent être la réponse à énormément de problèmes rencontrés récemment par la communauté du traitement du signal et des communications numériques tels que l'efficacité spectrale. Aussi, dans un contexte de mobilité et de non-stationnarité, il est important de pouvoir mettre en oeuvre des solutions de traitement adaptatives de faible complexité algorithmique en vue d'assurer une consommation réduite des appareils. L'objectif de cette thèse est d'aborder ces challenges de traitement multidimensionnel en proposant des solutions aveugles de faible coût de calcul en utilisant l'à priori de parcimonie. Notre travail s'articule autour de trois axes principaux : la poursuite de sous-espace principal parcimonieux, la séparation adaptative aveugle de sources parcimonieuses et l'identification aveugle des systèmes parcimonieux. Dans chaque problème, nous avons proposé de nouvelles solutions adaptatives en intégrant l'information de parcimonie aux méthodes classiques de manière à améliorer leurs performances. Des simulations numériques ont été effectuées pour confirmer l’intérêt des méthodes proposées par rapport à l'état de l'art en termes de qualité d’estimation et de complexité calculatoire<br>During the last decade, the mathematical and statistical study of sparse signal representations and their applications in audio, image, video processing and source separation has been intensively active. However, exploiting sparsity in multidimensional processing contexts such as digital communications remains a largely open problem. At the same time, the blind methods seem to be the answer to a lot of problems recently encountered by the signal processing and the communications communities such as the spectral efficiency. Furthermore, in a context of mobility and non-stationarity, it is important to be able to implement adaptive processing solutions of low algorithmic complexity to ensure reduced consumption of devices. The objective of this thesis is to address these challenges of multidimensional processing by proposing blind solutions of low computational cost by using the sparsity a priori. Our work revolves around three main axes: sparse principal subspace tracking, adaptive sparse source separation and identification of sparse systems. For each problem, we propose new adaptive solutions by integrating the sparsity information to the classical methods in order to improve their performance. Numerical simulations have been conducted to confirm the superiority of the proposed methods compared to the state of the art
APA, Harvard, Vancouver, ISO, and other styles
9

Migot, Tangi. "Contributions aux méthodes numériques pour les problèmes de complémentarité et problèmes d'optimisation sous contraintes de complémentarité." Thesis, Rennes, INSA, 2017. http://www.theses.fr/2017ISAR0026/document.

Full text
Abstract:
Dans cette thèse, nous avons étudié les méthodes de régularisation pour la résolution numérique de problèmes avec équilibres. Dans une première partie, nous nous sommes intéressés aux problèmes de complémentarité au travers de deux applications : les équations en valeur absolue et les problèmes de parcimonie. Dans une seconde partie, nous avons étudié les problèmes d'optimisation sous contraintes de .complémentarité. Après avoir définies des conditions d'optimalité pour ces problèmes nous avons proposé une nouvelle méthode de régularisation appelée méthode des papillons. A partir d'une étude de la résolution des sous-problèmes de la régularisation nous avons défini un algorithme avec des propriétés de convergence forte. Tout au long de ce manuscrit nous nous sommes concentrés sur les propriétés théoriques des algorithmes ainsi que sur leurs applications numériques. La dernière partie de ce document est consacrée aux résultats numériques des méthodes de régularisation<br>In this thesis, we studied the regularization methods for the numerical resolution of problems with equilibria. In the first part, we focused on the complementarity problems through two applications that are the absolute value equation and the sparse optimization problem. In the second part, we concentrated on optimization problems with complementarity constraints. After studying the optimality conditions of this problem, we proposed a new regularization method, so-called butterfly relaxation. Then, based on an analysis of the regularized sub-problems we defined an algorithm with strong convergence property. Throughout the manuscript, we concentrated on the theoretical properties of the algorithms as well as their numerical applications. In the last part of this document, we presented numerical results using the regularization methods for the mathematical programs with complementarity constraints
APA, Harvard, Vancouver, ISO, and other styles
10

Raja, Suleiman Raja Fazliza. "Méthodes de detection robustes avec apprentissage de dictionnaires. Applications à des données hyperspectrales." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4121/document.

Full text
Abstract:
Le travail dans cette thèse porte sur le problème de détection «one among many» où l’on doit distinguer entre un bruit sous H0 et une parmi L alternatives connues sous H1. Ce travail se concentre sur l’étude et la mise en œuvre de méthodes de détection robustes de dimension réduite utilisant des dictionnaires optimisés. Ces méthodes de détection sont associées au test de Rapport de Vraisemblance Généralisé. Les approches proposées sont principalement évaluées sur des données hyperspectrales. Dans la première partie, plusieurs sujets techniques associés à cette thèse sont présentés. La deuxième partie met en évidence les aspects théoriques et algorithmiques des méthodes proposées. Deux inconvénients liés à un grand nombre d’alternatives se posent. Dans ce cadre, nous proposons des techniques d’apprentissage de dictionnaire basées sur un critère robuste qui cherche à minimiser la perte de puissance dans le pire des cas (type minimax). Dans le cas où l’on cherche un dictionnaire à K = 1 atome, nous montrons que la solution exacte peut être obtenue. Ensuite, nous proposons dans le cas K &gt; 1 trois algorithmes d’apprentissage minimax. Finalement, la troisième partie de ce manuscrit présente plusieurs applications. L’application principale concerne les données astrophysiques hyperspectrales de l’instrument Multi Unit Spectroscopic Explorer. Les résultats numériques montrent que les méthodes proposées sont robustes et que le cas K &gt; 1 permet d’augmenter les performances de détection minimax par rapport au cas K = 1. D’autres applications possibles telles que l’apprentissage minimax de visages et la reconnaissance de chiffres manuscrits dans le pire cas sont présentées<br>This Ph.D dissertation deals with a "one among many" detection problem, where one has to discriminate between pure noise under H0 and one among L known alternatives under H1. This work focuses on the study and implementation of robust reduced dimension detection tests using optimized dictionaries. These detection methods are associated with the Generalized Likelihood Ratio test. The proposed approaches are principally assessed on hyperspectral data. In the first part, several technical topics associated to the framework of this dissertation are presented. The second part highlights the theoretical and algorithmic aspects of the proposed methods. Two issues linked to the large number of alternatives arise in this framework. In this context, we propose dictionary learning techniques based on a robust criterion that seeks to minimize the maximum power loss (type minimax). In the case where the learned dictionary has K = 1 column, we show that the exact solution can be obtained. Then, we propose in the case K &gt; 1 three minimax learning algorithms. Finally, the third part of this manuscript presents several applications. The principal application regards astrophysical hyperspectral data of the Multi Unit Spectroscopic Explorer instrument. Numerical results show that the proposed algorithms are robust and in the case K &gt; 1 they allow to increase the minimax detection performances over the K = 1 case. Other possible applications such as worst-case recognition of faces and handwritten digits are presented
APA, Harvard, Vancouver, ISO, and other styles
11

Bernhardt, Stéphanie. "Performances et méthodes pour l'échantillonnage comprimé : Robustesse à la méconnaissance du dictionnaire et optimisation du noyau d'échantillonnage." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS443/document.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à deux méthodes permettant de reconstruire un signal parcimonieux largement sous-échantillonné : l’échantillonnage de signaux à taux d’innovation fini et l’acquisition comprimée.Il a été montré récemment qu’en utilisant un noyau de pré-filtrage adapté, les signaux impulsionnels peuvent être parfaitement reconstruits bien qu’ils soient à bande non-limitée. En présence de bruit, la reconstruction est réalisée par une procédure d’estimation de tous les paramètres du signal d’intérêt. Dans cette thèse, nous considérons premièrement l’estimation des amplitudes et retards paramétrisant une somme finie d'impulsions de Dirac filtrée par un noyau quelconque et deuxièmement l’estimation d’une somme d’impulsions de forme quelconque filtrée par un noyau en somme de sinus cardinaux (SoS). Le noyau SoS est intéressant car il est paramétrable par un jeu de paramètres à valeurs complexes et vérifie les conditions nécessaires à la reconstruction. En se basant sur l’information de Fisher Bayésienne relative aux paramètres d’amplitudes et de retards et sur des outils d’optimisation convexe, nous proposons un nouveau noyau d’échantillonnage.L’acquisition comprimée permet d’échantillonner un signal en-dessous de la fréquence d’échantillonnage de Shannon, si le vecteur à échantillonner peut être approximé comme une combinaison linéaire d’un nombre réduit de vecteurs extraits d’un dictionnaire sur-complet. Malheureusement, dans des conditions réalistes, le dictionnaire (ou base) n’est souvent pas parfaitement connu, et est donc entaché d’une erreur (DB). L’estimation par dictionnaire, se basant sur les mêmes principes, permet d’estimer des paramètres à valeurs continues en les associant selon une grille partitionnant l’espace des paramètres. Généralement, les paramètres ne se trouvent pas sur la grille, ce qui induit un erreur d’estimation même à haut rapport signal sur bruit (RSB). C’est le problème de l’erreur de grille (EG). Dans cette thèse nous étudions les conséquences des modèles d’erreur DB et EG en terme de performances bayésiennes et montrons qu’un biais est introduit même avec une estimation parfaite du support et à haut RSB. La BCRB est dérivée pour les modèles DB et EG non structurés, qui bien qu’ils soient très proches, ne sont pas équivalents en terme de performances. Nous donnons également la borne de Cramér-Rao moyennée (BCRM) dans le cas d’une petite erreur de grille et étudions l’expression analytique de l’erreur quadratique moyenne bayésienne (BEQM) sur l’estimation de l’erreur de grille à haut RSB. Cette dernière est confirmée en pratique dans le contexte de l’estimation de fréquence pour différents algorithmes de reconstruction parcimonieuse.Nous proposons deux nouveaux estimateurs : le Bias-Correction Estimator (BiCE) et l’Off-Grid Error Correction (OGEC) permettant de corriger l'erreur de modèle induite par les erreurs DB et EG, respectivement. Ces deux estimateurs principalement basés sur une projection oblique des mesures sont conçus comme des post-traitements, destinés à réduire le biais d’estimation suite à une pré-estimation effectuée par n’importe quel algorithme de reconstruction parcimonieuse. Les biais et variances théoriques du BiCE et du OGEC sont dérivés afin de caractériser leurs efficacités statistiques.Nous montrons, dans le contexte difficile de l’échantillonnage des signaux impulsionnels à bande non-limitée que ces deux estimateurs permettent de réduire considérablement l’effet de l'erreur de modèle sur les performances d’estimation. Les estimateurs BiCE et OGEC sont tout deux des schémas (i) génériques, car ils peuvent être associés à tout estimateur parcimonieux de la littérature, (ii) rapides, car leur coût de calcul reste faible comparativement au coût des estimateurs parcimonieux, et (iii) ont de bonnes propriétés statistiques<br>In this thesis, we are interested in two different low rate sampling schemes that challenge Shannon’s theory: the sampling of finite rate of innovation signals and compressed sensing.Recently it has been shown that using appropriate sampling kernel, finite rate of innovation signals can be perfectly sampled even though they are non-bandlimited. In the presence of noise, reconstruction is achieved by a model-based estimation procedure. In this thesis, we consider the estimation of the amplitudes and delays of a finite stream of Dirac pulses using an arbitrary kernel and the estimation of a finite stream of arbitrary pulses using the Sum of Sincs (SoS) kernel. In both scenarios, we derive the Bayesian Cramér-Rao Bound (BCRB) for the parameters of interest. The SoS kernel is an interesting kernel since it is totally configurable by a vector of weights. In the first scenario, based on convex optimization tools, we propose a new kernel minimizing the BCRB on the delays, while in the second scenario we propose a family of kernels which maximizes the Bayesian Fisher Information, i.e., the total amount of information about each of the parameter in the measures. The advantage of the proposed family is that it can be user-adjusted to favor either of the estimated parameters.Compressed sensing is a promising emerging domain which outperforms the classical limit of the Shannon sampling theory if the measurement vector can be approximated as the linear combination of few basis vectors extracted from a redundant dictionary matrix. Unfortunately, in realistic scenario, the knowledge of this basis or equivalently of the entire dictionary is often uncertain, i.e. corrupted by a Basis Mismatch (BM) error. The related estimation problem is based on the matching of continuous parameters of interest to a discretized parameter set over a regular grid. Generally, the parameters of interest do not lie in this grid and there exists an estimation error even at high Signal to Noise Ratio (SNR). This is the off-grid (OG) problem. The consequence of the BM and the OG mismatch problems is that the estimation accuracy in terms of Bayesian Mean Square Error (BMSE) of popular sparse-based estimators collapses even if the support is perfectly estimated and in the high Signal to Noise Ratio (SNR) regime. This saturation effect considerably limits the effective viability of these estimation schemes.In this thesis, the BCRB is derived for CS model with unstructured BM and OG. We show that even though both problems share a very close formalism, they lead to different performances. In the biased dictionary based estimation context, we propose and study analytical expressions of the Bayesian Mean Square Error (BMSE) on the estimation of the grid error at high SNR. We also show that this class of estimators is efficient and thus reaches the Bayesian Cramér-Rao Bound (BCRB) at high SNR. The proposed results are illustrated in the context of line spectra analysis for several popular sparse estimator. We also study the Expected Cramér-Rao Bound (ECRB) on the estimation of the amplitude for a small OG error and show that it follows well the behavior of practical estimators in a wide SNR range.In the context of BM and OG errors, we propose two new estimation schemes called Bias-Correction Estimator (BiCE) and Off-Grid Error Correction (OGEC) respectively and study their statistical properties in terms of theoretical bias and variances. Both estimators are essentially based on an oblique projection of the measurement vector and act as a post-processing estimation layer for any sparse-based estimator and mitigate considerably the BM (OG respectively) degradation. The proposed estimators are generic since they can be associated to any sparse-based estimator, fast, and have good statistical properties. To illustrate our results and propositions, they are applied in the challenging context of the compressive sampling of finite rate of innovation signals
APA, Harvard, Vancouver, ISO, and other styles
12

Boulais, Axel. "Méthodes de séparation aveugle de sources et application à l'imagerie hyperspectrale en astrophysique." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30318/document.

Full text
Abstract:
Ces travaux de thèse concernent le développement de nouvelles méthodes de séparation aveugle de mélanges linéaires instantanés pour des applications à des données hyperspectrales en astrophysique. Nous avons proposé trois approches pour effectuer la séparation des données. Une première contribution est fondée sur l'hybridation de deux méthodes existantes de séparation aveugle de source (SAS) : la méthode SpaceCORR nécessitant une hypothèse de parcimonie et une méthode de factorisation en matrices non négatives (NMF). Nous montrons que l'utilisation des résultats de SpaceCORR pour initialiser la NMF permet d'améliorer les performances des méthodes utilisées seules. Nous avons ensuite proposé une première méthode originale permettant de relâcher la contrainte de parcimonie de SpaceCORR. La méthode MASS (pour \textit{Maximum Angle Source Separation}) est une méthode géométrique basée sur l'extraction de pixels mono-sources pour réaliser la séparation des données. Nous avons également étudié l'hybridation de MASS avec la NMF. Enfin, nous avons proposé une seconde approche permettant de relâcher la contrainte de parcimonie de SpaceCORR. La méthode originale SIBIS (pour \textit{Subspace-Intersection Blind Identification and Separation}) est une méthode géométrique basée sur l'identification de l'intersection de sous-espaces engendrés par des régions de l'image hyperspectrale. Ces intersections permettent, sous une hypothèse faible de parcimonie, de réaliser la séparation des données. L'ensemble des approches proposées dans ces travaux ont été validées par des tests sur données simulées puis appliquées sur données réelles. Les résultats obtenus sur ces données sont très encourageants et sont comparés à ceux obtenus par des méthodes de la littérature<br>This thesis deals with the development of new blind separation methods for linear instantaneous mixtures applicable to astrophysical hyperspectral data sets. We propose three approaches to perform data separation. A first contribution is based on hybridization of two existing blind source separation (BSS) methods: the SpaceCORR method, requiring a sparsity assumption, and a non-negative matrix factorization (NMF) method. We show that using SpaceCORR results to initialize the NMF improves the performance of the methods used alone. We then proposed a first original method to relax the sparsity constraint of SpaceCORR. The method called MASS (Maximum Angle Source Separation) is a geometric method based on the extraction of single-source pixels to achieve the separation of data. We also studied the hybridization of MASS with the NMF. Finally, we proposed an approach to relax the sparsity constraint of SpaceCORR. The original method called SIBIS (Subspace-Intersection Blind Identification and Separation) is a geometric method based on the identification of intersections of subspaces generated by regions of the hyperspectral image. Under a sparsity assumption, these intersections allow one to achieve the separation of the data. The approaches proposed in this manuscript have been validated by experimentations on simulated data and then applied to real data. The results obtained on our data are very encouraging and are compared with those obtained by methods from the literature
APA, Harvard, Vancouver, ISO, and other styles
13

Albouy, Benoît. "Méthodes de séparation aveugle de sources applicables à des signaux de parole." Toulouse 3, 2004. http://www.theses.fr/2004TOU30222.

Full text
Abstract:
Différentes méthodes de séparation aveugle de sources (SAS) ont été proposées au cours de cette thèse, afin d'extraire en sortie des structures utilisées, une contribution de chacune des sources à l'aide uniquement des mélanges reçus. Nous avons tout d'abord développé deux approches de SAS à segmentation temporelle, avec des structures de séparation symétrique et asymétrique, afin de résoudre le problème de deux mélanges convolutifs de deux sources présentant des silences. Ces méthodes nécessitent une identification de filtres de séparation, réalisée à l'aide de rapports de densité spectrale de puissance, et une détection de zones temporelles mono-sources. Ces approches fournissent alors de bonnes performances lors de tests de cocktail party, de rehaussement de la parole et de reconnaissance automatique de la parole. Afin de réduire l'hypothèse précédente de parcimonie des sources, des approches à segmentation temps-fréquence (TF) ont ensuite été proposées pour N mélanges linéaires instantanés puis pour N mélanges à atténuations et retards. La détection de quelques zones TF mono-sources permet alors d'obtenir des performances très intéressantes pour des signaux non-stationnaires comme ceux de parole.
APA, Harvard, Vancouver, ISO, and other styles
14

Puigt, Mathieu. "Méthodes de séparation aveugle de sources fondées sur des transformées temps-fréquence. Application à des signaux de parole." Phd thesis, Université Paul Sabatier - Toulouse III, 2007. http://tel.archives-ouvertes.fr/tel-00270811.

Full text
Abstract:
Plusieurs méthodes de séparation aveugle de source (SAS), fondées sur des transformées temps-fréquence (TF), ont été proposées au cours de cette thèse. En sortie des systèmes utilisés, une contribution de chaque source est estimée, uniquement à l'aide des signaux mélangés. Toutes les méthodes étudiées dans ce manuscrit trouvent des petites zones du plan TF où une seule source est présente et estiment dans ces zones les paramètres de mélange. Ces approches sont particulièrement adaptées aux sources non-stationnaires.<br />Nous avons tout d'abord étudié et amélioré des méthodes proposées précédemment par l'équipe, basées sur des critères de variance ou de corrélation, pour des mélanges linéaires instantanés. Elles apportent d'excellentes performances pour des signaux de parole et peuvent aussi séparer des spectres issus de données astrophysiques. Cependant, la nature des mélanges qu'elles peuvent traiter limite leur champ d'application.<br />Nous avons donc étendu ces approches à des mélanges plus réalistes. Les premières extensions considèrent des mélanges de sources atténuées et décalées temporellement, ce qui correspond physiquement aux mélanges en chambre anéchoïque. Elles nécessitent des hypothèses de parcimonie beaucoup moins fortes que certaines approches de la littérature, tout en traitant le même type de mélanges. Nous avons étudié l'apport de méthodes de classification non-supervisée sur nos approches et avons obtenu de bonnes performances pour des mélanges de signaux de parole.<br />Enfin, une extension théorique aux mélanges convolutifs généraux est décrite mais nécessite de fortes hypothèses de parcimonie et le réglage d'indéterminations propres aux méthodes fréquentielles.
APA, Harvard, Vancouver, ISO, and other styles
15

Ben, mhenni Ramzi. "Méthodes de programmation en nombres mixtes pour l'optimisation parcimonieuse en traitement du signal." Thesis, Ecole centrale de Nantes, 2020. http://www.theses.fr/2020ECDN0008.

Full text
Abstract:
L’approximation parcimonieuse consiste à ajuster un modèle de données linéaire au sens des moindres carrés avec un faible nombre de composantes non nulles (la “norme” L0). En raison de sa complexité combinatoire, ce problème d’optimisation est souvent abordé par des méthodes sous-optimales. Il a cependant récemment été montré que sa résolution exacte était envisageable au moyen d’une reformulation en programme en nombres mixtes(MIP),couplée à un solveur MIP générique, mettant en œuvre des stratégies de type branch-and-bound. Cette thèse aborde le problème d’approximation parcimonieuse en norme L0 par la construction d’algorithmes branch-and-bound dédiés, exploitant les structures mathématiques du problème. D’une part, nous interprétons l’évaluation de chaque nœud comme l’optimisation d’un critère en norme L1, pour lequel nous proposons des méthodes dédiées. D’autre part, nous construisons une stratégie d’exploration efficace exploitant la parcimonie de la solution, privilégiant l’activation de variables non nulles dans le parcours de l’arbre de décision. La méthode proposée dépasse largement les performances du solveur CPLEX, réduisant le temps de calcul et permettant d’aborder des problèmes de plus grande taille. Dans un deuxième volet de la thèse, nous proposons et étudions des reformulations MIP du problème de démélange spectral sous contrainte de parcimonie en norme L0 et sous des contraintes plus complexes de parcimonie structurée, généralement abordées de manière relâchée dans la littérature.Nous montrons que, pour des problèmes de complexité limitée, la prise en compte de manière exacte de ces contraintes est possible et permet d’améliorer l’estimation par rapport aux approches existantes<br>Sparse approximation aims to fit a linear model in a least-squares sense, with a small number of non-zero components (the L0 “norm”). Due to its combinatorial nature, it is often addressed by suboptimal methods. It was recently shown, however, that exact resolution could be performed through a mixed integer program(MIP) reformulation solved by a generic solver, implementing branch-and-bound techniques. This thesis addresses the L0-norm sparse approximation problem with tailored branch-andbound resolution methods, exploiting the mathematical structures of the problem. First, we show that each node evaluation amounts to solving an L1-norm problem, for which we propose dedicated methods. Then, we build an efficient exploration strategy exploiting the sparsity of the solution, by activating first the non-zero variables in the tree search. The proposed method outperforms the CPLEX solver, reducing the computation time and making it possible to address larger problems. In a second part of the thesis, we propose and study the MIP reformulations of the spectral unmixing problem with L0-norm sparsity more advanced structured sparsity constraints, which are usually addressed through relaxations in the literature. We show that, for problems with limited complexity (highly sparse solutions, good signal-to-noise ratio), such constraints can be accounted for exactly and improve the estimation quality over standard approaches
APA, Harvard, Vancouver, ISO, and other styles
16

Zepeda, Salvatierra Joaquin. "Nouvelles méthodes de représentations parcimonieuses ; application à la compression et l'indexation d'images." Phd thesis, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00567851.

Full text
Abstract:
Une nouvelle structure de dictionnaire adaptés aux décompositions itératives de type poursuite, appelée un Iteration-Tuned Dictionary (ITD), est présentée. Les ITDs sont structurés en couche, chaque couche se composant d'un ensemble de dictionnaires candidats. Les décompositions itératives basées ITD sont alors réalisées en sélectionnant, à chaque itération i, l'un des dictionnaires de la i-ième couche. Une structure générale des ITDs est proposée, ainsi qu'une variante structurée en arbre appelée Tree-Structured Iteration-Tuned Dictionary (TSITD) et une version contrainte de cette dernière, appelée Iteration-Tuned and Aligned Dictionary (ITAD). Ces structures sont comparées à plusieurs méthodes de l'état de l'art et évaluées dans des applications de débruitage et de compression d'images. Un codec basé sur le schéma ITAD est également présenté et comparé à JPEG2000 dans des évaluations qualitatives et quantitatives. Dans le contexte de l'indexation d'images, un nouveau système de recherche approximative des plus proches voisins est également introduit, qui utilise les représentations parcimonieuses pour réduire la complexité de la recherche. La méthode traite l'instabilité dans la sélection des atomes lorsque l'image est soumise à de faibles transformations affines. Un nouveau système de conditionnement des données est également introduit, permettant de mieux distribuer les données sur la sphère unitaire tout en préservant leurs distances angulaires relatives. Il est montré que cette méthode améliore le compromis complexité/performance de la recherche approximative basée décompositions parcimonieuses.
APA, Harvard, Vancouver, ISO, and other styles
17

Alquier, Pierre. "Contributions à l'apprentissage statistique dans les modèles parcimonieux." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00915505.

Full text
Abstract:
Ce mémoire d'habilitation a pour objet diverses contributions à l'estimation et à l'apprentissage statistique dans les modeles en grande dimension, sous différentes hypothèses de parcimonie. Dans une première partie, on introduit la problématique de la statistique en grande dimension dans un modèle générique de régression linéaire. Après avoir passé en revue les différentes méthodes d'estimation populaires dans ce modèle, on présente de nouveaux résultats tirés de (Alquier & Lounici 2011) pour des estimateurs agrégés. La seconde partie a essentiellement pour objet d'étendre les résultats de la première partie à l'estimation de divers modèles de séries temporelles (Alquier & Doukhan 2011, Alquier & Wintenberger 2013, Alquier & Li 2012, Alquier, Wintenberger & Li 2012). Enfin, la troisième partie présente plusieurs extensions à des modèles non param\étriques ou à des applications plus spécifiques comme la statistique quantique (Alquier & Biau 2013, Guedj & Alquier 2013, Alquier, Meziani & Peyré 2013, Alquier, Butucea, Hebiri, Meziani & Morimae 2013, Alquier 2013, Alquier 2008). Dans chaque section, des estimateurs sont proposés, et, aussi souvent que possible, des inégalités oracles optimales sont établies.
APA, Harvard, Vancouver, ISO, and other styles
18

Guinin, Maxime. "Segmentation 3D des organes à risque du tronc masculin à partir d'images anatomiques TDM et IRM à l'aide de méthodes hybrides." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMR019/document.

Full text
Abstract:
Le cancer de la prostate est une cause majeure de décès dans le monde. La radiothérapie externe est une des techniques utilisée pour traiter ce cancer. Pour ce faire, la segmentation de la prostate et de ses organes à risque (OAR) associés (le rectum, la vessie et les têtes fémorales) est une étape majeure dans l’application du traitement. L’objectif de cette thèse est de fournir des outils afin de segmenter la prostate et les OAR de manière automatique ou semi-automatique. Plusieurs approches ont été proposées ces dernières années pour répondre à ces problématiques. Les OAR possédant un contraste relativement bon dans l’image, nous nous sommes orientés vers une approche semi-automatique de leur segmentation, consistant en une sur-segmentation de l’image en petites régions homogènes appelées superpixels. L’utilisateur de la méthode choisit ensuite de labelliser quelques superpixels dans les OAR comme des germes. Enfin, la méthode segmente les OAR grâce à une diffusion sur le graphe (à partir des germes) construit par des superpixels. Quant à la segmentation de la prostate, un sous-volume de l’image appelé VOI (Volume Of Interest), dans lequel se trouve la prostate, est tout d’abord défini. À l’intérieur de ce VOI, la segmentation de la prostate est réalisée. Un dictionnaire composé des caractéristiques de textures extraites sur chaque patch du VOI est d’abord construit. La sélection de caractéristiques du dictionnaire sous contraintes parcimonieuses permet ensuite de trouver celles qui sont le plus informatives. Enfin, basé sur ces caractéristiques sélectionnées, une propagation de label de patch sous contrainte parcimonieuse est appliquée pour segmenter la prostate à deux échelles, superpixels et pixels. Notre méthode a été évaluée sur des images TDM du Centre Henri Becquerel et IRM du challenge ISBI 2013 avec des résultats prometteurs<br>Prostate cancer is a leading cause of death worldwide. External radiotherapy is one of the techniques used to this disease. In order to achieve this, the segmentation of the prostate and its associated organs at risk (OAR) (rectum, bladder and femoral heads) is a major step in the application of the treatment. The objective of this thesis is to provide tools to segment prostate and OAR automatically or semi-automatically. Several approaches have been proposed in recent years to address these issues. As OAR have a relatively good contrast in the image, we have focused on a semi-automatic approach to segment them, consisting of an over-segmentation of the image into small homogeneous regions called superpixels. Then, the user labels some superpixels in the OAR as germs. Finally, the OAR segmentation is performed by a graph diffusion (from germs) constructed by superpixels. Regarding the prostate segmentation, a sub-volume of the image called VOI (Volume Of Interest), in which the prostate is located, is first defined. The prostate segmentation is performed within this VOI. A dictionary composed of the texture characteristics extracted on each patch of the VOI is first constructed. Then, the selection of characteristics of the dictionary under parsimonious constraints allows to find the most informative ones. Finally, based on these selected characteristics, patch label propagation under parsimonious constraint is applied to segment the prostate at two scales, superpixels and pixels. Our method was evaluated with promising results on TDM images of the Henri Becquerel Center and IRM of the 2013 ISBI challenge
APA, Harvard, Vancouver, ISO, and other styles
19

Puigt, Matthieu. "Méthodes de séparation aveugle de sources fondées sur des transformées temps-fréquence : application à des signaux de parole." Toulouse 3, 2007. http://thesesups.ups-tlse.fr/217/.

Full text
Abstract:
Plusieurs méthodes de séparation aveugle de source (SAS), fondées sur des transformées temps-fréquence (TF), ont été proposées au cours de cette thèse. En sortie des systèmes utilisés, une contribution de chaque source est estimée, uniquement à l'aide des signaux mélangés. Toutes les méthodes étudiées dans ce manuscrit trouvent des petites zones du plan TF où une seule source est présente et estiment dans ces zones les paramètres de mélange. Ces approches sont particulièrement adaptées aux sources non-stationnaires. Nous avons tout d'abord étudié et amélioré des méthodes proposées précédemment par l'équipe, basées sur des critères de variance ou de corrélation, pour des mélanges linéaires instantanés. Elles apportent d'excellentes performances pour des signaux de parole et peuvent aussi séparer des spectres issus de données astrophysiques. Cependant, la nature des mélanges qu'elles peuvent traiter limite leur champ d'application. Nous avons donc étendu ces approches à des mélanges plus réalistes. Les premières extensions considèrent des mélanges de sources atténuées et décalées temporellement, ce qui correspond physiquement aux mélanges en chambre anéchoïque. Elles nécessitent des hypothèses de parcimonie beaucoup moins fortes que certaines approches de la littérature, tout en traitant le même type de mélanges. Nous avons étudié l'apport de méthodes de classification non-supervisée sur nos approches et avons obtenu de bonnes performances pour des mélanges de signaux de parole. Enfin, une extension théorique aux mélanges convolutifs généraux est décrite mais nécessite de fortes hypothèses de parcimonie et le réglage d'indéterminations propres aux méthodes fréquentielles<br>Several time-frequency (TF) blind source separation (BSS) methods have been proposed in this thesis. In the systems output that have been used, a contribution of each source is estimated, using only mixed signals. All the methods proposed in this manuscript find tiny TF zones where only one source is active and estimate the mixing parameters in these zones. These approaches are particularly well suited for non-stationary sources (speech, music). We first studied and improved linear instantaneous methods based on variance or correlation criteria, that have been previously proposed by our team. They yield excellent performance for signals of speech and can also separate spectra from astrophysical data. However, the nature of the mixtures that they can process limits their application fields. We have extended these approaches to more realistic mixtures. The first extensions consider attenuated and delayed mixtures of sources, which corresponds to mixtures in anechoic chamber. They require less restrictive sparsity assumptions than some approaches previously proposed in the literature, while addressing the same type of mixtures. We have studied the contribution of clustering techniques to our approaches and have achieved good performance for mixtures of speech signals. Lastly, a theoretical extension of these methods to general convolutive mixtures is described. It needs strong sparsity hypotheses and we have to solve classical indeterminacies of frequency-domain BSS methods
APA, Harvard, Vancouver, ISO, and other styles
20

Cherni, Afef. "Méthodes modernes d'analyse de données en biophysique analytique : résolution des problèmes inverses en RMN DOSY et SM." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAJ055/document.

Full text
Abstract:
Cette thèse s’intéresse à la création de nouvelles approches algorithmiques pour la résolution du problème inverse en biophysiques. Dans un premier temps, on vise l’application RMN de type DOSY: une nouvelle approche de régularisation hybride a été proposée avec un nouvel algorithme PALMA (http://palma.labo.igbmc.fr/). Cet algorithme permet d’analyser des données réelles DOSY avec une précision importante quelque soit leur type. Dans un deuxième temps, notre intérêt s’est tourné vers l’application de spectrométrie de masse. Nous avons proposé une nouvelle approche par dictionnaire dédiée à l’analyse protéomique en utilisant le modèle averagine et une stratégie de minimisation sous contraintes d'une pénalité de parcimonie. Afin d’améliorer la précision de l’information obtenue, nous avons proposé une nouvelle méthode SPOQ, basée sur une nouvelle fonction de pénalisation, résolue par un nouvel algorithme Forward-Backward à métrique variable localement ajustée. Tous nos algorithmes bénéficient de garanties théoriques de convergence, et ont été validés expérimentalement sur des spectres synthétisés et des données réelles<br>This thesis aims at proposing new approaches to solve the inverse problem in biophysics. Firstly, we study the DOSY NMR experiment: a new hybrid regularization approach has been proposed with a novel PALMA algorithm (http://palma.labo.igbmc.fr/). This algorithm ensures the efficient analysis of real DOSY data with a high precision for all different type. In a second time, we study the mass spectrometry application. We have proposed a new dictionary based approach dedicated to proteomic analysis using the averagine model and the constrained minimization approach associated with a sparsity inducing penalty. In order to improve the accuracy of the information, we proposed a new SPOQ method based on a new penalization, solved with a new Forward-Backward algorithm with a variable metric locally adjusted. All our algorithms benefit from sounded convergence guarantees, and have been validated experimentally on synthetics and real data
APA, Harvard, Vancouver, ISO, and other styles
21

Szafranski, Marie. "Pénalités hiérarchiques pour l'intégration de connaissances dans les modèles statistiques." Compiègne, 2008. http://www.theses.fr/2008COMP1770.

Full text
Abstract:
L'apprentissage statistique vise à prédire, mais aussi analyser ou interpréter un phénomène. Dans cette thèse, nous proposons de guider le processus d'apprentissage en intégrant une connaissance relative à la façon dont les caractéristiques d'un problème sont organisées. Cette connaissance est représentée par une structure arborescence à deux niveaux, ce qui permet de constituer des groupes distincts de caractéristiques. Nous faisons également l'hypothèse que peu de (groupes de) caractéristiques interviennent pour discriminer les observations. L'objectif est donc de faire émerger les groupes de caractéristiques pertinents, mais également les caractéristiques significatives associées à ces groupes. Pour cela, nous utilisons une formulation variationnelle de type pénalisation adaptative. Nous montrons que cette formulation conduit à minimiser un problème régularisé par une norme mixte. La mise en relation de ces deux approches offre deux points de vues pour étudier les propriétés de convexité et de parcimonie de cette méthode. Ces travaux ont été menés dans le cadre d'espaces de fonctions paramétriques et non paramétriques. L'intérêt de cette méthode est illustré sur des problèmes d'interfaces cerveaux-machines<br>Supervised learning aims at predicting, but also analyzing or interpreting an observed phenomenon. Hierarchical penalization is a generic framework for integrating prior information in the fitting of statistical models. This prior information represents the relations shared by the characteristics of a given studied problem. In this thesis, the characteristics are organized in a two-levels tree structure, which defines distinct groups. The assumption is that few (groups of) characteristics are involved to discriminate between observations. Thus, for a learning problem, the goal is to identify relevant groups of characteristics, and at the same time, the significant characteristics within these groups. An adaptive penalization formulation is used to extract the significant components of each level. We show that the solution to this problem is equivalent to minimize a problem regularized by a mixed norm. These two approaches have been used to study the convexity and sparseness properties of the method. The latter is derived in parametric and non parametric function spaces. Experiences on brain-computer interfaces problems support our approach
APA, Harvard, Vancouver, ISO, and other styles
22

Avalos, Marta. "Modèles additifs parcimonieux." Phd thesis, Université de Technologie de Compiègne, 2004. http://tel.archives-ouvertes.fr/tel-00008802.

Full text
Abstract:
De nombreux algorithmes d'estimation fonctionnelle existent pour l'apprentissage statistique supervisé. Cependant, ils ont pour la plupart été développés dans le but de fournir des estimateurs précis, sans considérer l'interprétabilité de la solution. Les modèles additifs permettent d'expliquer les prédictions simplement, en ne faisant intervenir qu'une variable explicative à la fois, mais ils sont difficiles à mettre en ouvre. Cette thèse est consacrée au développement d'un algorithme d'estimation des modèles additifs. D'une part, leur utilisation y est simplifiée, car le réglage de la complexité est en grande partie intégré dans la phase d'estimation des paramètres. D'autre part, l'interprétabilité est favorisée par une tendance à éliminer automatiquement les variables les moins pertinentes. Des stratégies d'accélération des calculs sont également proposées. Une approximation du nombre effectif de paramètres permet l'utilisation de critères analytiques de sélection de modèle. Sa validité est testée par des simulations et sur des données réelles.
APA, Harvard, Vancouver, ISO, and other styles
23

Xie, Hui. "Estimation de canal parcimonieux pour les systèmes OFDM." Nantes, 2014. http://archive.bu.univ-nantes.fr/pollux/show.action?id=b2c74e30-5647-4589-87b7-fd4f0106593f.

Full text
Abstract:
L’OFDM est très présent dans les communications sans-fil dû à sa capacité de transmission haut-débit sur des canaux sélectifs en fréquence. Pour une détection cohérente des symboles OFDM, les réponses fréquentielles du canal sont estimées à partir de sousporteuses pilotes. Les méthodes d’estimation fréquentielles sont souvent employées avec des méthodes d’interpolation rarement efficaces. La solution simple d’accroitre le nombre de pilotes diminue l’efficacité spectrale du système. Une autre solution est de travailler dans le domaine temporel. En général, la réponse impulsionnelle du canal contient un nombre limité de valeurs significatives. Dans le cas d’un canal parcimonieux, ce nombre est beaucoup plus petit que celui des pilotes. Pour améliorer l’estimation du canal, l’utilisation d’un seuil est nécessaire. Dans cette thèse, si le nombre de pilotes est plus grand que la longueur du préfixe cyclique, une méthode d’estimation de canal parcimonieux basée sur l’utilisation d’un seuil temporel original est proposée. Cette méthode avec une haute efficacité spectrale, de bonnes performances d’estimation, une faible complexité de calcul, requiert aucune connaissance à priori des statistiques du canal et du bruit. Si le canal est parcimonieux avec un grand étalement temporel, une technique d’estimation de canal basée sur la théorie de l’acquisition comprimée est proposée. Cette méthode requiert un plus petit nombre de pilotes que les techniques classiques. Ce travail se termine avec l’étude des canaux dont les trajets sont situés en dehors des instants d’échantillonnage. L’utilisation d’une matrice de mesure intelligente permet d’améliorer l’efficacité des méthodes d’estimation<br>OFDM is widely used in wireless communications due to its capacity of high data rate transmission over frequency selective channel. For coherent detection of OFDM symbols, channel frequency responses must be estimated, which is usually done with the help of pilot tones. Frequency domain estimation methods are often employed with interpolation methods. Usually, interpolation methods introduce an error floor. The easy solution of increasing the number of pilots decreases the spectral efficiency of the system. Another solution is to work in the time domain. In general, the channel impulse response contains a limited number of significant values having more energy than the noise. In the case of sparse channel, this number is much smaller than that of pilot subcarriers. To improve the sparse channel estimation, some kind of threshold is needed. In this thesis, in the case where the number of pilots is larger than the length of cyclic prefix, a time domain sparse channel estimation method based on an original threshold is proposed. This method with high spectral efficiency, good channel estimation performance, low computational complexity, requires no prior knowledge of both the channel statistics and noise standard deviation. In the case where the channel is sparse with large delay spread, we propose an original channel estimation technique based on compressed sensing theory. The proposed method requires smaller number of pilots than that of classical frequency domain techniques. This work ends with the study of non-sample spaced sparse channel; the idea of smart measurement matrix is proposed to improve the efficiency of the classical CS based estimation methods
APA, Harvard, Vancouver, ISO, and other styles
24

Amate, Laure. "Apprentissage de modèles de formes parcimonieux basés sur les représentations splines." Nice, 2009. http://www.theses.fr/2009NICE4117.

Full text
Abstract:
Il est souvent important de trouver une représentation compacte des propriétés morphologiques d'un ensemble d'objets. C'est le cas lors du déplacement de robots autonomes dans des environnements naturels, qui doivent utiliser les objets dispersés dans la région de travail pour naviguer. Cette thèse est une contribution à la définition de formalismes et méthodes pour l'identification de tels modèles. Les formes que nous voulons caractériser sont des courbes fermées correspondant aux contours des objets détectés dans l'environnement, et notre caractérisation des leurs propriétés sera probabiliste. Nous formalisons la notion de forme en tant que classes d'équivalence par rapport à des groupes d'opérateurs géométriques basiques, introduisant deux approches : discrète et continue. La théorie discrète repose sur l'existence d'un ensemble de points remarquables et est sensible à leur sélection. L'approche continue, qui représente une forme par des objets de dimension infinie, correspond mieux à la notion intuitive de forme mais n'est pas parcimonieuse. Nous combinons les avantages des deux approches en représentant les formes à l'aide de splines : fonctions continues, flexibles, définies par un ensemble de noeuds et de points de contrôle. Nous étudions d'abord l'ajustement d'un modèle spline à une courbe, comme la recherche d'un compromis entre la parcimonie de la représentation et sa _délité aux données, approche classique dans le cadre de familles imbriquées de dimension croissante. Nous passons en revue les méthodes utilisées dans la littérature, et nous retenons une approche en deux étapes, qui satisfait nos pré-requis : détermination de la complexité du modèle (par une chaîne de Markov à sauts réversibles), suivie de l'estimation des paramètres (par un algorithme de recuit simulé). Nous discutons finalement le lien entre l'espace de formes discrètes et les représentations splines lorsque l'on prend comme points remarquables les points de contrôle. Nous étudions ensuite le problème de modélisation d'un ensemble de courbes, comme l'identification de la distribution des paramètres de leur représentation par des splines où les points de contrôles et les noeuds sont des variables latentes du modèle. Nous estimons ces paramètres par un critère de vraisemblance marginale. Afin de pouvoir traiter séquentiellement un grand nombre de données nous adaptons une variante de l'algorithme EM proposée récemment. Le besoin de recourir à des approximations numériques (méthodes de Monte-Carlo) pour certains calculs requis par la méthode EM, nous conduit à une nouvelle variante de cet algorithme, proposée ici pour la première fois<br>In many contexts it is important to be able to find compact representations of the collective morphological properties of a set of objects. This is the case of autonomous robotic platforms operating in natural environments that must use the perceptual properties of the objects present in their workspace to execute their mission. This thesis is a contribution to the definition of formalisms and methods for automatic identification of such models. The shapes we want to characterize are closed curves corresponding to contours of objects detected in the scene. We begin with the formal definition of the notion of shape as classes of equivalence with respect to groups of basic geometric operators, introducing two distinct approaches that have been used in the literature: discrete and continuous. The discrete theory, admitting the existence of a finite number of recognizable landmarks, provides in an obvious manner a compact representation but is sensible to their selection. The continuous theory of shapes provides a more fundamental approach, but leads to shape spaces of infinite dimension, lacking the parsimony of the discrete representation. We thus combine in our work the advantages of both approaches representing shapes of curves with splines: piece-wise continuous polynomials defined by sets of knots and control points. We first study the problem of fitting free-knots splines of varying complexity to a single observed curve. The trade-o_ between the parsimony of the representation and its fidelity to the observations is a well known characteristic of model identification using nested families of increasing dimension. After presenting an overview of methods previously proposed in the literature, we single out a two-step approach which is formally sound and matches our specific requirements. It splits the identification, simulating a reversible jump Markov chain to select the complexity of the model followed by a simulated annealing algorithm to estimate its parameters. We investigate the link between Kendall's shape space and spline representations when we take the spline control points as landmarks. We consider now the more complex problem of modeling a set of objects with similar morphological characteristics. We equate the problem to finding the statistical distribution of the parameters of the spline representation, modeling the knots and control points as unobserved variables. The identified distribution is the maximizer of a marginal likelihood criterion, and we propose a new Expectation-Maximization algorithm to optimize it. Because we may want to treat a large number of curves observed sequentially, we adapt an iterative (on-line) version of the EM algorithm recently proposed in the literature. For the choice of statistical distributions that we consider, both the expectation and the maximization steps must resort to numerical approximations, leading to a stochastic/on-line variant of the EM algorithm that, as far as we know, is implemented here for the first time
APA, Harvard, Vancouver, ISO, and other styles
25

Amate, Laure. "Apprentissage de modèles de formes parcimonieux basés sur des représentations splines." Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00456612.

Full text
Abstract:
Il est souvent important de trouver une représentation compacte des propriétés morphologiques d'un ensemble d'objets. C'est le cas lors du déplacement de robots autonomes dans des environnements naturels, qui doivent utiliser les objets dispersés dans la région de travail pour naviguer. Cette thèse est une contribution à la définition de formalismes et méthodes pour l'identification de tels modèles. Les formes que nous voulons caractériser sont des courbes fermées correspondant aux contours des objets détectés dans l'environnement, et notre caractérisation des leurs propriétés sera probabiliste. Nous formalisons la notion de forme en tant que classes d'équivalence par rapport à des groupes d'opérateurs géométriques basiques, introduisant deux approches : discrète et continue. La théorie discrète repose sur l'existence d'un ensemble de points remarquables et est sensible à leur sélection. L'approche continue, qui représente une forme par des objets de dimension infinie, correspond mieux à la notion intuitive de forme mais n'est pas parcimonieuse. Nous combinons les avantages des deux approches en représentant les formes à l'aide de splines : fonctions continues, flexibles, définies par un ensemble de noeuds et de points de contrôle. Nous étudions d'abord l'ajustement d'un modèle spline à une courbe, comme la recherche d'un compromis entre la parcimonie de la représentation et sa fidélité aux données, approche classique dans le cadre de familles imbriquées de dimension croissante. Nous passons en revue les méthodes utilisées dans la littérature, et nous retenons une approche en deux étapes, qui satisfait nos pré-requis : détermination de la complexité du modèle (par une chaîne de Markov à sauts réversibles), suivie de l'estimation des paramètres (par un algorithme de recuit simulé). Nous discutons finalement le lien entre l'espace de formes discrètes et les représentations splines lorsque l'on prend comme points remarquables les points de contrôle. Nous étudions ensuite le problème de modélisation d'un ensemble de courbes, comme l'identification de la distribution des paramètres de leur représentation par des splines où les points de contrôles et les noeuds sont des variables latentes du modèle. Nous estimons ces paramètres par un critère de vraisemblance marginale. Afin de pouvoir traiter séquentiellement un grand nombre de données nous adaptons une variante de l'algorithme EM proposée récemment. Le besoin de recourir à des approximations numériques (méthodes de Monte-Carlo) pour certains calculs requis par la méthode EM, nous conduit à une nouvelle variante de cet algorithme, proposée ici pour la première fois.
APA, Harvard, Vancouver, ISO, and other styles
26

Tremblay-Boucher, Vincent. "FLCAA : système de codage parcimonieux et d'analyse perceptuelle des signaux sonores en temps réel." Mémoire, Université de Sherbrooke, 2013. http://hdl.handle.net/11143/6215.

Full text
Abstract:
Ce mémoire débute par un survol de l'état de l’art des méthodes de compositions musicales assistées par ordinateur (MCMAO). À l’aide d'un ensembles critères permettant l’évaluation des méthodes de compositions musicales assistées par ordinateur, on identifie une technique particulièrement prometteuse. Il s’agit d ’un compositeur statistique, présenté par Hoffman et al. en 2008, utilisant les "mel-frquecy cepstral coefficients" (MFCC), un prétraitement inspiré des techniques en reconnaissance de parole. Toutefois, cette technique présente diverses limitations, comme la qualité de reconstruction des signaux, qui l’empêche d'être utilisée pour composer de la musique utilisable professionnellement. Ainsi, ce mémoire tente de bonifier la méthode de composition musicale assistée par ordinateur de Hoffman et al. en remplaçant la technique MFCC d'analyse/synthèse du signal par une technique novatrice d'analyse/synthèse des signaux sonores nommée "Fast Locally competitive algorithm for audio" (FLCAA). Celle-ci permet une analyse perceptuelle parcimonieuse, en temps réel, ayant une bonne résolution fréquencielle et une bonne résolution temporelle. De plus le FLCAA permet une reconstruction robuste de bonne qualité également en temps réel. L’analyse est constituée de deux parties distinctes. La première consiste à utiliser un prétraitement inspiré de l’audition pour transformer le signal sonore afin d'obtenir une représentation cochléaire. Concrètement, la transformation d'analyse est accomplie à l’aide d'un filtrage par banc de filtres cochléaires combiné à un mécanisme de fenêtre coulissante. Le banc de filtres utilisé est composé de filtres cochléaires passe-bande à réponse impulsionnelle finie, de type "rounded exponential" (RoExp). La deuxième étape consiste à coder la représentation cochléaire de manière parcimonieuse afin d'augmenter la résolution spatiale et temporelle pour mettre en évidence certaines caractéristiques du signal comme les fréquences fondamentales, l’information contenue dans les basses fréquences et les signaux transitoires. Cela est fait, en intégrant un réseau de neurones (nommé LCA) utilisant les mécanismes d'inhibition latérale et de seuillage. À partir des coefficients de la représentation perceptuelle, il est possible d'effectuer la transformation de synthèse en utilisant une technique de reconstruction novatrice qui est expliqué en détail dans ce mémoire.
APA, Harvard, Vancouver, ISO, and other styles
27

Blazere, Melanie. "Inférence statistique en grande dimension pour des modèles structurels. Modèles linéaires généralisés parcimonieux, méthode PLS et polynômes orthogonaux et détection de communautés dans des graphes." Thesis, Toulouse, INSA, 2015. http://www.theses.fr/2015ISAT0018/document.

Full text
Abstract:
Cette thèse s'inscrit dans le cadre de l'analyse statistique de données en grande dimension. Nous avons en effet aujourd'hui accès à un nombre toujours plus important d'information. L'enjeu majeur repose alors sur notre capacité à explorer de vastes quantités de données et à en inférer notamment les structures de dépendance. L'objet de cette thèse est d'étudier et d'apporter des garanties théoriques à certaines méthodes d'estimation de structures de dépendance de données en grande dimension.La première partie de la thèse est consacrée à l'étude de modèles parcimonieux et aux méthodes de type Lasso. Après avoir présenté les résultats importants sur ce sujet dans le chapitre 1, nous généralisons le cas gaussien à des modèles exponentiels généraux. La contribution majeure à cette partie est présentée dans le chapitre 2 et consiste en l'établissement d'inégalités oracles pour une procédure Group Lasso appliquée aux modèles linéaires généralisés. Ces résultats montrent les bonnes performances de cet estimateur sous certaines conditions sur le modèle et sont illustrés dans le cas du modèle Poissonien. Dans la deuxième partie de la thèse, nous revenons au modèle de régression linéaire, toujours en grande dimension mais l'hypothèse de parcimonie est cette fois remplacée par l'existence d'une structure de faible dimension sous-jacente aux données. Nous nous penchons dans cette partie plus particulièrement sur la méthode PLS qui cherche à trouver une décomposition optimale des prédicteurs étant donné un vecteur réponse. Nous rappelons les fondements de la méthode dans le chapitre 3. La contribution majeure à cette partie consiste en l'établissement pour la PLS d'une expression analytique explicite de la structure de dépendance liant les prédicteurs à la réponse. Les deux chapitres suivants illustrent la puissance de cette formule aux travers de nouveaux résultats théoriques sur la PLS . Dans une troisième et dernière partie, nous nous intéressons à la modélisation de structures au travers de graphes et plus particulièrement à la détection de communautés. Après avoir dressé un état de l'art du sujet, nous portons notre attention sur une méthode en particulier connue sous le nom de spectral clustering et qui permet de partitionner les noeuds d'un graphe en se basant sur une matrice de similarité. Nous proposons dans cette thèse une adaptation de cette méthode basée sur l'utilisation d'une pénalité de type l1. Nous illustrons notre méthode sur des simulations<br>This thesis falls within the context of high-dimensional data analysis. Nowadays we have access to an increasing amount of information. The major challenge relies on our ability to explore a huge amount of data and to infer their dependency structures.The purpose of this thesis is to study and provide theoretical guarantees to some specific methods that aim at estimating dependency structures for high-dimensional data. The first part of the thesis is devoted to the study of sparse models through Lasso-type methods. In Chapter 1, we present the main results on this topic and then we generalize the Gaussian case to any distribution from the exponential family. The major contribution to this field is presented in Chapter 2 and consists in oracle inequalities for a Group Lasso procedure applied to generalized linear models. These results show that this estimator achieves good performances under some specific conditions on the model. We illustrate this part by considering the case of the Poisson model. The second part concerns linear regression in high dimension but the sparsity assumptions is replaced by a low dimensional structure underlying the data. We focus in particular on the PLS method that attempts to find an optimal decomposition of the predictors given a response. We recall the main idea in Chapter 3. The major contribution to this part consists in a new explicit analytical expression of the dependency structure that links the predictors to the response. The next two chapters illustrate the power of this formula by emphasising new theoretical results for PLS. The third and last part is dedicated to graphs modelling and especially to community detection. After presenting the main trends on this topic, we draw our attention to Spectral Clustering that allows to cluster nodes of a graph with respect to a similarity matrix. In this thesis, we suggest an alternative to this method by considering a $l_1$ penalty. We illustrate this method through simulations
APA, Harvard, Vancouver, ISO, and other styles
28

Durrande, Nicolas. "Étude de classes de noyaux adaptées à la simplification et à l'interprétation des modèles d'approximation. Une approche fonctionnelle et probabiliste." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2001. http://tel.archives-ouvertes.fr/tel-00770625.

Full text
Abstract:
Le thème général de cette thèse est celui de la construction de modèles permettant d'approximer une fonction f lorsque la valeur de f(x) est connue pour un certain nombre de points x. Les modèles considérés ici, souvent appelés modèles de krigeage, peuvent être abordés suivant deux points de vue : celui de l'approximation dans les espaces de Hilbert à noyaux reproduisants ou celui du conditionnement de processus gaussiens. Lorsque l'on souhaite modéliser une fonction dépendant d'une dizaine de variables, le nombre de points nécessaires pour la construction du modèle devient très important et les modèles obtenus sont difficilement interprétables. A partir de ce constat, nous avons cherché à construire des modèles simplifiés en travaillant sur un objet clef des modèles de krigeage : le noyau. Plus précisement, les approches suivantes sont étudiées : l'utilisation de noyaux additifs pour la construction de modèles additifs et la décomposition des noyaux usuels en sous-noyaux pour la construction de modèles parcimonieux. Pour finir, nous proposons une classe de noyaux qui est naturellement adaptée à la représentation ANOVA des modèles associés et à l'analyse de sensibilité globale.
APA, Harvard, Vancouver, ISO, and other styles
29

Durrande, Nicolas. "Étude de classes de noyaux adaptées à la simplification et à l'interprétation des modèles d'approximation. Une approche fonctionnelle et probabiliste." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2011. http://tel.archives-ouvertes.fr/tel-00844747.

Full text
Abstract:
Le thème général de cette thèse est celui de la construction de modèles permettantd'approximer une fonction f lorsque la valeur de f(x) est connue pour un certainnombre de points x. Les modèles considérés ici, souvent appelés modèles de krigeage,peuvent être abordés suivant deux points de vue : celui de l'approximation dans les espacesde Hilbert à noyaux reproduisants ou celui du conditionnement de processus gaussiens.Lorsque l'on souhaite modéliser une fonction dépendant d'une dizaine de variables, lenombre de points nécessaires pour la construction du modèle devient très important etles modèles obtenus sont difficilement interprétables. A partir de ce constat, nous avonscherché à construire des modèles simplifié en travaillant sur un objet clef des modèles dekrigeage : le noyau. Plus précisement, les approches suivantes sont étudiées : l'utilisation denoyaux additifs pour la construction de modèles additifs et la décomposition des noyauxusuels en sous-noyaux pour la construction de modèles parcimonieux. Pour finir, nousproposons une classe de noyaux qui est naturellement adaptée à la représentation ANOVAdes modèles associés et à l'analyse de sensibilité globale.
APA, Harvard, Vancouver, ISO, and other styles
30

Mai, Van Khanh. "Méthodes avancées de traitement de la parole et de réduction de bruit pour les terminaux mobiles." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2017. http://www.theses.fr/2017IMTA0008/document.

Full text
Abstract:
Cette thèse traite d'un des problèmes les plus stimulants dans le traitement de la parole concernant la prothèse auditive, où seulement un capteur est disponible avec de faibles coûts de calcul, de faible utilisation d'énergie et l'absence de bases de données. Basée sur les récents résultats dans les deux estimations statistiques paramétriques et non-paramétriques, ainsi que la représentation parcimonieuse. Cette étude propose quelques techniques non seulement pour améliorer la qualité et l'intelligibilité de la parole, mais aussi pour s'attaquer au débruitage du signal audio en général.La thèse est divisée en deux parties ; Dans la première partie, on aborde le problème d'estimation de la densité spectrale de puissance du bruit, particulièrement pour le bruit non-stationnaire. Ce problème est une des parties principales du traitement de la parole du mono-capteur. La méthode proposée prend en compte le modèle parcimonieux de la parole dans le domaine transféré. Lorsque la densité spectrale de puissance du bruit est estimée, une approche sémantique est exploitée pour tenir compte de la présence ou de l'absence de la parole dans la deuxième partie. En combinant l'estimation Bayésienne et la détection Neyman-Pearson, quelques estimateurs paramétriques sont développés et testés dans le domaine Fourier. Pour approfondir la performance et la robustesse de débruitage du signal audio, une approche semi-paramétrique est considérée. La conjointe détection et estimation peut être interprétée par Smoothed Sigmoid-Based Shrinkage (SSBS). Ainsi, la méthode Bloc-SSBS est proposée afin de prendre en compte les atomes voisinages dans le domaine temporel-fréquentiel. De plus, pour améliorer fructueusement la qualité de la parole et du signal audio, un estimateur Bayésien est aussi dérivé et combiné avec la méthode Bloc-SSBS. L'efficacité et la pertinence de la stratégie dans le domaine transformée cosinus pour les débruitages de la parole et de l'audio sont confirmées par les résultats expérimentaux<br>This PhD thesis deals with one of the most challenging problem in speech enhancement for assisted listening where only one micro is available with the low computational cost, the low power usage and the lack out of the database. Based on the novel and recent results both in non-parametric and parametric statistical estimation and sparse representation, this thesis work proposes several techniques for not only improving speech quality and intelligibility and but also tackling the denoising problem of the other audio signal. In the first major part, our work addresses the problem of the noise power spectrum estimation, especially for non-stationary noise, that is the key part in the single channel speech enhancement. The proposed approach takes into account the weak-sparseness model of speech in the transformed model. Once the noise power spectrum has been estimated, a semantic road is exploited to take into consideration the presence or absence of speech in the second major part. By applying the joint of the Bayesian estimator and the Neyman-Pearson detection, some parametric estimators were developed and tested in the discrete Fourier transform domain. For further improve performance and robustness in audio denoising, a semi-parametric approach is considered. The joint detection and estimation can be interpreted by Smoothed Sigmoid-Based Shrinkage (SSBS). Thus, Block-SSBS is proposed to take into additionally account the neighborhood bins in the time-frequency domain. Moreover, in order to enhance fruitfully speech and audio, a Bayesian estimator is also derived and combined with Block-SSBS. The effectiveness and relevance of this strategy in the discrete Cosine transform for both speech and audio denoising are confirmed by experimental results
APA, Harvard, Vancouver, ISO, and other styles
31

Todeschini, Adrien. "Probabilistic and Bayesian nonparametric approaches for recommender systems and networks." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0237/document.

Full text
Abstract:
Nous proposons deux nouvelles approches pour les systèmes de recommandation et les réseaux. Dans la première partie, nous donnons d’abord un aperçu sur les systèmes de recommandation avant de nous concentrer sur les approches de rang faible pour la complétion de matrice. En nous appuyant sur une approche probabiliste, nous proposons de nouvelles fonctions de pénalité sur les valeurs singulières de la matrice de rang faible. En exploitant une représentation de modèle de mélange de cette pénalité, nous montrons qu’un ensemble de variables latentes convenablement choisi permet de développer un algorithme espérance-maximisation afin d’obtenir un maximum a posteriori de la matrice de rang faible complétée. L’algorithme résultant est un algorithme à seuillage doux itératif qui adapte de manière itérative les coefficients de réduction associés aux valeurs singulières. L’algorithme est simple à mettre en œuvre et peut s’adapter à de grandes matrices. Nous fournissons des comparaisons numériques entre notre approche et de récentes alternatives montrant l’intérêt de l’approche proposée pour la complétion de matrice à rang faible. Dans la deuxième partie, nous présentons d’abord quelques prérequis sur l’approche bayésienne non paramétrique et en particulier sur les mesures complètement aléatoires et leur extension multivariée, les mesures complètement aléatoires composées. Nous proposons ensuite un nouveau modèle statistique pour les réseaux creux qui se structurent en communautés avec chevauchement. Le modèle est basé sur la représentation du graphe comme un processus ponctuel échangeable, et généralise naturellement des modèles probabilistes existants à structure en blocs avec chevauchement au régime creux. Notre construction s’appuie sur des vecteurs de mesures complètement aléatoires, et possède des paramètres interprétables, chaque nœud étant associé un vecteur représentant son niveau d’affiliation à certaines communautés latentes. Nous développons des méthodes pour simuler cette classe de graphes aléatoires, ainsi que pour effectuer l’inférence a posteriori. Nous montrons que l’approche proposée peut récupérer une structure interprétable à partir de deux réseaux du monde réel et peut gérer des graphes avec des milliers de nœuds et des dizaines de milliers de connections<br>We propose two novel approaches for recommender systems and networks. In the first part, we first give an overview of recommender systems and concentrate on the low-rank approaches for matrix completion. Building on a probabilistic approach, we propose novel penalty functions on the singular values of the low-rank matrix. By exploiting a mixture model representation of this penalty, we show that a suitably chosen set of latent variables enables to derive an expectation-maximization algorithm to obtain a maximum a posteriori estimate of the completed low-rank matrix. The resulting algorithm is an iterative soft-thresholded algorithm which iteratively adapts the shrinkage coefficients associated to the singular values. The algorithm is simple to implement and can scale to large matrices. We provide numerical comparisons between our approach and recent alternatives showing the interest of the proposed approach for low-rank matrix completion. In the second part, we first introduce some background on Bayesian nonparametrics and in particular on completely random measures (CRMs) and their multivariate extension, the compound CRMs. We then propose a novel statistical model for sparse networks with overlapping community structure. The model is based on representing the graph as an exchangeable point process, and naturally generalizes existing probabilistic models with overlapping block-structure to the sparse regime. Our construction builds on vectors of CRMs, and has interpretable parameters, each node being assigned a vector representing its level of affiliation to some latent communities. We develop methods for simulating this class of random graphs, as well as to perform posterior inference. We show that the proposed approach can recover interpretable structure from two real-world networks and can handle graphs with thousands of nodes and tens of thousands of edges
APA, Harvard, Vancouver, ISO, and other styles
32

Durrande, Nicolas. "Étude de classes de noyaux adaptées à la simplification et à l’interprétation des modèles d’approximation. Une approche fonctionnelle et probabiliste." Thesis, Saint-Etienne, EMSE, 2011. http://www.theses.fr/2011EMSE0631/document.

Full text
Abstract:
Le thème général de cette thèse est celui de la construction de modèles permettantd’approximer une fonction f lorsque la valeur de f(x) est connue pour un certainnombre de points x. Les modèles considérés ici, souvent appelés modèles de krigeage,peuvent être abordés suivant deux points de vue : celui de l’approximation dans les espacesde Hilbert à noyaux reproduisants ou celui du conditionnement de processus gaussiens.Lorsque l’on souhaite modéliser une fonction dépendant d’une dizaine de variables, lenombre de points nécessaires pour la construction du modèle devient très important etles modèles obtenus sont difficilement interprétables. A partir de ce constat, nous avonscherché à construire des modèles simplifié en travaillant sur un objet clef des modèles dekrigeage : le noyau. Plus précisement, les approches suivantes sont étudiées : l’utilisation denoyaux additifs pour la construction de modèles additifs et la décomposition des noyauxusuels en sous-noyaux pour la construction de modèles parcimonieux. Pour finir, nousproposons une classe de noyaux qui est naturellement adaptée à la représentation ANOVAdes modèles associés et à l’analyse de sensibilité globale<br>The framework of this thesis is the approximation of functions for which thevalue is known at limited number of points. More precisely, we consider here the so-calledkriging models from two points of view : the approximation in reproducing kernel Hilbertspaces and the Gaussian Process regression.When the function to approximate depends on many variables, the required numberof points can become very large and the interpretation of the obtained models remainsdifficult because the model is still a high-dimensional function. In light of those remarks,the main part of our work adresses the issue of simplified models by studying a key conceptof kriging models, the kernel. More precisely, the following aspects are adressed: additivekernels for additive models and kernel decomposition for sparse modeling. Finally, wepropose a class of kernels that is well suited for functional ANOVA representation andglobal sensitivity analysis
APA, Harvard, Vancouver, ISO, and other styles
33

Macé, Anne-Sophie. "Algorithmes de super-résolution pour la microscopie à balayage laser avec modelage de faisceau par diffraction conique." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB212.

Full text
Abstract:
Cette thèse s'intéresse à des techniques non linéaires de reconstruction d'images, appliquées au problème de la super-résolution en microscopie, qui vise à dépasser la limite de résolution de Abbe en combinant des techniques de mesure et de traitement d'images. Nous considérons un système à fluorescence avec une méthode d'Image Scanning Microscopy (ISM), produisant des micro-images obtenues en scannant un échantillon biologique et en y projetant une distribution lumineuse. La forme de cette distribution peut être assez singulière lorsqu'elle est créée par un modelage de faisceau laser, rendu possible grâce à un phénomène optique appelé diffraction conique. Un cadre mathématique s'appuyant sur la transformée de Fourier à quatre dimensions est proposé, permettant de comparer théoriquement les méthodes ISM, en quantifiant leur impact en terme de résolution. Nous considérons également la modélisation mathématique exacte de ces méthodes et en particulier les questions de discrétisation, permettant ensuite de simuler un système ISM. Cette modélisation est indispensable lorsque l'on cherche à résoudre le problème inverse induit par la super-résolution. Nous abordons sa résolution avec des contraintes très faibles, à savoir uniquement la positivité de l'image recherchée. Nous mettons en évidence un artefact, appelé night sky, produit par l'estimateur du Maximum A Posteriori (MAP). Nous montrons néanmoins que cet artefact peut être évité en imposant à l'image super-résolue d'être à bande limitée, contrainte convexe qui peut être ajoutée à la positivité moyennant un algorithme de projection adapté. Nous introduisons ensuite un nouvel estimateur, le E-LSE, pour Emitters-Least-Square Error, qui minimise l'erreur quadratique moyenne a posteriori et qui est adapté aux images parcimonieuses, une caractéristique souvent satisfaite par les images biologiques obtenues en microscopie à fluorescence. Nous montrons qu'en dépit de la dimension élevée et du caractère non convexe de la contrainte de parcimonie, cet estimateur E-LSE peut-être évalué numériquement par un algorithme de type MCMC (Markov chain Monte Carlo). L'estimateur E-LSE permet de limiter certains artefacts spécifiques du MAP et, sur plusieurs exemples, produit une image mieux résolue<br>This thesis focuses on non-linear image reconstruction methods applied to super-resolution in microscopy, which aims to overcome Abbe resolution limit by combining specific acquisition and image processing techniques. We consider a fluorescence Image Scanning Microscopy (ISM) system, which scans a biological sample with a particular light distribution and records a micro-image at each scan position. This specific light distribution is created by shaping a laser beam thanks to an optical phenomenon called conical diffraction. We propose a mathematical framework based on a four-dimensional Fourier transform, which enables us to provide a theoretical comparison of the different ISM methods in terms of resolution gain. We also address the exact mathematical modelling of these methods, and in particular the discretization issues involved in the simulation of an ISM system. These questions indeed play an essential role for the super-resolution system we study, naturally written as an inverse problem. We first consider a formulation with very little constraints by imposing only the positivity of the reconstructed image. We show that in that case, the Maximum A Posteriori (MAP) estimate suffers from an artifact called {\it night sky}, but it can be avoided by imposing an additional band-limitedness constraint on the reconstructed image. The two resulting convex constraints can be simultaneously handled by means of a specific projection algorithm. We then introduce a new estimator, called E-LSE (for Emitters-Least-Square Error), which minimizes the a posteriori mean square error and is particularly suited to sparse samples, which are often encountered in fluorescence microscopy. Despite the very high dimension of the problem and the non-convexity of the sparsity constraint, this E-LSE estimator can be numerically computed with an MCMC (Markov Chain Monte Carlo) algorithm. We show that it outperforms the MAP estimate in terms of artifacts and, on several examples, produces a better-resolved image
APA, Harvard, Vancouver, ISO, and other styles
34

Meresescu, Alina-Georgiana. "Inverse Problems of Deconvolution Applied in the Fields of Geosciences and Planetology." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS316/document.

Full text
Abstract:
Le domaine des problèmes inverses est une discipline qui se trouve à la frontière des mathématiques appliquées et de la physique et qui réunit les différentes solutions pour résoudre les problèmes d'optimisation mathématique. Dans le cas de la déconvolution 1D, ce domaine apporte un formalisme pour proposer des solutions avec deux grands types d'approche: les problèmes inverses avec régularisation et les problèmes inverses bayésiens. Sous l'effet du déluge de données, les géosciences et la planétologie nécessitent des algorithmes de plus en plus plus complexe pour obtenir des informations pertinentes. Dans le cadre de cette thèse, nous proposons d'apporter des connaissances dans trois problèmes de déconvolution 1D sous contrainte avec régularisation dans le domaine de l'hydrologie, la sismologie et de la spectroscopie. Pour chaque problème nous posons le modèle direct, le modèle inverse, et nous proposons un algorithme spécifique pour atteindre la solution. Les algorithmes sont définis ainsi que les différentes stratégies pour déterminer les hyper-paramètres. Aussi, des tests sur des données synthétiques et sur des données réelles sont exposés et discuté du point de vue de l'optimisation mathématique et du point de vue du domaine de l'application choisi. Finalement, les algorithmes proposés ont l'objectif de mettre à portée de main l'utilisation des méthodes des problèmes inverses pour la communauté des Géosciences<br>The inverse problem field is a domain at the border between applied mathematics and physics that encompasses the solutions for solving mathematical optimization problems. In the case of 1D deconvolution, the discipline provides a formalism to designing solutions in the frames of its two main approaches: regularization based inverse problems and bayesian based inverse problems. Under the data deluge, geosciences and planetary sciences require more and more complex algorithms for obtaining pertinent information. In this thesis, we solve three 1D deconvolution problems under constraints with regularization based inverse problem methodology: in hydrology, in seismology and in spectroscopy. For every of the three problems, we pose the direct problem, the inverse problem, and we propose a specific algorithm to reach the solution. Algorithms are defined but also the different strategies to determine the hyper-parameters. Furthermore, tests on synthetic data and on real data are presented and commented from the point of view of the inverse problem formulation and that of the application field. Finally, the proposed algorithms aim at making approachable the use of inverse problem methodology for the Geoscience community
APA, Harvard, Vancouver, ISO, and other styles
35

Dupré, la Tour Tom. "Nonlinear models for neurophysiological time series." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLT018/document.

Full text
Abstract:
Dans les séries temporelles neurophysiologiques, on observe de fortes oscillations neuronales, et les outils d'analyse sont donc naturellement centrés sur le filtrage à bande étroite.Puisque cette approche est trop réductrice, nous proposons de nouvelles méthodes pour représenter ces signaux.Nous centrons tout d'abord notre étude sur le couplage phase-amplitude (PAC), dans lequel une bande haute fréquence est modulée en amplitude par la phase d'une oscillation neuronale plus lente.Nous proposons de capturer ce couplage dans un modèle probabiliste appelé modèle autoregressif piloté (DAR). Cette modélisation permet une sélection de modèle efficace grâce à la mesure de vraisemblance, ce qui constitue un apport majeur à l'estimation du PAC.%Nous présentons différentes paramétrisations des modèles DAR et leurs algorithmes d'inférence rapides, et discutons de leur stabilité.Puis nous montrons comment utiliser les modèles DAR pour l'analyse du PAC, et démontrons l'avantage de l'approche par modélisation avec trois jeux de donnée.Puis nous explorons plusieurs extensions à ces modèles, pour estimer le signal pilote à partir des données, le PAC sur des signaux multivariés, ou encore des champs réceptifs spectro-temporels.Enfin, nous proposons aussi d'adapter les modèles de codage parcimonieux convolutionnels pour les séries temporelles neurophysiologiques, en les étendant à des distributions à queues lourdes et à des décompositions multivariées. Nous développons des algorithmes d'inférence efficaces pour chaque formulations, et montrons que l'on obtient de riches représentations de façon non-supervisée<br>In neurophysiological time series, strong neural oscillations are observed in the mammalian brain, and the natural processing tools are thus centered on narrow-band linear filtering.As this approach is too reductive, we propose new methods to represent these signals.We first focus on the study of phase-amplitude coupling (PAC), which consists in an amplitude modulation of a high frequency band, time-locked with a specific phase of a slow neural oscillation.We propose to use driven autoregressive models (DAR), to capture PAC in a probabilistic model. Giving a proper model to the signal enables model selection by using the likelihood of the model, which constitutes a major improvement in PAC estimation.%We first present different parametrization of DAR models, with fast inference algorithms and stability discussions.Then, we present how to use DAR models for PAC analysis, demonstrating the advantage of the model-based approach on three empirical datasets.Then, we explore different extensions to DAR models, estimating the driving signal from the data, PAC in multivariate signals, or spectro-temporal receptive fields.Finally, we also propose to adapt convolutional sparse coding (CSC) models for neurophysiological time-series, extending them to heavy-tail noise distribution and multivariate decompositions. We develop efficient inference algorithms for each formulation, and show that we obtain rich unsupervised signal representations
APA, Harvard, Vancouver, ISO, and other styles
36

Nassif, Roula. "Estimation distribuée adaptative sur les réseaux multitâches." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4118/document.

Full text
Abstract:
L’apprentissage adaptatif distribué sur les réseaux permet à un ensemble d’agents de résoudre des problèmes d’estimation de paramètres en ligne en se basant sur des calculs locaux et sur des échanges locaux avec les voisins immédiats. La littérature sur l’estimation distribuée considère essentiellement les problèmes à simple tâche, où les agents disposant de fonctions objectives séparables doivent converger vers un vecteur de paramètres commun. Cependant, dans de nombreuses applications nécessitant des modèles plus complexes et des algorithmes plus flexibles, les agents ont besoin d’estimer et de suivre plusieurs vecteurs de paramètres simultanément. Nous appelons ce type de réseau, où les agents doivent estimer plusieurs vecteurs de paramètres, réseau multitâche. Bien que les agents puissent avoir différentes tâches à résoudre, ils peuvent capitaliser sur le transfert inductif entre eux afin d’améliorer les performances de leurs estimés. Le but de cette thèse est de proposer et d’étudier de nouveaux algorithmes d’estimation distribuée sur les réseaux multitâches. Dans un premier temps, nous présentons l’algorithme diffusion LMS qui est une stratégie efficace pour résoudre les problèmes d’estimation à simple-tâche et nous étudions théoriquement ses performances lorsqu’il est mis en oeuvre dans un environnement multitâche et que les communications entre les noeuds sont bruitées. Ensuite, nous présentons une stratégie de clustering non-supervisé permettant de regrouper les noeuds réalisant une même tâche en clusters, et de restreindre les échanges d’information aux seuls noeuds d’un même cluster<br>Distributed adaptive learning allows a collection of interconnected agents to perform parameterestimation tasks from streaming data by relying solely on local computations and interactions with immediate neighbors. Most prior literature on distributed inference is concerned with single-task problems, where agents with separable objective functions need to agree on a common parameter vector. However, many network applications require more complex models and flexible algorithms than single-task implementations since their agents involve the need to estimate and track multiple objectives simultaneously. Networks of this kind, where agents need to infer multiple parameter vectors, are referred to as multitask networks. Although agents may generally have distinct though related tasks to perform, they may still be able to capitalize on inductive transfer between them to improve their estimation accuracy. This thesis is intended to bring forth advances on distributed inference over multitask networks. First, we present the well-known diffusion LMS strategies to solve single-task estimation problems and we assess their performance when they are run in multitask environments in the presence of noisy communication links. An improved strategy allowing the agents to adapt their cooperation to neighbors sharing the same objective is presented in order to attain improved learningand estimation over networks. Next, we consider the multitask diffusion LMS strategy which has been proposed to solve multitask estimation problems where the network is decomposed into clusters of agents seeking different
APA, Harvard, Vancouver, ISO, and other styles
37

Chu, Ning. "Approche bayésienne pour la localisation de sources en imagerie acoustique." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-01016528.

Full text
Abstract:
L'imagerie acoustique est une technique performante pour la localisation et la reconstruction de puissance des sources acoustiques en utilisant des mesures limitées au réseau des microphones. Elle est largement utilisée pour évaluer l'influence acoustique dans l'industrie automobile et aéronautique. Les méthodes d'imagerie acoustique impliquent souvent un modèle direct de propagation acoustique et l'inversion de ce modèle direct. Cependant, cette inversion provoque généralement un problème inverse mal-posé. Par conséquent, les méthodes classiques ne permettent d'obtenir de manière satisfaisante ni une haute résolution spatiale, ni une dynamique large de la puissance acoustique. Dans cette thèse, nous avons tout d'abord nous avons créé un modèle direct discret de la puissance acoustique qui devient alors à la fois linéaire et déterminé pour les puissances acoustiques. Et nous ajoutons les erreurs de mesures que nous décomposons en trois parties : le bruit de fond du réseau de capteurs, l'incertitude du modèle causée par les propagations à multi-trajets et les erreurs d'approximation de la modélisation. Pour la résolution du problème inverse, nous avons tout d'abord proposé une approche d'hyper-résolution en utilisant une contrainte de parcimonie, de sorte que nous pouvons obtenir une plus haute résolution spatiale robuste à aux erreurs de mesures à condition que le paramètre de parcimonie soit estimé attentivement. Ensuite, afin d'obtenir une dynamique large et une plus forte robustesse aux bruits, nous avons proposé une approche basée sur une inférence bayésienne avec un a priori parcimonieux. Toutes les variables et paramètres inconnus peuvent être estimées par l'estimation du maximum a posteriori conjoint (JMAP). Toutefois, le JMAP souffrant d'une optimisation non-quadratique d'importants coûts de calcul, nous avons cherché des solutions d'accélération algorithmique: une approximation du modèle direct en utilisant une convolution 2D avec un noyau invariant. Grâce à ce modèle, nos approches peuvent être parallélisées sur des Graphics Processing Unit (GPU) . Par ailleurs, nous avons affiné notre modèle statistique sur 2 aspects : prise en compte de la non stationarité spatiale des erreurs de mesures et la définition d'une loi a priori pour les puissances renforçant la parcimonie en loi de Students-t. Enfin, nous ont poussé à mettre en place une Approximation Variationnelle Bayésienne (VBA). Cette approche permet non seulement d'obtenir toutes les estimations des inconnues, mais aussi de fournir des intervalles de confiance grâce aux paramètres cachés utilisés par les lois de Students-t. Pour conclure, nos approches ont été comparées avec des méthodes de l'état-de-l'art sur des données simulées, réelles (provenant d'essais en soufflerie chez Renault S2A) et hybrides.
APA, Harvard, Vancouver, ISO, and other styles
38

Raguet, Hugo. "A Signal Processing Approach to Voltage-Sensitive Dye Optical Imaging." Thesis, Paris 9, 2014. http://www.theses.fr/2014PA090031/document.

Full text
Abstract:
L’imagerie optique par colorant potentiométrique est une méthode d’enregistrement de l’activité corticale prometteuse, mais dont le potentiel réel est limité par la présence d’artefacts et d’interférences dans les acquisitions. À partir de modèles existant dans la littérature, nous proposons un modèle génératif du signal basé sur un mélange additif de composantes, chacune contrainte dans une union d’espaces linéaires déterminés par son origine biophysique. Motivés par le problème de séparation de composantes qui en découle, qui est un problème inverse linéaire sous-déterminé, nous développons : (1) des régularisations convexes structurées spatialement, favorisant en particulier des solutions parcimonieuses ; (2) un nouvel algorithme proximal de premier ordre pour minimiser efficacement la fonctionnelle qui en résulte ; (3) des méthodes statistiques de sélection de paramètre basées sur l’estimateur non biaisé du risque de Stein. Nous étudions ces outils dans un cadre général, et discutons leur utilité pour de nombreux domaines des mathématiques appliqués, en particulier pour les problèmes inverses ou de régression en grande dimension. Nous développons par la suite un logiciel de séparation de composantes en présence de bruit, dans un environnement intégré adapté à l’imagerie optique par colorant potentiométrique. Finalement, nous évaluons ce logiciel sur différentes données, synthétiques et réelles, montrant des résultats encourageants quant à la possibilité d’observer des dynamiques corticales complexes<br>Voltage-sensitive dye optical imaging is a promising recording modality for the cortical activity, but its practical potential is limited by many artefacts and interferences in the acquisitions. Inspired by existing models in the literature, we propose a generative model of the signal, based on an additive mixtures of components, each one being constrained within an union of linear spaces, determined by its biophysical origin. Motivated by the resulting component separation problem, which is an underdetermined linear inverse problem, we develop: (1) convex, spatially structured regularizations, enforcing in particular sparsity on the solutions; (2) a new rst-order proximal algorithm for minimizing e›ciently the resulting functional; (3) statistical methods for automatic parameters selection, based on Stein’s unbiased risk estimate.We study thosemethods in a general framework, and discuss their potential applications in variouselds of applied mathematics, in particular for large scale inverse problems or regressions. We develop subsequently a soŸware for noisy component separation, in an integrated environment adapted to voltage-sensitive dye optical imaging. Finally, we evaluate this soŸware on dišerent data set, including synthetic and real data, showing encouraging perspectives for the observation of complex cortical dynamics
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!