Dissertations / Theses on the topic 'Parity equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'Parity equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sumislawska, M. "Fault detection and diagnosis and unknown input reconstruction based on parity equations concept." Thesis, Coventry University, 2012. http://curve.coventry.ac.uk/open/items/c660a4ab-7312-4bda-8578-6114c9453366/1.
Full textAndersson, Mattias, Vishwambhar Rathi, Ragnar Thobaben, Joerg Kliewer, and Mikael Skoglund. "Equivocation of Eve using two edge type LDPC codes for the binary erasure wiretap channel." KTH, Kommunikationsteori, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-50634.
Full textCopyright 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. QC 20120110
Grewal, Karmjit Singh. "Model-based fault detection and control design - applied to a pneumatic Stewart-Gough platform." Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/6243.
Full textFrisk, Erik. "Model-based fault diagnosis applied to an SI-Engine." Thesis, Linköpings universitet, Fordonssystem, 1996. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-141630.
Full textSirimachan, Parinya [Verfasser]. "Solutions to the Geodesic Equation in Cosmic String Spacetimes Geodesic solutions in Cosmic String Spacetimes / Parinya Sirimachan." Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2012. http://d-nb.info/1035219603/34.
Full textLoughran, Thomas Ivan Powell. ""A values based electorate?" : how do voters in West European democracies convert their political values into vote choice preferences?" Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/a-values-based-electoratehow-do-voters-in-west-european-democracies-convert-their-political-values-into-vote-choice-preferences(b1716c93-c730-41e8-acfb-846bb2d51fcd).html.
Full textWells, Daniel Patrick. "Predicting the Longevity of DVDR Media by Periodic Analysis of Parity, Jitter, and ECC Performance Parameters." BYU ScholarsArchive, 2008. https://scholarsarchive.byu.edu/etd/1530.
Full textWei, Xiaoli. "Control of McKean-Vlasov systems and applications." Thesis, Sorbonne Paris Cité, 2018. https://theses.md.univ-paris-diderot.fr/WEI_Xiaoli_2_complete_20181127.pdf.
Full textThis thesis deals with the study of optimal control of McKean-Vlasov dynamics and its applications in mathematical finance. This thesis contains two parts. In the first part, we develop the dynamic programming (DP) method for solving McKean-Vlasov control problem. Using suitable admissible controls, we propose to reformulate the value function of the problem with the law (resp. conditional law) of the controlled state process as sole state variable and get the flow property of the law (resp. conditional law) of the process, which allow us to derive in its general form the Bellman programming principle. Then by relying on the notion of differentiability with respect to probability measures introduced by P.L. Lions [Lio12], and Itô’s formula along measure-valued processes, we obtain the corresponding Bellman equation. At last we show the viscosity property and uniqueness of the value function to the Bellman equation. In the first chapter, we summarize some useful results of differential calculus and stochastic analysis on the Wasserstein space. In the second chapter, we consider the optimal control of nonlinear stochastic dynamical systems in discrete time of McKean-Vlasov type. The third chapter focuses on the stochastic optimal control problem of McKean-Vlasov SDEs without common noise in continuous time where the coefficients may depend upon the joint law of the state and control. In the last chapter, we are interested in the optimal control of stochastic McKean-Vlasov dynamics in the presence of common noise in continuous time.In the second part, we propose a robust portfolio selection model, which takes into account ambiguity about both expected rate of return and correlation matrix of multiply assets, in a continuous-time mean-variance setting. This problem is formulated as a mean-field type differential game. Then we derive a separation principle for the associated problem. Our explicit results provide an explanation to under-diversification, as documented in empirical studies
Rogers, Darrin L. "Structural analysis of treatment and punishment attitudes toward offenders." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1121749945.
Full textNovák, Jiří. "Návrh autopilota a letových řídících módů v prostředí Simulink." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-416616.
Full textSimpson, Joseph P. "Empirical Analysis of Socio-Cognitive Factors Affecting Security Behaviors and Practices of Smartphone Users." NSUWorks, 2016. http://nsuworks.nova.edu/gscis_etd/951.
Full textAlghamdi, Moataz. "Symbolic Detection of Permutation and Parity Symmetries of Evolution Equations." Thesis, 2017. http://hdl.handle.net/10754/625045.
Full textJackson, Marshall. "Numerical simulation of the crack propagation in a pipeline subjected to third-party damage." 2016. http://hdl.handle.net/1993/31025.
Full textFebruary 2016
Lantukh, Demyan Vasilyevich. "Preliminary design of spacecraft trajectories for missions to outer planets and small bodies." Thesis, 2015. http://hdl.handle.net/2152/31341.
Full textKelling, Jeffrey. "Efficient Parallel Monte-Carlo Simulations for Large-Scale Studies of Surface Growth Processes." 2017. https://monarch.qucosa.de/id/qucosa%3A31220.
Full textGitter-Monte-Carlo-Methoden werden zur Untersuchung von Systemen wie Oberflächenwachstum, Spinsystemen oder gemischten Feststoffen verwendet, welche fern eines Gleichgewichtes bleiben oder zu einem streben. Die Anwendungen reichen von der Bestimmung universellen Wachstums- und Alterungsverhaltens hin zu konkreten Systemen, in denen die Reifung von Nanokompositmaterialien oder die Selbstorganisation von funktionalen Nanostrukturen von Interesse sind. In solchen Studien müssen große Systemen über lange Zeiträume betrachtet werden, um Strukturwachstum über mehrere Größenordnungen zu erlauben. Dies erfordert massivparallele Simulationen. Diese Arbeit adressiert das Problem, dass parallele Verarbeitung Korrelationen in Monte-Carlo-Updates verursachen und entwickelt eine praktisch korrelationsfreie Domänenzerlegungsmethode, um es zu lösen. Der Einfluss von Korrelationen auf Skalierungs- und dynamische Eigenschaften von Oberflächenwachtums- sowie verwandten Gittergassystemen wird weitergehend durch den Vergleich von Ergebnissen aus korrelationsfreien und intrinsisch korrelierten Simulationen mit einem stochastischen zellulären Automaten untersucht. Effiziente massiv parallele Implementationen auf Grafikkarten wurden entwickelt, welche großskalige Simulationen und damit präzedenzlos genaue Ergebnisse ermöglichen. Das primäre Studienobjekt ist das (2 + 1)-dimensionale Kardar–Parisi–Zhang- Oberflächenwachstum, welches durch ein Dimer-Gittergas und das Kim-Kosterlitz-Modell simuliert wird. Durch massive Simulationen werden Thesen über Wachstums-, Autokorrelations- und Antworteigenschaften getestet und neue, präzise numerische Vorhersagen zu einigen universellen Parametern getroffen.:1. Introduction 1.1. Motivations and Goals 1.2. Overview 2. Methods and Models 2.1. Estimation of Scaling Exponents and Error Margins 2.2. From Continuum- to Atomistic Models 2.3. Models for Phase Ordering and Nanostructure Evolution 2.3.1. The Kinetic Metropolis Lattice Monte-Carlo Method 2.3.2. The Potts Model 2.4. The Kardar–Parisi–Zhang and Edwards–Wilkinson Universality Classes 2.4.0.1. Physical Aging 2.4.1. The Octahedron Model 2.4.2. The Restricted Solid on Solid Model 3. Parallel Implementation: Towards Large-Scale Simulations 3.1. Parallel Architectures and Programming Models 3.1.1. CPU 3.1.2. GPU 3.1.3. Heterogeneous Parallelism and MPI 3.1.4. Bit-Coding of Lattice Sites 3.2. Domain Decomposition for Stochastic Lattice Models 3.2.1. DD for Asynchronous Updates 3.2.1.1. Dead border (DB) 3.2.1.2. Double tiling (DT) 3.2.1.3. DT DD with random origin (DTr) 3.2.1.4. Implementation 3.2.2. Second DD Layer on GPUs 3.2.2.1. Single-Hit DT 3.2.2.2. Single-Hit dead border (DB) 3.2.2.3. DD Parameters for the Octahedron Model 3.2.3. Performance 3.3. Lattice Level DD: Stochastic Cellular Automaton 3.3.1. Local Approach for the Octahedron Model 3.3.2. Non-Local Approach for the Octahedron Model 3.3.2.1. Bit-Vectorized GPU Implementation 3.3.3. Performance of SCA Implementations 3.4. The Multi-Surface Coding Approach 3.4.0.1. Vectorization 3.4.0.2. Scalar Updates 3.4.0.3. Domain Decomposition 3.4.1. Implementation: SkyMC 3.4.1.1. 2d Restricted Solid on Solid Model 3.4.1.2. 2d and 3d Potts Model 3.4.1.3. Sequential CPU Reference 3.4.2. SkyMC Benchmarks 3.5. Measurements 3.5.0.1. Measurement Intervals 3.5.0.2. Measuring using Heterogeneous Resources 4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class 4.1. Evolution of Surface Roughness 4.1.1. Comparison of Parallel Implementations of the Octahedron Model 4.1.1.1. The Growth Regime 4.1.1.2. Distribution of Interface Heights in the Growth Regime 4.1.1.3. KPZ Ansatz for the Growth Regime 4.1.1.4. The Steady State 4.1.2. Investigations using RSOS 4.1.2.1. The Growth Regime 4.1.2.2. The Steady State 4.1.2.3. Consistency of Fine-Size Scaling with Respect to DD 4.1.3. Results for Growth Phase and Steady State 4.2. Autocorrelation Functions 4.2.1. Comparison of DD Methods for RS Dynamics 4.2.1.1. Device-Layer DD 4.2.1.2. Block-Layer DD 4.2.2. Autocorrelation Properties under RS Dynamics 4.2.3. Autocorrelation Properties under SCA Dynamics 4.2.3.1. Autocorrelation of Heights 4.2.3.2. Autocorrelation of Slopes 4.2.4. Autocorrelation in the SCA Steady State 4.2.5. Autocorrelation in the EW Case under SCA 4.2.5.1. Autocorrelation of Heights 4.2.5.2. Autocorrelations of Slopes 4.3. Autoresponse Functions 4.3.1. Autoresponse Properties 4.3.1.1. Autoresponse of Heights 4.3.1.2. Autoresponse of Slopes 4.3.1.3. Self-Averaging 4.4. Summary 5. Further Topics 5.1. Investigations of the Potts Model 5.1.1. Testing Results from the Parallel Implementations 5.1.2. Domain Growth in Disordered Potts Models 5.2. Local Scale Invariance in KPZ Surface Growth 6. Conclusions and Outlook Acknowledgements A. Coding Details A.1. Bit-Coding A.2. Packing and Unpacking Signed Integers A.3. Random Number Generation