Academic literature on the topic 'Parseval's Theorem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Parseval's Theorem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Parseval's Theorem"
FINE, JONATHAN. "A NOTE ON BRAIDS AND PARSEVAL'S THEOREM." Journal of Knot Theory and Its Ramifications 21, no. 05 (April 2012): 1250024. http://dx.doi.org/10.1142/s0218216511009546.
Full textMelin, Jan O. "Interpreting ISAR Images by Means of Parseval's Theorem." IEEE Transactions on Antennas and Propagation 55, no. 2 (February 2007): 498–500. http://dx.doi.org/10.1109/tap.2006.889993.
Full textBonatti, Ivanil S., Pedro L. D. Peres, and Amauri Lopes. "Velocity of Propagation in Transmission Lines." International Journal of Electrical Engineering & Education 35, no. 1 (January 1998): 79–86. http://dx.doi.org/10.1177/002072099803500107.
Full textHan, Feng, Yao Lin Liu, Zhen Liu, and Hai Dong Zeng. "Comments on Errors of DFT Spectrum." Applied Mechanics and Materials 568-570 (June 2014): 189–92. http://dx.doi.org/10.4028/www.scientific.net/amm.568-570.189.
Full textUrbancic, T. I., C. I. Trifu, R. A. Mercer, A. J. Feustel, and J. A. G. Alexander. "Automatic time-domain calculation of source parameters for the analysis of induced seismicity." Bulletin of the Seismological Society of America 86, no. 5 (October 1, 1996): 1627–33. http://dx.doi.org/10.1785/bssa0860051627.
Full textLiu, Yao Lin, Feng Han, Zhen Liu, and Min Chen Zhai. "Analysis of Energy Loss-Gain Error in Discrete Fourier Transform." Applied Mechanics and Materials 568-570 (June 2014): 172–75. http://dx.doi.org/10.4028/www.scientific.net/amm.568-570.172.
Full textKarpov, Eduard G., Larry A. Danso, and John T. Klein. "Anomalous strain energy transformation pathways in mechanical metamaterials." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475, no. 2226 (June 2019): 20190041. http://dx.doi.org/10.1098/rspa.2019.0041.
Full textPUTHANKATTIL, SUBHA D., and PAUL K. JOSEPH. "CLASSIFICATION OF EEG SIGNALS IN NORMAL AND DEPRESSION CONDITIONS BY ANN USING RWE AND SIGNAL ENTROPY." Journal of Mechanics in Medicine and Biology 12, no. 04 (September 2012): 1240019. http://dx.doi.org/10.1142/s0219519412400192.
Full textBhatnagar, R. M. "Noise reduction in linear variable differential transformer data of recoil motion measurement by numerical methods." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 220, no. 2 (February 1, 2006): 159–66. http://dx.doi.org/10.1243/09544062jmes140.
Full textHassanzadeh, Mohammad, and Behnam Shahrrava. "Linear Version of Parseval’s Theorem." IEEE Access 10 (2022): 27230–41. http://dx.doi.org/10.1109/access.2022.3157736.
Full textDissertations / Theses on the topic "Parseval's Theorem"
Grunden, Beverly K. "On the Characteristics of a Data-driven Multi-scale Frame Convergence Algorithm." Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1622208959661057.
Full textHedayati, Mohammad Hassan. "Integrated CM Filter for Single-Phase and Three-Phase PWM Rectifiers." Thesis, 2015. http://etd.iisc.ac.in/handle/2005/3947.
Full textHedayati, Mohammad Hassan. "Integrated CM Filter for Single-Phase and Three-Phase PWM Rectifiers." Thesis, 2015. http://etd.iisc.ernet.in/2005/3947.
Full textGuerra, Rita Catarina Correia. "Generalizations of the Fourier transform and their applications." Doctoral thesis, 2019. http://hdl.handle.net/10773/29813.
Full textNesta tese, consideramos uma nova generalização da transformação de Fourier, dependente de quatro parâmetros complexos e de todas as potências da transformação de Fourier. Esta nova transformação é estudada em alguns espaços de Lebesgue. De facto, tendo em conta os valores dos parâmetros, podemos ter núcleos muito diferentes e assim, o correspondente operador é estudado em diferentes espaços de Lebesgue, de acordo com o seu núcleo. Começamos com a caracterização de cada operador pelo seu polinómio característico. Esta caracterização serve de base para o estudo das propriedades seguintes. Seguindo isto, apresentamos, para cada caso, o espetro do correspondente operador, condições necessárias e suficientes para as quais o operador é invertível, identidades do tipo de Parseval e condições para as quais o operador é unitário e uma involução de ordem n. Depois disto, construímos novas convoluções associadas àqueles operadores e obtemos as correspondentes identidades de factorização e algumas desigualdades da norma. Usando estes novos operadores e convoluções, construímos novas equações integrais e estudamos a sua solvabilidade. Neste sentido, temos equações geradas pelos operadores estudados e também uma classe de equações do tipo de convolução dependendo de funções de Hermite multidimensionais. Além disso, estudamos a solvabilidade de equações integrais clássicas, usando os novos operadores e convoluções, nomeadamente uma classe de equações de Wiener-Hopf mais Hankel, cuja solução é escrita em termos de uma série do tipo de Fourier. Para um caso desta generalização da transformação de Fourier, que depende apenas das transformações de Fourier do cosseno e do seno, obtemos resultados de Paley-Wiener e resultados Tauberianos de Wiener, usando a convolução associada e uma nova translação induzida por essa convolução. Princípios de incerteza de Heisenberg para os casos unidimensional e multidimensional são obtidos para um caso particular do operador introduzido. No final, como uma aplicação fora da matemática, obtemos um novo resultado em processamento de sinal, mais propriamente, num processo de filtragem, por aplicação de uma das nossas novas convoluções.
Programa Doutoral em Matemática Aplicada
Book chapters on the topic "Parseval's Theorem"
Weik, Martin H. "Parseval's theorem." In Computer Science and Communications Dictionary, 1231. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_13642.
Full textWeinmann, Alexander. "Optimierung eines linearen Reglers mittels des Parseval-Theorems." In Regelungen Analyse und technischer Entwurf, 95–96. Vienna: Springer Vienna, 1986. http://dx.doi.org/10.1007/978-3-7091-6994-0_13.
Full textGutiérrez, A., E. Marcault, C. Alonso, J. P. Laur, and D. Trémouilles. "Parseval’s Theorem Used for the Inductor Analysis in High-Frequency Boost Converters." In Lecture Notes in Electrical Engineering, 347–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56970-9_26.
Full textDwivedi, Ankita, S. K. Singh, and R. K. Srivastava. "Analysis of Permanent Magnet Brushless AC Motor Using Two Dimensional Fourier Transform-Parseval’s Theorem." In Theory and Applications of Applied Electromagnetics, 185–95. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17269-9_20.
Full textAl-Sa’di, Sa’ud, and Eric S. Weber. "On Parseval Frames of Kernel Functions in de Branges Spaces of Entire Vector Valued Functions." In New Directions in Function Theory: From Complex to Hypercomplex to Non-Commutative, 1–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76473-9_1.
Full text"Parseval’s Theorem." In Optimal Reference Shaping for Dynamical Systems, 396. CRC Press, 2009. http://dx.doi.org/10.1201/9781439805633.ax3.
Full textBerber, Stevan. "Transforms of Deterministic Continuous-Time Signals." In Discrete Communication Systems, 599–673. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198860792.003.0012.
Full textAllahverdiev, Bilender P., and Hüseyin Tuna. "The Parseval Equality and Expansion Formula for Singular Hahn-Dirac System." In Emerging Applications of Differential Equations and Game Theory, 209–35. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0134-4.ch010.
Full textConference papers on the topic "Parseval's Theorem"
Frieden, B. Roy. "Probability-law estimation by a principle of minimum physical information." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.tudd5.
Full textBOZOVIC, DUBRAVKA, and NENAD POPOVICH. "Submarine Optimal Depth Control applying Parseval s Theorem." In Fourth International Conference on Advances in Mechanical and Automation Engineering - MAE 2016. Institute of Research Engineers and Doctors, 2016. http://dx.doi.org/10.15224/978-1-63248-102-3-41.
Full textMalhotra, Hari Krishan, and Lalit Kumar Vashisht. "Construction of Non-Uniform Parseval Wavelet Frames for L2 (R) via UEP." In 2019 13th International conference on Sampling Theory and Applications (SampTA). IEEE, 2019. http://dx.doi.org/10.1109/sampta45681.2019.9030867.
Full textClark, J. P., and E. A. Grover. "Assessing Convergence in Predictions of Periodic-Unsteady Flowfields." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90735.
Full text