Academic literature on the topic 'Partial derivatives'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Partial derivatives.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Partial derivatives"
Pandey, Shikha, Dragan Obradovic, Lakshmi Narayan Mishra, and Vishnu Narayan Mishra. "Second Order Partial Derivatives." JOURNAL OF ADVANCES IN MATHEMATICS 20 (September 8, 2021): 419–23. http://dx.doi.org/10.24297/jam.v20i.9097.
Full textYu, Chii Huei. "Using Maple to Study the Partial Differential Problems." Applied Mechanics and Materials 479-480 (December 2013): 800–804. http://dx.doi.org/10.4028/www.scientific.net/amm.479-480.800.
Full textAttou, Samira, Ludovic Mignot, and Djelloul Ziadi. "Bottom-Up derivatives of tree expressions." RAIRO - Theoretical Informatics and Applications 55 (2021): 4. http://dx.doi.org/10.1051/ita/2021008.
Full textDalík, Josef. "Operators approximating partial derivatives at vertices of triangulations by averaging." Mathematica Bohemica 135, no. 4 (2010): 363–72. http://dx.doi.org/10.21136/mb.2010.140827.
Full textProgri, Ilir F. "Hypergeometric Function Partial Derivatives." Journal of Geolocation, Geo-information and Geo-intelligence 2016, no. 1 (2016): 53. http://dx.doi.org/10.18610/jg3.2016.071604.
Full textOjha, Bhuwan Prasad. "Different Concepts of Derivatives." Journal of Advanced College of Engineering and Management 3 (January 10, 2018): 11. http://dx.doi.org/10.3126/jacem.v3i0.18809.
Full textLi, Changpin, Deliang Qian, and YangQuan Chen. "On Riemann-Liouville and Caputo Derivatives." Discrete Dynamics in Nature and Society 2011 (2011): 1–15. http://dx.doi.org/10.1155/2011/562494.
Full textBaksa, Vita, Andriy Bandura, and Oleh Skaskiv. "Analogs of Hayman’s Theorem and of logarithmic criterion for analytic vector-valued functions in the unit ball having bounded L-index in joint variables." Mathematica Slovaca 70, no. 5 (October 27, 2020): 1141–52. http://dx.doi.org/10.1515/ms-2017-0420.
Full textWu, Wang, Su, and Zhang. "A MATLAB Package for Calculating Partial Derivatives of Surface-Wave Dispersion Curves by a Reduced Delta Matrix Method." Applied Sciences 9, no. 23 (November 30, 2019): 5214. http://dx.doi.org/10.3390/app9235214.
Full textChamparnaud, J. M., and D. Ziadi. "Canonical derivatives, partial derivatives and finite automaton constructions." Theoretical Computer Science 289, no. 1 (October 2002): 137–63. http://dx.doi.org/10.1016/s0304-3975(01)00267-5.
Full textDissertations / Theses on the topic "Partial derivatives"
Nhangumbe, Clarinda Vitorino. "Lie Analysis for Partial Differential Equations in Finance." Master's thesis, Faculty of Science, 2019. https://hdl.handle.net/11427/31817.
Full textBujok, Karolina Edyta. "Numerical solutions to a class of stochastic partial differential equations arising in finance." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:d2e76713-607b-4f26-977a-ac4df56d54f2.
Full textOladiran, Oladun Solomon, and Scott J. KIrkby. "Computational Studies of the Spin Trapping Behavior of Melatonin and its Derivatives." Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/asrf/2019/schedule/186.
Full textGuimarães, Pedro Henrique Engel. "Uma resenha sobre modelos de apreçamento de derivativos." reponame:Repositório Institucional do FGV, 2012. http://hdl.handle.net/10438/10298.
Full textApproved for entry into archive by Marcia Bacha (marcia.bacha@fgv.br) on 2012-12-20T16:42:02Z (GMT) No. of bitstreams: 1 Dissertação.pdf: 709819 bytes, checksum: 11a410ca7be737e1b89ed81a75cd3a0d (MD5)
Made available in DSpace on 2012-12-20T16:42:10Z (GMT). No. of bitstreams: 1 Dissertação.pdf: 709819 bytes, checksum: 11a410ca7be737e1b89ed81a75cd3a0d (MD5) Previous issue date: 2012-06-29
I present here an approach that unify a variety of derivative pricing models that consists of attaining a Partial Differential Equation(PDE) by intuitive arguments and give its solution by Feynman-Kac method as a conditinal expectation of a markovian process. The expectation is taken in a risk neutral world(or risk neutral measure) where all the assets grow at the risk free rate. I also present how to make this specific change of measure, connecting the real world to the risk neutral world, and show that the relevant element for the measure change is the market price of factor risk. When the market is complete the market price of risk is unique and when the market is incomplete there is a variety of possible prices to the market price of factor risks that satisfy no arbitrage arguments. In the latter case the parameters are usually chosen to calibrate the model to market data.
Apresento aqui uma abordagem que unifica a literatura sobre os vários modelos de apreçamento de derivativos que consiste em obter por argumentos intuitivos de não arbitragem uma Equação Diferencial Parcial(EDP) e através do método de Feynman-Kac uma solução que é representada por uma esperança condicional de um processo markoviano do preço do derivativo descontado pela taxa livre de risco. Por este resultado, temos que a esperança deve ser tomada com relação a processos que crescem à taxa livre de risco e por este motivo dizemos que a esperança é tomada em um mundo neutro ao risco(ou medida neutra ao risco). Apresento ainda como realizar uma mudança de medida pertinente que conecta o mundo real ao mundo neutro ao risco e que o elemento chave para essa mudança de medida é o preço de mercado dos fatores de risco. No caso de mercado completo o preço de mercado do fator de risco é único e no caso de mercados incompletos existe uma variedade de preços aceitáveis para os fatores de risco pelo argumento de não arbitragem. Neste último caso, os preços de mercado são geralmente escolhidos de forma a calibrar o modelo com os dados de mercado.
Valenta, Václav. "Moderní metody řešení eliptických parciálních diferenciálních rovnic." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2009. http://www.nusl.cz/ntk/nusl-236712.
Full textRosa, Vitor Sales Dias da. "Análise de sensibilidade topológica do modelo de flexão de placas de Reissner-Mindlin." Laboratório Nacional de Computação Científica, 2015. https://tede.lncc.br/handle/tede/222.
Full textApproved for entry into archive by Maria Cristina (library@lncc.br) on 2015-11-25T12:00:22Z (GMT) No. of bitstreams: 1 Tese - Análise de Sensibilidade Topológica.pdf: 447139 bytes, checksum: d7d9c80ad59acb3e3cf12ae2d457887f (MD5)
Made available in DSpace on 2015-11-25T12:00:35Z (GMT). No. of bitstreams: 1 Tese - Análise de Sensibilidade Topológica.pdf: 447139 bytes, checksum: d7d9c80ad59acb3e3cf12ae2d457887f (MD5) Previous issue date: 2015-11-03
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes)
The topological derivative concept has been proved to be useful in many relevant applications such as topology optimization, inverse problems, image processing, multi-scale constitutive modeling, fracture mechanics and damage evolution modeling. The topological asymptotic analysis has been fully developed for a wide range of problems modeled by partial di erential equations. On the other hand, the topological derivatives associated with coupled problems have been derived only in their abstract forms. In this paper, therefore, we deal with the Reissner-Mindlin plate bending model, which is written in the form of a coupled system of partial di erential equations. In particular, the topological asymptotic analysis of the associated total potential energy is developed and the topological derivative with respect to the nucleation of a circular inclusion is derived in its closed form.Finally, we provide the estimates for the remainders of the topological asymptotic expansion and perform a complete mathematical justi cation for the derived formulas.
O conceito de derivada topológica tem se mostrado útil em muitas aplicações, tais como otimização topológica, problemas inversos, processamento de imagens, modelagem constitutiva multi-escala, mecânica da fratura e modelagem da evolução de dano. A análise assintótica topológica foi amplamente desenvolvida para uma grande variedade de problemas modelados por equações diferenciais parciais. Por outro lado, a derivada topológica associada a problemas acoplados é conhecida apenas em sua forma abstrata. Neste trabalho, portanto, considera-se o modelo de flexão de placa de Reissner-Mindlin, que é escrito na forma de um sistema acoplado de equações diferenciais parciais. Em particular, a análise assintótica topológica da energia potencial total associada é desenvolvida e a derivada topológica com relação a nucleação de uma inclusão circular é obtida na sua forma fechada. Finalmente, os resíduos da expansão assintótica topológica são estimados e uma justificativa matemática completa para a derivada topológica é apresentada.
Varner, Christopher Champion. "DGPS carrier phase networks and partial derivative algorithms." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0027/NQ49546.pdf.
Full textÖnskog, Thomas. "The Skorohod problem and weak approximation of stochastic differential equations in time-dependent domains." Doctoral thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-25429.
Full textLeonhard, Claudine [Verfasser]. "Derivative-free numerical schemes for stochastic partial differential equations / Claudine Leonhard." Lübeck : Zentrale Hochschulbibliothek Lübeck, 2017. http://d-nb.info/1135168091/34.
Full textLiu, Boan. "Analytical approximationof the solution of ordinary and partial derivative equations with artificial neural networks." Toulouse 3, 2000. http://www.theses.fr/2000TOU30225.
Full textBooks on the topic "Partial derivatives"
Mashreghi, Javad. Derivatives of Inner Functions. New York, NY: Springer New York, 2013.
Find full textD, Beritić-Stahuljak, Valic F, World Health Organization, and United Nations Environment Programme, eds. Partially halogenated chlorofluorocarbons (methane derivatives). Geneva: World Health Organization, 1991.
Find full textV, Uspenskiĭ S., ed. Partial differential equations and systems not solvable with respect to the highest-order derivative. New York: Marcel Dekker, 2003.
Find full textBerman, Donald. Inactivation of particle-associated coliforms by chlorine and monochloramine. [Washington, D.C.?: U.S. Environmental Protection Agency, 1988.
Find full textBerman, Donald. Inactivation of particle-associated coliforms by chlorine and monochloramine. [Washington, D.C.?: U.S. Environmental Protection Agency, 1988.
Find full textBerman, Donald. Inactivation of particle-associated coliforms by chlorine and monochloramine. [Washington, D.C.?: U.S. Environmental Protection Agency, 1988.
Find full textBerman, Donald. Inactivation of particle-associated coliforms by chlorine and monochloramine. [Washington, D.C.?: U.S. Environmental Protection Agency, 1988.
Find full textBerman, Donald. Inactivation of particle-associated coliforms by chlorine and monochloramine. [Washington, D.C.?: U.S. Environmental Protection Agency, 1988.
Find full textBerman, Donald. Inactivation of particle-associated coliforms by chlorine and monochloramine. [Washington, D.C.?: U.S. Environmental Protection Agency, 1988.
Find full textBook chapters on the topic "Partial derivatives"
Sydsæter, Knut, Arne Strøm, and Peter Berck. "Partial derivatives." In Economists’ Mathematical Manual, 27–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-28518-2_4.
Full textDineen, Seán. "Partial Derivatives." In Functions of Two Variables, 8–13. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-3250-1_2.
Full textVince, John. "Partial Derivatives." In Calculus for Computer Graphics, 81–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11376-6_6.
Full textSydsæter, Knut, Arne Strøm, and Peter Berck. "Partial derivatives." In Economists’ Mathematical Manual, 25–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03995-3_4.
Full textBerck, Peter, and Knut Sydsæter. "Partial derivatives." In Economists’ Mathematical Manual, 13–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-11597-8_3.
Full textBerck, Peter, and Knut Sydsæter. "Partial derivatives." In Economists’ Mathematical Manual, 13–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-02678-6_3.
Full textVince, John. "Partial Derivatives." In Calculus for Computer Graphics, 75–85. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5466-2_6.
Full textProtter, Murray H., and Charles B. Morrey. "Partial Derivatives. Applications." In Intermediate Calculus, 197–294. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-1086-3_4.
Full textKörner, T. "Traditional partial derivatives." In Graduate Studies in Mathematics, 377–81. Providence, Rhode Island: American Mathematical Society, 2003. http://dx.doi.org/10.1090/gsm/062/19.
Full textBogaevski, V. N., and A. Povzner. "Equations in Partial Derivatives." In Applied Mathematical Sciences, 195–258. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-4438-7_5.
Full textConference papers on the topic "Partial derivatives"
Roundy, David J., Eric Weber, Grant Sherer, and Corinne A. Manogue. "Experts' Understanding of Partial Derivatives Using the Partial Derivative Machine." In 2014 Physics Education Research Conference. American Association of Physics Teachers, 2015. http://dx.doi.org/10.1119/perc.2014.pr.053.
Full textRust, C. J., and G. J. Reid. "Rankings of partial derivatives." In the 1997 international symposium. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/258726.258737.
Full textEmigh, Paul J., and Corinne A. Manogue. "Student Interpretations of Partial Derivatives." In 2017 Physics Education Research Conference. American Association of Physics Teachers, 2018. http://dx.doi.org/10.1119/perc.2017.pr.025.
Full textMüller, Andreas. "Closed Form Expressions for Higher Derivatives of Screw Systems." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12836.
Full textSakhaee, Elham, and Alireza Entezari. "Sparse partial derivatives and reconstruction from partial Fourier data." In ICASSP 2015 - 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. http://dx.doi.org/10.1109/icassp.2015.7178646.
Full textArora, Nitin, Ryan P. Russell, and Nathan J. Strange. "Partial Derivatives of the Lambert Problem." In AIAA/AAS Astrodynamics Specialist Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-4427.
Full textThompson, John R., Corinne A. Manogue, David J. Roundy, Donald B. Mountcastle, N. Sanjay Rebello, Paula V. Engelhardt, and Chandralekha Singh. "Representations of partial derivatives in thermodynamics." In 2011 PHYSICS EDUCATION RESEARCH CONFERENCE. AIP, 2012. http://dx.doi.org/10.1063/1.3680000.
Full textForbes, Michael A. "Deterministic Divisibility Testing via Shifted Partial Derivatives." In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2015. http://dx.doi.org/10.1109/focs.2015.35.
Full textChen, Wenxiang, Darrell Whitley, Doug Hains, and Adele Howe. "Second order partial derivatives for NK-landscapes." In Proceeding of the fifteenth annual conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2463372.2463437.
Full textNakamura, Yoshiki. "Partial derivatives on graphs for Kleene allegories." In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2017. http://dx.doi.org/10.1109/lics.2017.8005132.
Full textReports on the topic "Partial derivatives"
Skolnik, Merrill I. Radar Information from the Partial Derivatives of the Echo Signal Phase from a Point Scatterer. Fort Belvoir, VA: Defense Technical Information Center, February 1988. http://dx.doi.org/10.21236/ada193402.
Full textChen, Victor C. Glint Errors Derived from the Partial Derivatives of the Echo Signal Phase for a Distributed Scatterer. Fort Belvoir, VA: Defense Technical Information Center, May 1992. http://dx.doi.org/10.21236/ada249499.
Full textOstashev, Vladimir, Michael Muhlestein, and D. Wilson. Extra-wide-angle parabolic equations in motionless and moving media. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42043.
Full textDiebold, Francis, and Minchul Shin. Machine Learning for Regularized Survey Forecast Combination: Partially-Egalitarian Lasso and its Derivatives. Cambridge, MA: National Bureau of Economic Research, August 2018. http://dx.doi.org/10.3386/w24967.
Full text