Academic literature on the topic 'Partial differential equations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Partial differential equations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Partial differential equations"

1

Tumajer, František. "Controllable systems of partial differential equations." Applications of Mathematics 31, no. 1 (1986): 41–53. http://dx.doi.org/10.21136/am.1986.104183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tiwari, Chinta Mani, and Richa Yadav. "Distributional Solutions to Nonlinear Partial Differential Equations." International Journal of Research Publication and Reviews 5, no. 4 (2024): 6441–47. http://dx.doi.org/10.55248/gengpi.5.0424.1085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hibberd, S., Richard Bellman, and George Adomian. "Partial Differential Equations." Mathematical Gazette 71, no. 458 (1987): 341. http://dx.doi.org/10.2307/3617100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abbott, Steve, and Lawrence C. Evans. "Partial Differential Equations." Mathematical Gazette 83, no. 496 (1999): 185. http://dx.doi.org/10.2307/3618751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chang, Sun-Yung Alice, Camillo De Lellis, and Reiner Schätzle. "Partial Differential Equations." Oberwolfach Reports 10, no. 3 (2013): 2259–319. http://dx.doi.org/10.4171/owr/2013/40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chang, Sun-Yung Alice, Camillo De Lellis, and Peter Topping. "Partial Differential Equations." Oberwolfach Reports 12, no. 3 (2015): 2065–124. http://dx.doi.org/10.4171/owr/2015/36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

De Lellis, Camillo, Richard Schoen, and Peter Topping. "Partial Differential Equations." Oberwolfach Reports 14, no. 3 (2018): 2165–222. http://dx.doi.org/10.4171/owr/2017/35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

De Philippis, Guido, Richard Schoen, and Peter Topping. "Partial Differential Equations." Oberwolfach Reports 16, no. 3 (2020): 2033–97. http://dx.doi.org/10.4171/owr/2019/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Evans, W. D. "PARTIAL DIFFERENTIAL EQUATIONS." Bulletin of the London Mathematical Society 20, no. 4 (1988): 375–76. http://dx.doi.org/10.1112/blms/20.4.375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

De Philippis, Guido, Ailana M. Fraser, and Felix Schulze. "Partial Differential Equations." Oberwolfach Reports 20, no. 3 (2024): 1789–842. http://dx.doi.org/10.4171/owr/2023/32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Partial differential equations"

1

Dareiotis, Anastasios Constantinos. "Stochastic partial differential and integro-differential equations." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/14186.

Full text
Abstract:
In this work we present some new results concerning stochastic partial differential and integro-differential equations (SPDEs and SPIDEs) that appear in non-linear filtering. We prove existence and uniqueness of solutions of SPIDEs, we give a comparison principle and we suggest an approximation scheme for the non-local integral operators. Regarding SPDEs, we use techniques motivated by the work of De Giorgi, Nash, and Moser, in order to derive global and local supremum estimates, and a weak Harnack inequality.
APA, Harvard, Vancouver, ISO, and other styles
2

Ranner, Thomas. "Computational surface partial differential equations." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/57647/.

Full text
Abstract:
Surface partial differential equations model several natural phenomena; for example in uid mechanics, cell biology and material science. The domain of the equations can often have complex and changing morphology. This implies analytic techniques are unavailable, hence numerical methods are required. The aim of this thesis is to design and analyse three methods for solving different problems with surface partial differential equations at their core. First, we define a new finite element method for numerically approximating solutions of partial differential equations in a bulk region coupled to
APA, Harvard, Vancouver, ISO, and other styles
3

Fedrizzi, Ennio. "Partial differential equations and noise." Paris 7, 2012. http://www.theses.fr/2012PA077176.

Full text
Abstract:
Dans ce travail, nous présentons quelques exemples des effets du bruit sur la solution d'une équation aux dérivées partielles dans trois contextes différents. Nous examinons d'abord deux équations aux dérivées partielles non linéaires dispersives, l'équation de Schrodinger non linéaire et l'équation de Korteweg - de | Vries. Nous analysons les effets d'une condition initiale aléatoire sur certaines solutions spéciales, les ! solitons. Le deuxième cas considéré est une équation aux dérive��es partielles linéaire, l'équation d'onde, avec conditions initiales aléatoires. Nous montrons qu'avec des
APA, Harvard, Vancouver, ISO, and other styles
4

Tarkhanov, Nikolai. "Unitary solutions of partial differential equations." Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2009/2985/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Enstedt, Mattias. "Selected Topics in Partial Differential Equations." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-145763.

Full text
Abstract:
This Ph.D. thesis consists of five papers and an introduction to the main topics of the thesis. In Paper I we give an abstract criteria for existence of multiple solutions to nonlinear coupled equations involving magnetic Schrödinger operators. In paper II we establish existence of infinitely many solutions to the quasirelativistic Hartree-Fock equations for Coulomb systems along with properties of the solutions. In Paper III we establish existence of a ground state to the magnetic Hartree-Fock equations. In Paper IV we study the Choquard equation with general potentials (including quasirelati
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Yujin. "Partial differential equations of electrostatic MEMS." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31315.

Full text
Abstract:
Micro-Electromechanical Systems (MEMS) combine electronics with micro-size mechanical devices in the process of designing various types of microscopic machinery, especially those involved in conceiving and building modern sensors. Since their initial development in the 1980s, MEMS has revolutionized numerous branches of science and industry. Indeed, MEMS-based devices are now essential components of modern designs in a variety of areas, such as in commercial systems, the biomedical industry, space exploration, telecommunications, and other fields of applications. As it is often the case in sci
APA, Harvard, Vancouver, ISO, and other styles
7

Keane, Therese Alison Mathematics &amp Statistics Faculty of Science UNSW. "Combat modelling with partial differential equations." Awarded By:University of New South Wales. Mathematics & Statistics, 2009. http://handle.unsw.edu.au/1959.4/43086.

Full text
Abstract:
In Part I of this thesis we extend the Lanchester Ordinary Differential Equations and construct a new physically meaningful set of partial differential equations with the aim of more realistically representing soldier dynamics in order to enable a deeper understanding of the nature of conflict. Spatial force movement and troop interaction components are represented with both local and non-local terms, using techniques developed in biological aggregation modelling. A highly accurate flux limiter numerical method ensuring positivity and mass conservation is used, addressing the difficulties of i
APA, Harvard, Vancouver, ISO, and other styles
8

Hofmanová, Martina. "Degenerate parabolic stochastic partial differential equations." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00916580.

Full text
Abstract:
In this thesis, we address several problems arising in the study of nondegenerate and degenerate parabolic SPDEs, stochastic hyperbolic conservation laws and SDEs with continues coefficients. In the first part, we are interested in degenerate parabolic SPDEs, adapt the notion of kinetic formulation and kinetic solution and establish existence, uniqueness as well as continuous dependence on initial data. As a preliminary result we obtain regularity of solutions in the nondegenerate case under the hypothesis that all the coefficients are sufficiently smooth and have bounded derivatives. In the s
APA, Harvard, Vancouver, ISO, and other styles
9

Lloyd, David J. B. "Localised solutions of partial differential equations." Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lorz, Alexander Stephan Richard. "Partial differential equations modelling biophysical phenomena." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Partial differential equations"

1

Taylor, Michael E. Partial differential equations. Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dezin, Aleksei A. Partial Differential Equations. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71334-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kevorkian, J. Partial Differential Equations. Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-3266-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bellman, Richard, and George Adomian. Partial Differential Equations. Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5209-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chern, Shiing-shen, ed. Partial Differential Equations. Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0082920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cardoso, Fernando, Djairo G. de Figueiredo, Rafael Iório, and Orlando Lopes, eds. Partial Differential Equations. Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0100778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jost, Jürgen. Partial Differential Equations. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-4809-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Taylor, Michael E. Partial Differential Equations. Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4684-9320-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Epstein, Marcelo. Partial Differential Equations. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55212-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jost, Jürgen. Partial Differential Equations. Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-49319-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Partial differential equations"

1

Gilbert, Robert P., George C. Hsiao, and Robert J. Ronkese. "Partial Differential Equations." In Differential Equations, 2nd ed. Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003175643-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bellman, Richard, and George Adomian. "Differential Quadrature." In Partial Differential Equations. Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5209-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jost, Jürgen. "Hyperbolic Equations." In Partial Differential Equations. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4809-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vesely, Franz J. "Partial Differential Equations." In Computational Physics. Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2307-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Srinivas, Karkenahalli, and Clive A. J. Fletcher. "Partial Differential Equations." In Scientific Computation. Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-58108-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fletcher, Clive A. J. "Partial Differential Equations." In Computational Techniques for Fluid Dynamics 1. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58229-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dyke, Phil. "Partial Differential Equations." In Springer Undergraduate Mathematics Series. Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6395-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dyke, Philip P. G. "Partial Differential Equations." In Springer Undergraduate Mathematics Series. Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0505-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vesely, Franz J. "Partial Differential Equations." In Computational Physics. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1329-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shima, Hiroyuki, and Tsuneyoshi Nakayama. "Partial Differential Equations." In Higher Mathematics for Physics and Engineering. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/b138494_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Partial differential equations"

1

Sree Lakshmi, D., A. Divya, Gayathri Yadav Mugada, Tanusha Koduru, Mownika Bingi, and Ishwarya Madupu. "Skin Lesion Detection Using Partial Differential Equations." In 2025 International Conference on Visual Analytics and Data Visualization (ICVADV). IEEE, 2025. https://doi.org/10.1109/icvadv63329.2025.10961450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Neumann, Niels, Jasper Verbree, and Carmen Hoek. "Quantum computing for partial differential equations in practice." In Quantum Technologies for Defence and Security, edited by Giacomo Sorelli, Sara Ducci, and Sylvain Schwartz. SPIE, 2024. http://dx.doi.org/10.1117/12.3033212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Luo, Zhenguo, and Liping Luo. "Forced oscillation of impulsive fractional partial differential equations." In 2025 5th International Conference on Applied Mathematics, Modelling and Intelligent Computing (CAMMIC 2025), edited by Peicheng Zhu and Guihua Lin. SPIE, 2025. https://doi.org/10.1117/12.3070351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Duteil, Nastassia Pouradier, Francesco Rossi, Ugo Boscain, and Benedetto Piccoli. "Developmental Partial Differential Equations." In 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015. http://dx.doi.org/10.1109/cdc.2015.7402696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

CHOQUET-BRUHAT, YVONNE. "FUCHSIAN PARTIAL DIFFERENTIAL EQUATIONS." In Proceedings of the 14th Conference on WASCOM 2007. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812772350_0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Boling, and Dadi Yang. "Nonlinear Partial Differential Equations and Applications." In International Conference on Nonlinear Partial Differential Equations and Applications. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814527989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ufuktepe, Ünal. "Partial Differential Equations with webMathematica." In Proceedings of the Fifth International Mathematica Symposium. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2003. http://dx.doi.org/10.1142/9781848161313_0023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

FAN, TIAN YOU. "QUASICRYSTALS AND PARTIAL DIFFERENTIAL EQUATIONS." In Statistical Physics, High Energy, Condensed Matter and Mathematical Physics - The Conference in Honor of C. N. Yang'S 85th Birthday. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812794185_0054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vivona, Doretta, and Maria Divari. "Basic generated partial differential equations." In 2008 6th International Symposium on Intelligent Systems and Informatics (SISY 2008). IEEE, 2008. http://dx.doi.org/10.1109/sisy.2008.4664969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Factorization of partial differential equations." In Уфимская осенняя математическая школа - 2022. 2 часть. Baskir State University, 2022. http://dx.doi.org/10.33184/mnkuomsh2t-2022-09-28.18.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Partial differential equations"

1

Shearer, Michael. Systems of Hyperbolic Partial Differential Equations. Defense Technical Information Center, 1994. http://dx.doi.org/10.21236/ada290287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Seidman, Thomas I. Nonlinear Systems of Partial Differential Equations. Defense Technical Information Center, 1989. http://dx.doi.org/10.21236/ada217581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arnold, Douglas, N, ed. Compatible Spatial Discretizations for Partial Differential Equations. Office of Scientific and Technical Information (OSTI), 2004. http://dx.doi.org/10.2172/834807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hyman, J. M., M. Shashkov, M. Staley, S. Kerr, S. Steinberg, and J. Castillo. Mimetic difference approximations of partial differential equations. Office of Scientific and Technical Information (OSTI), 1997. http://dx.doi.org/10.2172/518902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dalang, Robert C., and N. Frangos. Stochastic Hyperbolic and Parabolic Partial Differential Equations. Defense Technical Information Center, 1994. http://dx.doi.org/10.21236/ada290372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hale, Jack, Constantine M. Dafermos, John Mallet-Paret, Panagiotis E. Souganidis, and Walter Strauss. Dynamical Systems and Nonlinear Partial Differential Equations. Defense Technical Information Center, 1989. http://dx.doi.org/10.21236/ada255356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dafermos, Constantine M., John Mallet-Paret, Panagiotis E. Souganidis, and Walter Strauss. Dynamical Systems and Nonlinear Partial Differential Equations. Defense Technical Information Center, 1993. http://dx.doi.org/10.21236/ada271514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shearer, Michael. Systems of Nonlinear Hyperbolic Partial Differential Equations. Defense Technical Information Center, 1997. http://dx.doi.org/10.21236/ada344449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sharp, D. H., S. Habib, and M. B. Mineev. Numerical Methods for Stochastic Partial Differential Equations. Office of Scientific and Technical Information (OSTI), 1999. http://dx.doi.org/10.2172/759177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cai, X.-C. Scalable nonlinear iterative methods for partial differential equations. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/15013129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!