Academic literature on the topic 'Partial differential equations, finite element method, Oseen equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Partial differential equations, finite element method, Oseen equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Partial differential equations, finite element method, Oseen equations"
Ying, Lung-an. "Book Review: Partial differential equations and the finite element method." Mathematics of Computation 76, no. 259 (September 1, 2007): 1693–94. http://dx.doi.org/10.1090/s0025-5718-07-02023-6.
Full textEllerby, F. B., and C. Johnson. "Numerical Solutions of Partial Differential Equations by the Finite Element Method." Mathematical Gazette 73, no. 463 (March 1989): 59. http://dx.doi.org/10.2307/3618226.
Full textW., L. B., and Claes Johnson. "Numerical Solution of Partial Differential Equations by the Finite Element Method." Mathematics of Computation 52, no. 185 (January 1989): 247. http://dx.doi.org/10.2307/2008668.
Full textBalasundaram, S., and P. K. Bhattacharyya. "A Mixed Finite Element Method for Fourth Order Partial Differential Equations." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 66, no. 10 (1986): 489–99. http://dx.doi.org/10.1002/zamm.19860661019.
Full textPani, Amiya K. "AnH1-Galerkin Mixed Finite Element Method for Parabolic Partial Differential Equations." SIAM Journal on Numerical Analysis 35, no. 2 (April 1998): 712–27. http://dx.doi.org/10.1137/s0036142995280808.
Full textWrobel, L. C. "Numerical solution of partial differential equations by the finite element method." Engineering Analysis with Boundary Elements 9, no. 1 (January 1992): 106. http://dx.doi.org/10.1016/0955-7997(92)90133-r.
Full textMredula, K. P., and D. C. Vakaskar. "Haar Wavelet Implementation to Various Partial Differential Equations." European Journal of Engineering Research and Science 2, no. 3 (March 30, 2017): 44. http://dx.doi.org/10.24018/ejers.2017.2.3.307.
Full textHou, Lei, Jun Jie Zhao, and Han Ling Li. "Finite Element Convergence Analysis of Two-Scale Non-Newtonian Flow Problems." Advanced Materials Research 718-720 (July 2013): 1723–28. http://dx.doi.org/10.4028/www.scientific.net/amr.718-720.1723.
Full textGrande, Jörg, and Arnold Reusken. "A Higher Order Finite Element Method for Partial Differential Equations on Surfaces." SIAM Journal on Numerical Analysis 54, no. 1 (January 2016): 388–414. http://dx.doi.org/10.1137/14097820x.
Full textSereno, C., A. Rodrigues, and J. Villadsen. "Solution of partial differential equations systems by the moving finite element method." Computers & Chemical Engineering 16, no. 6 (June 1992): 583–92. http://dx.doi.org/10.1016/0098-1354(92)80069-l.
Full textDissertations / Theses on the topic "Partial differential equations, finite element method, Oseen equations"
Höhne, Katharina. "Analysis and numerics of the singularly perturbed Oseen equations." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-188322.
Full textWärnegård, Johan. "A Cut Finite Element Method for Partial Differential Equations on Evolving Surfaces." Thesis, KTH, Numerisk analys, NA, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190802.
Full textDenna masteruppsats behandlar cut finite element methods (CutFEM) för att lösa partiella differentialekvationer (PDEs) på dynamiska gränsytor. Sådana ekvationer uppstår exempelvis i studiet av olösliga surfaktanter i flerfasflöde. I CutFEM innesluts gränsytan av ett större nät som ej behöver anpassas efter gränsytans geometri. Exempelvis kan ett tvådimensionellt nät användas för att lösa en PDE på en kurva som innesluts av nätet. Följaktligen kan ett fixt nät användas i tidberoende problem. CutFEM kräver en representation av gränsytan. I tidigare arbete har linjära segment använts för att representera gränsytan. På grund av den linjära representation av gränsytan har föreslagna metoder varit av högst andra ordningen. För att gå till högre ordningens metoder krävs en bättre representation av gränsytan. I denna uppsats implementeras CutFEM tillsammans med en explicit splinerepresentation av gränsytan för att lösa konvektions- och diffusionsekvationen för transport av surfaktanter längsmed en rörlig kurva. Metoden är av andra ordningens noggrannhet. Markörerna som används för att explicit representera ytan kan, på grund av hastighetsfältet, ömsom ansamlas ömsom spridas ut. Därvid kan approximationen av gränsytan försämras. En metod för att behålla markörerna jämt utspridda, framförd av Hou et al., undersöks numeriskt. Som implementerad i denna uppsats döms metoden ej vara användbar.
Prinja, Gaurav Kant. "Adaptive solvers for elliptic and parabolic partial differential equations." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/adaptive-solvers-for-elliptic-and-parabolic-partial-differential-equations(f0894eb2-9e06-41ff-82fd-a7bde36c816c).html.
Full textAndrš, David. "Adaptive hp-FEM for elliptic problems in 3D on irregular meshes." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2008. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textWells, B. V. "A moving mesh finite element method for the numerical solution of partial differential equations and systems." Thesis, University of Reading, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414567.
Full textMassey, Thomas Christopher. "A Flexible Galerkin Finite Element Method with an A Posteriori Discontinuous Finite Element Error Estimation for Hyperbolic Problems." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/28245.
Full textPh. D.
Qiao, Zhonghua. "Numerical solution for nonlinear Poisson-Boltzmann equations and numerical simulations for spike dynamics." HKBU Institutional Repository, 2006. http://repository.hkbu.edu.hk/etd_ra/727.
Full textHaque, Md Z. "An adaptive finite element method for systems of second-order hyperbolic partial differential equations in one space dimension." Ann Arbor, Mich. : ProQuest, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3316356.
Full textTitle from PDF title page (viewed Mar. 16, 2009). Source: Dissertation Abstracts International, Volume: 69-08, Section: B Adviser: Peter K. Moore. Includes bibliographical references.
Kay, David. "The p- and hp- finite element method applied to a class of non-linear elliptic partial differential equations." Thesis, University of Leicester, 1997. http://hdl.handle.net/2381/30510.
Full textSalvatierra, Marcos Marreiro. "Modelagem matematica e simulação computacional da presença de materiais impactantes toxicos em casos de dinamica populacional com competição inter e intra-especifica." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307288.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-05T12:58:22Z (GMT). No. of bitstreams: 1 Salvatierra_MarcosMarreiro_M.pdf: 1600898 bytes, checksum: a8beabb556b24c734508735602125989 (MD5) Previous issue date: 2005
Resumo: A proposta deste trabalho é criar um modelo para descrever computacionalmente o convívio entre duas espécies competidoras com características de migração na presença de um material impactante tóxico. As equações a serem utilizadas deverão incluir os fenômenos de dispersão populacional, processos migratórios, dinâmicas populacionais densidade-dependentes e efeitos tóxicos de um material impactante evoluindo no meio, provocando um decaimento proporcional. Recorrendo a um instrumental consagrado, embora com desenvolvimento relativamente recente, será usado um sistema clássico do tipo Lotka-Volterra (conseqüentemente não-linear) combinado a Equações Diferenciais Parciais de Dispersão-Migração. O primeiro passo é a formulação variacional discretizada deste sistema visando o uso de Elementos Finitos combinados a um método de Crank-Nicolson. Em segundo lugar, virá a formulação de um algoritmo (conjuntamente com sua programação em ambiente MATLAB) que aproxima as soluções discretas relativas a cada população em cada ponto e ao longo do intervalo de tempo considerado nas simulações. Por fim, serão obtidas saídas gráficas úteis dos pontos de vista quantitativo e qualitativo para uso em conjunto com especialistas de áreas de ecologia e meio ambiente na avaliação e na calibração de modelos e programas, bem como no estudo de estratégias de preservação, impacto e recuperação de ambientes
Abstract: The purpose of this work is to create a model to computationally describe the coexistence of two competing species with migration features in the presence of a toxic impactant material. The equations must include the phenomena of populational dispersion, migratory processes, density-dependent populational dynamics and toxic effects of the evolutive presence of an impactant material developing in the environment, generating a proportional decrease in both populations. Resorting to well-established, although relatively recent, mathematical instruments a Lotka - Volterra type (and consequently nonlinear) system, including characteristics of a Migration-Dispersion PDE. The first step is the discrete variational formulation of this system aiming for the use of the Finite Element Method toghether with a Crank-Nicolson Method. Second, the formulation of an algorithm (together with a programme in MATLAB environment) that approximates the relative discrete solutions to each population in each point and along of the time interval considered in the simulations. Lastly, useful graphics will be obtained of the quantitative and qualitative viewpoints for use with specialists of the fields of ecology and environment and in the evaluation and calibration of models and programmes
Mestrado
Mestre em Matemática Aplicada
Books on the topic "Partial differential equations, finite element method, Oseen equations"
Šolín, Pavel. Partial Differential Equations and the Finite Element Method. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471764108.
Full textDavies, Alan J. The finite element method: An introduction with partial differential equations. 2nd ed. New York: Oxford University Press, 2011.
Find full textGrossman, Christian. Numerical treatment of partial differential equations. Germany [1990-onward]: Springer Verlag, 2007.
Find full textChristian, Grossmann. Numerical treatment of partial differential equations. Berlin: Springer, 2007.
Find full textNumerical solution of partial differential equations by the finite element method. Mineola, N.Y: Dover Publications, 2009.
Find full text1943-, Johnson Claes, ed. Numerical solution of partial differential equations by the finite element method. Cambridge [England]: Cambridge University Press, 1987.
Find full textOswald, Peter. Multilevel finite element approximation: Theory and applications. Stuttgart: Teubner, 1994.
Find full textGu, Jinsheng. Domain decomposition methods for nonconforming finite element discretizations. Commack, N.Y: Nova Science Publishers, 1999.
Find full textBook chapters on the topic "Partial differential equations, finite element method, Oseen equations"
Maury, Bertrand. "Numerical Analysis of a Finite Element/Volume Penalty Method." In Partial Differential Equations, 167–85. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8758-5_9.
Full textChaskalovic, Joël. "Finite-Element Method." In Mathematical and Numerical Methods for Partial Differential Equations, 63–109. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03563-5_2.
Full textDörfler, W., and K. G. Siebert. "An Adaptive Finite Element Method for Minimal Surfaces." In Geometric Analysis and Nonlinear Partial Differential Equations, 147–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55627-2_10.
Full textFillmore, Travis B., Varun Gupta, and Carlos Armando Duarte. "Preconditioned Conjugate Gradient Solvers for the Generalized Finite Element Method." In Meshfree Methods for Partial Differential Equations IX, 1–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15119-5_1.
Full textLiu, Wing Kam, Adrian M. Kopacz, Tae-Rin Lee, Hansung Kim, and Paolo Decuzzi. "Immersed Molecular Electrokinetic Finite Element Method for Nano-devices in Biotechnology and Gene Delivery." In Meshfree Methods for Partial Differential Equations VI, 67–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32979-1_4.
Full textDeckelnick, Klaus, and Gerhard Dziuk. "A Finite Element Level Set Method for Anisotropic Mean Curvature Flow with Space Dependent Weight." In Geometric Analysis and Nonlinear Partial Differential Equations, 249–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55627-2_15.
Full textMu, Lin, Junping Wang, Yanqiu Wang, and Xiu Ye. "A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations." In Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, 247–77. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7172-1_13.
Full textHubbard, Matthew, and Martin Berzins. "A Positivity Preserving Finite Element Method for Hyperbolic Partial Differential Equations." In Computational Fluid Dynamics 2002, 205–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59334-5_28.
Full textChatzipantelidis, P., and V. Ginting. "A Finite Volume Element Method for a Nonlinear Parabolic Problem." In Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, 121–36. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7172-1_7.
Full textMicula, Gheorghe, and Sanda Micula. "Finite Element Method for Solution of Boundary Problems for Partial Differential Equations." In Handbook of Splines, 257–94. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-5338-6_7.
Full textConference papers on the topic "Partial differential equations, finite element method, Oseen equations"
Fukuda, Naohiro, Tamotu Kinoshita, and Takayuki Kubo. "On the Finite Element Method with Riesz Bases and Its Applications to Some Partial Differential Equations." In 2013 Tenth International Conference on Information Technology: New Generations (ITNG). IEEE, 2013. http://dx.doi.org/10.1109/itng.2013.121.
Full textHoráček, Jaromír, and Petr Sváček. "Finite Element Simulation of a Gust Response of an Ultralight 2-DOF Airfoil." In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28390.
Full textSchneider, Barry I., Klaus Bartschat, and Xiaoxu Guan. "Time Propagation of Partial Differential Equations Using the Short Iterative Lanczos Method and Finite-Element Discrete Variable Representation." In XSEDE16: Diversity, Big Data, and Science at Scale. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2949550.2949565.
Full textDennis, Brian H. "The Inverse Least-Squares Finite Element Method Applied to the Convection-Diffusion Equation." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12083.
Full textBrown, Joanna M., Malcolm I. G. Bloor, M. Susan Bloor, and Michael J. Wilson. "Generation and Modification of Non-Uniform B-Spline Surface Approximations to PDE Surfaces Using the Finite Element Method." In ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0032.
Full textAsle-Zaeem, Mohsen, and Sinisa Dj Mesarovic. "Finite Element Modeling of a Diffusion-Controlled Phase Transformation in Thin Film." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66767.
Full textRavindran, S. S. "Error Estimates for Reduced Order POD Models of Navier-Stokes Equations." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66563.
Full textNamala, Sundar, and Rizwan Uddin. "Hybrid Nodal Integral/Finite Element Method (NI-FEM) for Time-Dependent Convection Diffusion Equation." In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16703.
Full textRainsberger, Robert B., Jeffrey T. Fong, and Pedro V. Marcal. "A Super-Parametric Approach to Estimating Accuracy and Uncertainty of the Finite Element Method (*)." In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63890.
Full textZhou, Jianping, and Zhigang Feng. "Transient Response of Distributed Parameter Systems." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4080.
Full text