Academic literature on the topic 'Partial virtual machine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Partial virtual machine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Partial virtual machine"
Bila, Nilton, Eric J. Wright, Eyal De Lara, Kaustubh Joshi, H. Andrés Lagar-Cavilla, Eunbyung Park, Ashvin Goel, Matti Hiltunen, and Mahadev Satyanarayanan. "Energy-Oriented Partial Desktop Virtual Machine Migration." ACM Transactions on Computer Systems 33, no. 1 (March 11, 2015): 1–51. http://dx.doi.org/10.1145/2699683.
Full textRaghavan, Rohith, Vishodhan Krishnan, Hitesh Nishad, and Bushra Shaikh. "Virtual AI Assistant for Person with Partial Vision Impairment." ITM Web of Conferences 37 (2021): 01019. http://dx.doi.org/10.1051/itmconf/20213701019.
Full textWagner, Gregor, Andreas Gal, and Michael Franz. "“Slimming” a Java virtual machine by way of cold code removal and optimistic partial program loading." Science of Computer Programming 76, no. 11 (November 2011): 1037–53. http://dx.doi.org/10.1016/j.scico.2010.04.008.
Full textYan, Jing Run, Jian Ming Liang, Shu Zheng Shi, Chun Hua Zhu, and Yu Ni Xiao. "The Design and Research of Hydraulic Drive Auto Lift Machine Based on Solidworks." Applied Mechanics and Materials 711 (December 2014): 108–11. http://dx.doi.org/10.4028/www.scientific.net/amm.711.108.
Full textPeng, Min. "Stimulation on Anti-Shock Characteristic of Diesel Engine." Advanced Materials Research 631-632 (January 2013): 920–24. http://dx.doi.org/10.4028/www.scientific.net/amr.631-632.920.
Full textWang, Jike, Dongsheng Cao, Cunchen Tang, Xi Chen, Huiyong Sun, and Tingjun Hou. "Fast and accurate prediction of partial charges using Atom-Path-Descriptor-based machine learning." Bioinformatics 36, no. 18 (September 2, 2020): 4721–28. http://dx.doi.org/10.1093/bioinformatics/btaa566.
Full textCascone, Lucia, Aniello Castiglione, Michele Nappi, Fabio Narducci, and Ignazio Passero. "Waiting for Tactile: Robotic and Virtual Experiences in the Fog." ACM Transactions on Internet Technology 21, no. 3 (June 15, 2021): 1–19. http://dx.doi.org/10.1145/3421507.
Full textLiu, Jun, and Wen Kui Ma. "Design and Simulation of Tobacco Harvesting System Based on Virtual Manufacturing Technology." Key Engineering Materials 522 (August 2012): 736–39. http://dx.doi.org/10.4028/www.scientific.net/kem.522.736.
Full textChen, Feng, Jean-Luc Bouvard, Daisuke Sawada, Christophe Pradille, Michael Hummel, Herbert Sixta, and Tatiana Budtova. "Exploring digital image correlation technique for the analysis of the tensile properties of all-cellulose composites." Cellulose 28, no. 7 (March 20, 2021): 4165–78. http://dx.doi.org/10.1007/s10570-021-03807-9.
Full textAlias, Norma, Hafizah Farhah Saipan Saipol, Asnida Che Abd. Ghani, and Maizatul Nadirah Mustaffa. "Parallel Performance Comparison of Alternating Group Explicit Method Between Parallel Virtual Machine and Matlab Distributed Computing for Solving Large Sparse Partial Differential Equations." Advanced Science Letters 20, no. 2 (February 1, 2014): 477–82. http://dx.doi.org/10.1166/asl.2014.5330.
Full textDissertations / Theses on the topic "Partial virtual machine"
Cardace, Antonio. "UMView, a Userspace Hypervisor Implementation." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13184/.
Full textPareschi, Federico. "Applying partial virtualization on ELF binaries through dynamic loaders." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5065/.
Full textOliver, Gelabert Antoni. "Desarrollo y aceleración hardware de metodologías de descripción y comparación de compuestos orgánicos." Doctoral thesis, Universitat de les Illes Balears, 2018. http://hdl.handle.net/10803/462902.
Full textIntroducció El creixement accelerat de les dades en la societat actual i l'arribada de la tecnologia del transistor als límits físics exigeix la proposta de metodologies per al processament eficient de dades. Contingut Aquesta tesi doctoral, de caràcter transdisciplinària i a mig camí entre els camps de l'enginyeria electrònica i la química computacional presenta solucions optimitzades en maquinari i en programari per tal d’accelerar el processament de bases de dades moleculars. En primer lloc es proposa i s'estudia el funcionament de blocs digitals que implementen funcions de lògica polsant estocàstica aplicades a tasques de reconeixement d'objectes. En concret es proposen i analitzen dissenys específics per a la construcció de generadors de nombres aleatoris (RNG) com a sistemes bàsics per al funcionament dels sistemes de computació estocàstics implementats en dispositius programables com les Field Programable Gate Array (FPGA). En segon lloc es proposen i avaluen un conjunt reduït de descriptors moleculars especialment orientats a la caracterització de compostos orgànics. Aquests descriptors reuneixen la informació sobre la distribució de càrrega molecular i les energies electroestàtiques. Les bases de dades generades amb aquests descriptors s’han processat emprant sistemes de computació convencionals en programari i mitjançant sistemes basats en computació estocàstica implementats en maquinari programable. Finalment es proposen optimitzacions per al càlcul del potencial electroestàtic molecular (MEP) calculat mitjançant la teoria del funcional de la densitat (DFT) i dels punts d’interacció que se’n deriven (SSIP). Conclusions Per una banda, els resultats obtinguts posen de manifest la importància de la uniformitat del RNG en el període d’avaluació per a poder implementar sistemes de computació estocàstics d’alta fiabilitat. A més, els RNG proposats presenten una font d’aleatorietat aperiòdica que minimitza les correlacions entre senyals, fent-los adequats per a la implementació de sistemes de computació estocàstica. Per una altra banda, el conjunt de descriptors moleculars proposats PED, han demostrat obtenir molts bons resultats en comparació amb els mètodes presents a la literatura. Aquest fet ha estat discutit mitjançant l’anàlisi dels paràmetres Area Under The Curve (AUC) i Enrichment Factor (EF) de les curves Receiving Operating Characteristic (ROC) analitzades. A més, s’ha mostrat com l’eficàcia dels descriptors augmenta de manera significativa quan s’implementen en sistemes de classificació amb aprenentatge supervisat com les finestres de Parzen, fent-los adequats per a la construcció d’un sistema de predicció de dianes terapèutiques eficient. En aquesta tesi doctoral, a més, s’ha trobat que els MEP calculats mitjançant la teoria DFT i el conjunt de bases B3LYP/6-31*G en la superfície amb densitat electrònica 0,01 au correlacionen bé amb dades experimentals possiblement a causa de la contribució més gran de les propietats electroestàtiques locals reflectides en el MEP. Les parametritzacions proposades en funció del tipus d’hibridació atòmica han contribuït també a la millora dels resultats. Els càlculs realitzats en aquestes superfícies suposen un guany en un factor cinc en la velocitat de processament del MEP. Donat l’acceptable ajust a les dades experimentals del mètode proposat per al càlcul del MEP aproximat i dels SSIP que se’n deriven, aquest procediment es pot emprar per obtenir els SSIP en bases de dades moleculars extenses i en macromolècules (com ara proteïnes) d’una manera molt ràpida (ja que la velocitat de processament obtinguda arriba fins als cinc mil àtoms per segon amb un sol processador). Les tècniques proposades en aquesta tesi doctoral resulten d’interès donades les nombroses aplicacions que tenen els SSIP com per exemple, en el cribratge virtual de cocristalls o en la predicció d’energies lliures en dissolució.
Introduction Because of the generalized data growth in the nowadays digital era and due to the fact that we are possibly living on the last days of the Moore’s law, there exists a good reason for being focused on the development of technical solutions for efficient data processing. Contents In this transdisciplinary thesis between electronic engineering and computational chemistry, it's shown optimal solutions in hardware and software for molecular database processing. On the first hand, there's proposed and studied a set of stochastic computing systems in order to implement ultrafast pattern recognition applications. Specially, it’s proposed and analyzed specific digital designs in order to create digital Random Number Generators (RNG) as a base for stochastic functions. The digital platform used to generate the results is a Field Programmable Gate Array (FPGA). On the second hand, there's proposed and evaluated a set of molecular descriptors in order to create a compact molecular database. The proposed descriptors gather charge and molecular geometry information and they have been used as a database both in software conventional computing and in hardware stochastic computing. Finally, there's a proposed a set of optimizations for Molecular Electrostatic Potential (MEP) and Surface Site Interaction Points (SSIP). Conclusions Firstly, the results show the relevance of the uniformity of the RNG within the evaluation period in order to implement high precision stochastic computing systems. In addition, the proposed RNG have an aperiodic behavior which avoid some potential correlations between stochastic signals. This property makes the proposed RNG suitable for implementation of stochastic computing systems. Secondly, the proposed molecular descriptors PED have demonstrated to provide good results in comparison with other methods that are present in the literature. This has been discussed by the use of Area Under the Curve (AUC) and Enrichment Factor (EF) of averaged Receiving Operating Characteristic (ROC) curves. Furthermore, the performance of the proposed descriptors gets increased when they are implemented in supervised machine learning algorithms making them appropriate for therapeutic target predictions. Thirdly, the efficient molecular database characterization and the usage of stochastic computing circuitry can be used together in order to implement ultrafast information processing systems. On the other hand, in this thesis, it has been found that the MEP calculated by using DFT and B3LYP/6-31*G basis at 0.01 au density surface level has good correlation with experimental data. This fact may be due to the important contribution of local electrostatics and the refinement performed by the parameterization of the MEP as a function of the orbital atom type. Additionally, the proposed calculation over 0.01 au is five times faster than the calculation over 0.002 au. Finally, due to acceptable agreement between experimental data and theoretical results obtained by using the proposed calculation for MEP and SSIP, the proposed method is suitable for being applied in order to quickly process big molecular databases and macromolecules (the processing speed can achieve five thousand molecules per second using a single processor). The proposed techniques have special interest with the purpose of finding the SSIP because the big number of applications they have as for instance in virtual cocrystal screening and calculation of free energies in solution.
Bila, Nilton. "Energy-oriented Partial Desktop Virtual Machine Migration." Thesis, 2013. http://hdl.handle.net/1807/35778.
Full textHunt, Oliver. "The provision of non-strictness, higher kinded types and higher ranked types on an object oriented virtual machine : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in the University of Canterbury /." 2006. http://library.canterbury.ac.nz/etd/adt-NZCU20070416.105204.
Full textLu, Bo active 21st century. "Improving process monitoring and modeling of batch-type plasma etching tools." Thesis, 2015. http://hdl.handle.net/2152/30486.
Full textBook chapters on the topic "Partial virtual machine"
Dehne, Frank, Todd Eavis, and Andrew Rau-Chaplin. "Computing Partial Data Cubes for Parallel Data Warehousing Applications." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 319–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45417-9_44.
Full textSouliou, Dora, Aris Pagourtzis, and Nikolaos Drosinos. "Computing Frequent Itemsets in Parallel Using Partial Support Trees." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 28–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11557265_9.
Full textKrysztop, Bartosz, and Henryk Krawczyk. "Improving Flexibility and Performance of PVM Applications by Distributed Partial Evaluation." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 376–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45825-5_55.
Full textOjeda-Guerra, C. N., E. Macías, and A. Suárez. "Sparse LU factorization with partial pivoting overlapping communications and computations on the SP-2 multicomputer." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 371–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0056597.
Full textNakasato, N., M. Mori, and K. Nomoto. "Smoothed Particle Hydrodynamics with Parallel Virtual Machine." In Astrophysics and Space Science Library, 269–72. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0864-8_34.
Full textFrugoli, Giancarlo, Alessandro Fava, Emanuele Fava, and Gianni Conte. "Distributed Collision Handling for Particle-Based Simulation." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 410–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48158-3_51.
Full textHofmann, Michael, and Gudula Rünger. "Fine-Grained Data Distribution Operations for Particle Codes." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 54–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03770-2_12.
Full textKucukboyaci, Vefa, Alireza Haghighat, and Glenn E. Sjoden. "Performance of PENTRAN™ 3-D Parallel Particle Transport Code on the IBM SP2 and PCTRAN Cluster." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 36–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45417-9_10.
Full textRosenbaum, Lars, Andreas Jahn, and Andreas Zell. "Optimizing the Edge Weights in Optimal Assignment Methods for Virtual Screening with Particle Swarm Optimization." In Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, 26–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29066-4_3.
Full textChater, Nick, and Jennifer Misyak. "Spontaneous Communicative Conventions through Virtual Bargaining." In Human-Like Machine Intelligence, 52–67. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198862536.003.0003.
Full textConference papers on the topic "Partial virtual machine"
Schwich, Steffen, Jan Schattenberg, and Ludger Frerichs. "Comparing Machine Learning Techniques for Throughput Estimation using Partial Data." In 2021 ASABE Annual International Virtual Meeting, July 12-16, 2021. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2021. http://dx.doi.org/10.13031/aim.202100791.
Full textBusse, Anselm, Jan H. Schönherr, Matthias Diener, Philippe O. A. Navaux, and Hans-Ulrich Heiß. "Partial coscheduling of virtual machines based on memory access patterns." In SAC 2015: Symposium on Applied Computing. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2695664.2695736.
Full textHangpei, Tian, Gao Deyuan, Wei Wu, Fan Xiaoya, and Zhu Yian. "Improving Performance of Partial Reconfiguration Using Strategy of Virtual Deletion." In 2008 16th International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2008. http://dx.doi.org/10.1109/fccm.2008.51.
Full textHomem, Luís. "U-MentalismUtility Patent: an Overview." In 10th International Conference on Advances in Computing and Information Technology (ACITY 2020). AIRCC Publishing Corporation, 2020. http://dx.doi.org/10.5121/csit.2020.101509.
Full textAbdessamia, Foudil, Yu Tai, Wei Zhe Zhang, and Muhammad Shafiq. "An Improved Particle Swarm Optimization for Energy-Efficiency Virtual Machine Placement." In 2017 International Conference on Cloud Computing Research and Innovation (ICCCRI). IEEE, 2017. http://dx.doi.org/10.1109/icccri.2017.9.
Full textBRAIKI, Khaoula, and Habib YOUSSEF. "Multi-Objective Virtual Machine Placement Algorithm Based on Particle Swarm Optimization." In 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC). IEEE, 2018. http://dx.doi.org/10.1109/iwcmc.2018.8450527.
Full textWei, Chuanjiang, and Yi Zhuang. "Adaptive Virtual Machine Scheduling Algorithm Based on Improved Particle Swarm Optimization." In 2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS). IEEE, 2019. http://dx.doi.org/10.1109/icsess47205.2019.9040810.
Full textAruna, P., and S. Vasantha. "A particle swarm optimization algorithm for power-aware virtual machine allocation." In 2015 6th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE, 2015. http://dx.doi.org/10.1109/icccnt.2015.7395196.
Full textWeng, Yue, Wei-Neng Chen, An Song, and Jun Zhang. "Set-Based Comprehensive Learning Particle Swarm optimization for Virtual Machine Placement Problem." In 2018 Ninth International Conference on Intelligent Control and Information Processing (ICICIP). IEEE, 2018. http://dx.doi.org/10.1109/icicip.2018.8606676.
Full textLi, Wei, Tiantian Jian, Yanshan Wang, and Xiang Ma. "Research on Virtual Machine Load Balancing Based on Improved Particle Swarm Optimization." In 2019 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2019. http://dx.doi.org/10.1109/ssci44817.2019.9002730.
Full text