Academic literature on the topic 'Partially ionized plasma'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Partially ionized plasma.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Partially ionized plasma"

1

Ali, Ahsan, and P. K. Bhatia. "Instability of a gravitating partially-ionized plasma." Astrophysics and Space Science 191, no. 1 (1992): 89–100. http://dx.doi.org/10.1007/bf00644198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pucci, Fulvia, K. Alkendra P. Singh, Anna Tenerani, and Marco Velli. "Tearing Modes in Partially Ionized Astrophysical Plasma." Astrophysical Journal 903, no. 1 (October 29, 2020): L19. http://dx.doi.org/10.3847/2041-8213/abc0e7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ramazanov, T. S., K. Zh Galiyev, K. N. Dzhumagulova, G. R pke, and R. Redmer. "Transport properties of partially ionized hydrogen plasma." Journal of Physics A: Mathematical and General 36, no. 22 (May 23, 2003): 6173–80. http://dx.doi.org/10.1088/0305-4470/36/22/345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Daughton, W., Peter J. Catto, B. Coppi, and S. I. Krasheninnikov. "Interchange instabilities in a partially ionized plasma." Physics of Plasmas 5, no. 6 (June 1998): 2217–31. http://dx.doi.org/10.1063/1.872895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gabdullin, Maratbek, Tlekkabul Ramazanov, Tomiris Ismagambetova, and Ainur Karimova. "THERMODYNAMIC PROPERTIES OF PARTIALLY IONIZED HYDROGEN PLASMA." CBU International Conference Proceedings 4 (September 26, 2016): 826–31. http://dx.doi.org/10.12955/cbup.v4.860.

Full text
Abstract:
This paper considers dense partially ionized hydrogen plasma. The model of interaction between particles was used to study properties of plasma. Interaction potentials were obtained through the dielectric response function method. Effective potentials, taking into account the screening effects at large distances and the quantum-mechanical diffraction effect at small distances, were used to model the interaction between particles. Another effective screening potential was chosen to describe the charge interaction with neutral atoms. This potential takes into account the interaction between free charge and atomic nucleus with centrally symmetric distribution of the electron density. The degree of ionization was calculated through solving the system of Saha equations. Pair correlation functions were studied in the exponential approximation. Thermodynamic properties for hydrogen plasma were calculated using the effective potentials and obtained on their base pair correlation functions. Internal energy and equation of state of partially ionized hydrogen plasma were compared with the results from previous research. The results indicated that the difference observed with high values of parameters was due to increase in the concentration of atoms.
APA, Harvard, Vancouver, ISO, and other styles
6

Helander, P., S. I. Krasheninnikov, and P. J. Catto. "Fluid equations for a partially ionized plasma." Physics of Plasmas 1, no. 10 (October 1994): 3174–80. http://dx.doi.org/10.1063/1.870470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ganeev, Rashid A. "Harmonic generation from partially ionized plasma [Invited]." Journal of the Optical Society of America B 31, no. 9 (August 28, 2014): 2221. http://dx.doi.org/10.1364/josab.31.002221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sharma, R. C., and Neela Rani. "Thermosolutal instability of a partially-ionized plasma." Astrophysics and Space Science 140, no. 1 (1988): 55–63. http://dx.doi.org/10.1007/bf00643528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Khomkin, A., A. Shumikhin, and I. Mulenko. "Basic chemical models of partially ionized plasma." Czechoslovak Journal of Physics 54, S3 (March 2004): C483—C488. http://dx.doi.org/10.1007/bf03166442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

SHAIKH, DASTGEER. "Dynamics of Alfvén waves in partially ionized astrophysical plasmas." Journal of Plasma Physics 76, no. 3-4 (December 18, 2009): 305–15. http://dx.doi.org/10.1017/s0022377809990493.

Full text
Abstract:
AbstractWe develop a two dimensional, self-consistent, compressible fluid model to study evolution of Alfvenic modes in partially ionized astrophysical and space plasmas. The partially ionized plasma consists mainly of electrons, ions and significant neutral atoms. The nonlinear interactions amongst these species take place predominantly through direct collision or charge exchange processes. Our model uniquely describe the interaction processes between two distinctly evolving fluids. In our model, the electrons and ions are described by a single-fluid compressible magnetohydrodynamic (MHD) model and are coupled self-consistently to the neutral fluid via compressible hydrodynamic equations. Both plasma and neutral fluids are treated with different energy equations that adequately enable us to monitor non-adiabatic and thermal energy exchange processes between these two distinct fluids. Based on our self-consistent model, we find that the propagation speed of Alfvenic modes in space and astrophysical plasma is slowed down because these waves are damped predominantly due to direct collisions with the neutral atoms. Consequently, energy transfer takes place between plasma and neutral fluids. We describe the mode coupling processes that lead to the energy transfer between the plasma and neutral and corresponding spectral features.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Partially ionized plasma"

1

Adams, Mark Lloyd 1972. "Partially ionized plasma transport and line radiation interactions as the tokamak edge." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/30004.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 2003.
Includes bibliographical references (p. 166-179).
Hydrogenic resonance line radiation interacts with the high-density low-temperature plasma at the tokamak edge. As a result, there exists a significant nonlocal plasma energy transport channel, local atomic level populations are altered by global plasma properties, and plasma transport is affected. In this dissertation, new theoretical and computational models of partially ionized plasma transport, which include line radiation interactions, are developed and then applied to the study of plasma phenomena at the tokamak edge. First, to include the effects of an external magnetic field on nonlocal thermodynamic equilibrium (NLTE) mlodels, TotalB, a computationally efficient spectral line shape code that describes the broadening of radiative transitions due to an applied magnetic field, the ion microfield, and electron perturbers, is developed using standard line broadening theory. Second, to enable the study of plasma transport and line radiation interactions, PIP, a partially ionized plasma transport model that includes the charge-exchange coupling of ions with neutral atoms, the transport of potential energy, the effects of resonance line radiation interactions on atomic rates, and the transport of an arbitrary number of atomic levels, is developed and coupled with an existing NLTE radiation transport model. Finally, the combined capabilities model is applied to the simulation of a tokamak divertor and the significant effect of line radiation interactions on plasma transport at the tokamak edge is demonstrated. In addition, since the solution of the radiation field is an integral part of the calculation, several spectroscopic diagnostic techniques are developed.
by Mark Lloyd Adams.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
2

Bourdon, Anne. "Les modélisations physiques d'un écoulement supersonique de plasma d'azote basse pression." Rouen, 1995. http://www.theses.fr/1995ROUES035.

Full text
Abstract:
Ce mémoire présente une étude critique et une tentative de validation des modèles physiques utilisés pour simuler des écoulements gazeux partiellement ionisés hors équilibre thermique et chimique. Cette étude se base sur les nombreuses mesures réalisées au laboratoire de Rouen dans un écoulement de plasma basse pression d'azote en situations de jet libre et de couche limite de type plaque plane, et secondairement dans un plasma d'argon en situation de couche limite (chapitre 1). Nous établissons dans le chapitre 2, les équations générales de conservation nécessaires à la modélisation macroscopique des écoulements de plasmas hors équilibre. Les hypothèses nécessaires sont particulièrement analysées. La modélisation des termes de transport (chapitre 3), des termes sources chimiques (chapitre 4) et des termes d'échanges d'énergie (chapitre 5) est ensuite étudiée. Ce travail se base sur une étude bibliographique approfondie. De nouvelles formulations sont proposées pour le coefficient de recombinaison à trois corps de l'ion N+ et le terme d'échange d'énergie électron-vibration. La délicate modélisation du terme de couplage translation-vibration est également analysée. Malgré la complexité de l'écoulement, l'étude du jet libre d'azote (chapitre 6) nous a permis d'obtenir un accord assez satisfaisant entre notre modélisation actuelle et l'expérience sur les profils axiaux et radiaux de nombreux paramètres. La modélisation des deux couches limites (chapitre 7) s'est avérée plus délicate. En particulier dans l'azote, l'écriture de la condition à la paroi pour les espèces reste un problème ouvert. Notre modèle pour le terme électron-vibration, nous permet de déduire des mesures de température électronique à notre disposition, des informations sur l'excitation vibrationnelle du plasma. Notamment, cette étude permet de mettre en évidence un faible coefficient d'accommodation de la vibration sur la paroi métallique utilisée. L'ensemble de ce travail illustre l'intérêt d'une approche complémentaire expérience-modélisation afin de mieux comprendre ce type d'écoulement complexe
APA, Harvard, Vancouver, ISO, and other styles
3

Alexandrou, Marios. "Dissipative instability in partially ionised prominence plasma." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/10557/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yousfi, Mohammed. "Contribution a l'etude de la theorie cinetique des electrons dans un gaz faiblement ionise." Toulouse 3, 1986. http://www.theses.fr/1986TOU30229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Martínez, Gómez David. "High-frequency waves and instabilities in multi-fluid partially ionized solar plasmas." Doctoral thesis, Universitat de les Illes Balears, 2018. http://hdl.handle.net/10803/461007.

Full text
Abstract:
The solar atmosphere is a highly dynamic environment in which a huge diversity of waves and instabilities has been detected. The matter in that region is in plasma state, and thus is affected by the presence of electromagnetic fields. To understand its dynamics, a theory that combines the equations describing the properties and evolution of fluids with those for electric and magnetic fields is required. Among the several available alternatives that fulfill the mentioned conditions, ideal magnetohydrodynamics (MHD) is a useful description when the phenomena of interest are associated with low frequencies. For long temporal scales, all the species that compose a plasma are strongly coupled and they can be treated as a single fluid. However, when the temporal scales are shorter, the coupling is weaker and collisions between the different species produce a deviation on the properties of waves from those predicted by ideal MHD. Consequently, a more complex and accurate theory is needed. In this Thesis, a multi-fluid theory that takes into account the effects of ion-neutral collisions, Coulomb collisions and magnetic diffusivity, and makes use of a generalized Ohm's law that includes Hall's term is presented. Then, it is applied to the investigation of waves and instabilities in several layers and structures of the solar atmosphere, such as the fully ionized solar corona and solar wind, and the partially ionized chromosphere and quiescent prominences or filaments. By means of numerical simulations and the analysis of the dispersion relation for small-amplitude transverse perturbations, the impact of collisions on the properties of the low-frequency Alfvén waves and the high-frequency ion-cyclotron and whistler modes is studied. It is shown that the damping caused by collisional friction is dominated by the ion-neutral interaction at low frequencies and by Coulomb collisions and magnetic diffusivity at high frequencies. Moreover, the cut-off regions and resonances that the ion-cyclotron waves have in collisionless fluids are removed when collisions are taken into account. It is also demonstrated that the consideration of Hall's term in the induction equation is fundamental for the proper description of high-frequency waves in weakly ionized plasmas. Non-linear effects, such as heating, and perturbations of large-amplitude are also studied. On the one hand, it is shown that the ponderomotive force generated by non-linear Alfvén waves, which induces variations of density and pressure of the plasma, is greatly affected by the interaction of ions with neutrals. On the other hand, friction due to collisions causes dissipation of the energy of the perturbations. A fraction of that energy is transformed into heat and rises the temperature of the fluid. In this way, the plasma in quiescent prominences or in the chromosphere may be heated by ion-neutral collisions. Finally, the effect of shear flows at the interface between two partially ionized media are also investigated. The presence of a shear flow velocity leads to the development of the Kelvin-Helmholtz instability. Here, the onset of such instability is studied for partially ionized magnetic flux tubes and an application to cylindrical filament threads is given. It is found that the collisional coupling between ions and neutrals reduces the growth rates of the instability for sub-Alfvénic shear flows but cannot completely suppress it, which means that partially ionized plasmas are unstable for any value of the shear flow. The comparison of the analytical results with observations performed by other authors show that, for a range of parameters of the perturbations, the computed growth rates are compatible with the typical lifetimes of threads.
La atmósfera solar es un ambiente altamente dinámico en el que se ha detectado una gran variedad de ondas e inestabilidades. La materia en tal región se encuentra en estado de plasma, por lo que es afectada por la presencia de campos electromagnéticos. Para comprender su dinámica, se requiere una teoría que combine las ecuaciones que describen las propiedades y evolución de los fluidos con las de los campos eléctricos y magnéticos. Entre las diferentes alternativas disponibles que cumplen las condiciones mencionadas, la magnetohidrodinámica (MHD) ideal es una descripción útil cuando los fenómenos de interés están asociados a frecuencias bajas. Para escalas temporales largas, las especies componentes del plasma están fuertemente acopladas y pueden ser tratadas como un fluido único. Para escalas temporales más cortas, el acoplamiento es más débil y las colisiones entre las distintas especies producen un desvío en las propiedades de las ondas respecto a las predichas por la MHD ideal. Consecuentemente, se necesita una teoría más compleja y precisa. En esta Tesis se presenta una teoría multi-fluido que tiene en cuenta los efectos de las colisiones ión-neutro, las colisiones de Coulomb y la difusividad magnética, y usa una ley de Ohm generalizada que incluye el término de Hall. Tal teoría es luego aplicada a la investigación de ondas e inestabilidades en varias capas y estructuras de la atmósfera solar, como la corona y el viento solar, que están completamente ionizados, y la cromosfera y protuberancias, que se hayan parcialmente ionizadas. Mediante simulaciones numéricas y el análisis de la relación de dispersión para perturbaciones transversales de pequeña amplitud, se estudia el impacto que las colisiones tienen en las propiedades de las ondas de Alfvén, de baja frecuencia, y los modos ión-ciclotrón y \textit{whistler}, de alta frecuencia. El atenuamiento causado por la fricción debida a las colisiones está dominado por la interacción ión-neutro a bajas frecuencias y por las colisiones de Coulomb y la difusividad magnética a altas frecuencias. Además, las regiones de corte y resonancias que las ondas ión-ciclotrón tienen en fluidos sin colisiones desaparecen cuando éstas son tenidas en cuenta. También se muestra que la inclusión del término de Hall es fundamental para describir correctamente las ondas de alta frecuencia en plasmas débilmente ionizados. También se estudian efectos no lineales, como el calentamiento, y perturbaciones de gran amplitud. Por una parte, se demuestra que la fuerza ponderomotriz generada por ondas de Alfvén no lineales, que causan variaciones en la densidad y presión del plasma, es fuertemente afectada por la interacción de iones con neutros. Por otra, la fricción debida a colisiones causa la disipación de la energía de las perturbaciones. Una fracción de esa energía es transformada en calor y aumenta la temperatura del fluido. Así, el plasma en una protuberancia quiescente o en la cromosfera puede ser calentado mediante las colisiones ión-neutro. Finalmente, también se investiga el efecto de flujos de cizalladura en la interfaz entre dos medios parcialmente ionizados. La presencia de dichos flujos lleva al desarrollo de la inestabilidad de Kelvin-Helmholtz. Aquí, se estudia la fase inicial de dicha inestabilidad, con la aplicación al caso particular de hilos cilíndricos de filamentos solares. El acoplamiento mediante colisiones entre iones y neutros reduce los ritmos de crecimiento de la inestabilidad para flujos sub-Alfvénicos pero no evita por completo su aparición, lo que significa que los plasmas parcialmente ionizados son inestables para cualquier valor del flujo de cizalladura. La comparación de los resultados analíticos con observaciones realizadas por otros autores muestra que, para un rango de parametros de las perturbaciones, los ritmos de crecimiento calculados son compatibles con la vida media típica de los hilos.
L'atmosfera solar és un ambient altament dinàmic en el que s'ha detectat una gran varietat d'ones i inestabilitats. La matèria en aquesta regió es troba en estat de plasma, i per tant es veu afectada per la presència de camps electromagnètics. Per comprendre la seva dinàmica es requereix una teoria que combini les equacions que descriuen les propietats i l'evolució dels fluids amb les del camps elèctrics i magnètics. De les diverses alternatives disponibles que compleixen els requeriments anteriorment citats, la magnetohidrodinàmica (MHD) ideal és una descripció útil quan els fenòmens d'interès estan associats a freqüències baixes. Per escales temporals llargues, les espècies que componen el plasma es troben fortament acoblades i poden ser tractades com a un únic fluid. Pel contrari, quan les escales temporals són més curtes, l'acoblament és més feble i les col·lisions entre les distintes espècies produeixen desviacions en les propietats de les ones respecte a les esperades en MHD ideal. En conseqüència, és necessàri una teoria més complexa i precisa. En aquesta Tesi es presenta una teoria multi-fluid que té en compte els efectes de les col·lisions ió-neutre, les col·lisions de Coulomb i la difusivitat magnètica, i utilitza una llei d'Ohm generalitzada que inclou el terme de Hall. Aquesta teoria s'aplica a la invesigació d'ones i inestabilitats en diverses capes i estructures de l'atmosfera solar, com són la corona i el vent solar, que estan completament ionitzats, i la cromosfera i protuberàncies, que es troben parcialment ionitzats. Mitjançat les simulaciones numèriques i l'anàlisi de la relació de dispersió per pertorbacions transversals de petita amplitud, s'estudia l'impacte que les col·lisions tenen en les propietats de les ones d'Alfvén, de baixa freqüència i els modes ió-ciclotró i \textit{whistler}, d'alta freqüència. L'atenuació produïda per la fricció deguda a les col·lisions està dominada per la interacció ió-neutre a baixes freqüències i per les col·lisions de Coulomb i la difusivitat magnètica a altes freqüències. A més, les regions de tall i ressonàncies que les ones ió-ciclotró tenen en els fluids sense col·lisions desapareixen quan aquestes s'inclouen al model. També s'ha trobat que l'efecte del terme de Hall és fonamental per descriure correctament les ones d'alta freqüència en plasmes dèbilment ionitzats. També s'estudien efectes no lineals, com és l'escalfament, i pertorbacions de gran amplitud. Per una banda, se demostra que la força ponderomotriu generada per ones d'Alfvén no lineals, que causen variacions en la densitat i pressió del plasma, està fortament afectada per la interacció del ions amb els neutres. Per altra banda, la fricció deguda a les col·lisions causa la dissipació de l'energia de les pertorbacions. Una fracció d'aquesta energia és transformada en calor i augmenta la temperatura del fluid. D'aquesta manera, el plasma en una protuberància quiescent o en la cromosfera pot ser escalfat mitjançant les col·lisions ió-neutre. Finalment, també s'investiga l'efecte d'un flux amb cisalladura en l'interfase entre dos medis parcialment ionitzats. La presència del flux dona lloc al desenvolupament de l'inestabilitat de Kelvin-Helmholtz. Aquí, s'estudia la fase inicial d'aquesta inestabilitat, aplicada al cas particular de fils cilíndrics en filaments solars. L'acoblament a través de les col·lisions entre ions i neutres redueix el ritme de creixement de l'inestabilitat per fluxos sub-Alfvénics però no evita per complet la seva aparició, el que significa que els plasmes parcialment ionitzats són inestables per qualsevol valor del flux de cisalladura. La comparació dels resultats analítics amb observacions realitzades per altres autors mostra que, per un rang de paràmetres de les pertorbacions, els ritmes de creixement calculats són compatibles amb la vida mitja típica dels fils a protuberàncies.
APA, Harvard, Vancouver, ISO, and other styles
6

Wilson, Alasdair David. "Finite difference simulations of neutral gas-MHD interactions in partially ionized plasmas." Thesis, University of Glasgow, 2016. http://theses.gla.ac.uk/7209/.

Full text
Abstract:
This thesis deals with the theoretical and numerical modelling of partially ionized plasmas. The study of partially ionized plasmas is important in both astrophysical and laboratory contexts and we present a novel finite difference approach to modelling a magnetohydrodynamic plasma and hydrodynamic gas as well as some interaction terms between them. In particular we model fluid limits of a collisional drag, momentum coupling term and a critical velocity (Alfv ́en ) ionization term. Chapter 1 reviews the necessary background material relevant to this thesis. We introduce relevant plasma parameters that are useful to help understand the regimes at which MHD operates and which are later used when placing criteria on the conditions required for, and the rate equations of, ionization. We introduce the fluid limit model of non-resistive plasmas (ideal MHD), as well as theoretical models for gas-plasma collisions and Alfv ́en ionization. Chapter 2 lays out the model of a linear finite difference gas-MHD momentum coupling code (GMMC) that we modify by the addition of a fluid Alfv ́en ionization term. We explore the codes stability and fidelity and we explore Fresnel interference patterns as a test scenario. Chapter 3 lays out the model equations and derivation of a non-linear finite difference gas-MHD interactions code (GMIC). Chapter 4 uses the code GMIC to explore the momentum coupling between the gas and plasma fluids in a non-linear regime. We show that the presence of a frictional drag term effects both fluids in a variety of simulated scenarios. Propagation of waves and diffusion are effected significantly across a range of parameter space. We show theformation of ‘plasmoids’ by interacting, momentum coupled waves. We see that the momentum coupling has a somewhat similar effect on plasmas as a resistive term does. Chapter 5 uses both the linear and non-linear codes to simulate Alfv ́en ionization in a variety of scenarios. With both codes we see that waves and flows can be sources of ionization of the relative velocity between the two simulated fluids exceeds a pre-set threshold. This ionization effects the dynamics of the system significantly, firstly the extraction of kinetic energy in order to ionize introduces a directional and amplitude dependant damping of waves; secondly by providing a source of new plasma that the fluid is forced to react to. Also in this chapter we discuss how Alfv ́en ionization might play a role in astrophysical contexts, in particular, the solar photosphere and brown dwarf atmospheres. Chapter 6 deviates from the previous work to explore the possibility that dielec-trophoretic forces may be able to stratify the dynamic atmosphere of the Sun. We derive a simple expression for the DEP-force due to a neutral particle moving through a magnetic field and becoming polarized and we examine the displacement caused by this field and the ambipolar field. We also simulate the ability of a hypothetical DEP-force to separate elements based on their polarizability to mass ratio. Chapter 7 summarises the conclusion of the previous chapters and includes a brief discussion about possible extensions to this work.
APA, Harvard, Vancouver, ISO, and other styles
7

Forteza, Ferrer Pep. "Time and Spatial Damping of Magnetohydrodynamic Waves in Partially Ionised Prominence Plasmas." Doctoral thesis, Universitat de les Illes Balears, 2013. http://hdl.handle.net/10803/107964.

Full text
Abstract:
Inici de l’estudi de l’efecte de les col•lisions entre ions i neutres en l’esmorteïment d’ones magnetohidrodinàmiques. Es considera un plasma parcialment ionitzat, infinit i homogeni, i s’analitza l’esmorteïment temporal i espacial de les ones magnetoacústiques i les ones d’Alfvén tan en el cas de plasmes adiabàtics com en el de no adiabàtics. Mentre l’esmorteïment temporal de les ones MHD en plasmes adiabàtics parcialment ionitzats és degut a les col•lisions entre ions i neutres, en el cas no adiabàtic és possible estudiar la importància de cada mecanisme d’esmorteïment involucrat. Per altre banda, en el cas de l’esmorteïment espacial s‘han estudiat també ones MHD adiabàtiques i no adiabàtiques en plasmes resistius totalment ionitzats així com en plasmes parcialment ionitzats, i hem inclòs la presència de fluxes. S’inicia l’estudi amb el desenvolupament de les equacions magnetohidrodinàmiques per un fluid considerant ionització parcial i s’aplica aquest conjunt d’equacions a diferents configuracions de plasmes.
The study of the effect of ion-neutral collisions on the damping of magnetohydrodynamic waves is started. We develop a set of one-fluid equations for a partially ionised plasma and use it in different plasma configurations. As a first step, the simplest plasma configuration is considered, an unbounded homogeneous partially ionised plasma. We study the temporal and spatial damping of magnetoacoustic and Alfvén waves in the case of adiabatic and non-adiabatic plasmas. While the time damping of MHD waves in adiabatic partially ionized plasmas is due to ion-neutral collisions, in the non-adiabatic case it is possible to study the importance of each of the different damping mechanisms involved. In the case of spatial damping we have considered adiabatic and non-adiabatic MHD waves in fully ionized resistive and partially ionised plasmas, and we have also included flows.
APA, Harvard, Vancouver, ISO, and other styles
8

Daughton, William Scott 1968. "Transport processes in well confined high temperature plasmas and collective modes in their partially ionized edged region." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lüskow, Karl Felix [Verfasser], Ralf [Akademischer Betreuer] Schneider, Ralf [Gutachter] Schneider, and David [Gutachter] Tskhakaya. "2D simulation of heat flux distribution in space-relevant applications including electromagnetic fields in partially-ionized Argon plasmas / Karl Felix Lüskow ; Gutachter: Ralf Schneider, David Tskhakaya ; Betreuer: Ralf Schneider." Greifswald : Ernst-Moritz-Arndt-Universität, 2018. http://d-nb.info/1166315223/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ohsawa, Tomoki. "Development of an extended multi-fluid magnetohydrodynamic model for fully- and partially-ionized anisotropic plasmas." 2005. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=370057&T=F.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Partially ionized plasma"

1

D, Tsendin Lev, ed. Transport phenomena in partially ionized plasma. London: Taylor & Francis, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vladimir, Florinski, ed. Partially ionized plasmas throughout the cosmos: Proceedings of the 2010 Huntsville Workshop, Nashville, TN, USA, 3-8 October 2010. Melville, N.Y: American Institute of Physics, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

NATO Advanced Study Institute on Nonequilibrium Processes in Partially Ionized Gases (1989 Acquafredda di Maratea, Italy). Nonequilibrium processes in partially ionized gases. New York: Plenum Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Krishan, Vinod. Physics of Partially Ionized Plasmas. University of Cambridge ESOL Examinations, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rozhansky, V. Transport Phenomena in Partially Ionized Plasma. Taylor & Francis, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rozhansky, V. A., and L. D. Tsendin. Transport Phenomena in Partially Ionized Plasma. CRC, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Applications of partially ionized plasmas. New York: IEEE, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

(Editor), M. Capitelli, and J. Norman Bardsley (Editor), eds. Nonequilibrium Processes in Partially Ionized Gases (NATO Science Series: B:). Springer, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alvarez Laguna, Alejandro. Multi-fluid modeling of magnetic reconnection in solar partially ionized and laboratory plasmas. von Karman Institute for Fluid Dynamics, 2018. http://dx.doi.org/10.35294/phdt201803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ohsawa, Tomoki. Development of an extended multi-fluid magnetohydrodynamic model for fully- and partially-ionized anisotropic plasmas. 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Partially ionized plasma"

1

Rogers, F. J. "Occupation Numbers in Partially Ionized Plasmas." In Strongly Coupled Plasma Physics, 261–65. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1891-0_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Capitelli, M., and C. Gorse. "Non Equilibrium Plasma Kinetics." In Nonequilibrium Processes in Partially Ionized Gases, 45–61. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3780-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sasso, A., M. Inguscio, G. M. Tino, and L. R. Zink. "Laser Diagnostic of Radio-Frequency Oxygen Plasma." In Nonequilibrium Processes in Partially Ionized Gases, 561–69. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3780-9_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ehrhardt, H. "Plasma Assisted Thin Film Production WC, a-C:H and Diamond Films." In Nonequilibrium Processes in Partially Ionized Gases, 251–59. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3780-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Date, A., K. Kitamori, and H. Tagashira. "A Self-Consistent Monte Carlo Modeling of RF Non-Equilibrium Plasma." In Nonequilibrium Processes in Partially Ionized Gases, 433–40. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3780-9_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gorshkov, Alexey B., and Vladimir A. Baturin. "Elemental diffusion and segregation processes in partially ionized solar plasma." In Synergies between Solar and Stellar Modelling, 169–72. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9198-7_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Capitelli, Mario, Domenico Bruno, and Annarita Laricchiuta. "Some Problems in the Calculation of Transport Properties of Partially Ionized Gases." In Fundamental Aspects of Plasma Chemical Physics, 247–71. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-8172-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khomkin, A. L., I. T. Iakubov, and A. G. Khrapak. "Ionization Equilibrium, Equation of State, and Electric Conductivity of Partially Ionized Plasma." In Transport and Optical Properties of Nonideal Plasma, 77–131. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1066-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Singh, K. A. P. "Mean Field Magnetohydrodynamic Dynamo in Partially Ionized Plasma: Nonlinear, Numerical Results." In Advances in Mechanics and Mathematics, 357–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02487-1_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hopkins, M. B. "Electron Energy Distribution Functions in Magnetic Multipole Plasmas." In Nonequilibrium Processes in Partially Ionized Gases, 533–40. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3780-9_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Partially ionized plasma"

1

SOON, W., and J. KUNC. "Negative radiation in partially ionized gas." In 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Robertson, S. "Oral Session 6B: Partially ionized gases." In IEEE Conference Record - Abstracts. 31st IEEE International Conference On Plasma Science. IEEE, 2004. http://dx.doi.org/10.1109/plasma.2004.1340099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Poster Session 3P9-20: Partially Ionized Gases." In IEEE Conference Record - Abstracts. 31st IEEE International Conference On Plasma Science. IEEE, 2004. http://dx.doi.org/10.1109/plasma.2004.1339837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar, N., V. Kumar, H. Sikka, and A. Kumar. "Kelvin-Helmholtz instability in a partially ionized dusty plasma." In 2012 IEEE 39th International Conference on Plasma Sciences (ICOPS). IEEE, 2012. http://dx.doi.org/10.1109/plasma.2012.6383792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

VRANJES, J., S. POEDTS, M. Y. TANAKA, and B. P. PANDEY. "CURRENT DRIVEN ACOUSTIC PERTURBATIONS IN PARTIALLY IONIZED COLLISIONAL PLASMAS." In Proceedings of the 2007 ICTP Summer College on Plasma Physics. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812799784_0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alvarez Laguna, Alejandro, Andrea Lani, Yana Maneva, Herman Deconinck, and Stefaan Poedts. "Computational Multi-Fluid Model for Partially Ionized and Magnetized Plasma." In 47th AIAA Plasmadynamics and Lasers Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-3228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhdanov, V. M., and A. A. Stepanenko. "Transport equations for partially ionized reactive plasma in magnetic field." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4951853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhdanov, V. M., and A. A. Stepanenko. "Transport equations for partially ionized reactive plasma in magnetic field." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4952258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhdanov, V. M., and A. A. Stepanenko. "Transport phenomena in partially ionized molecular plasma in magnetic field." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shaikh, Dastgeer, G. P. Zank, M. Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet, and F. Pantellini. "Self-consistent Simulations of Plasma-Neutral in a Partially Ionized Astrophysical Turbulent Plasma." In TWELFTH INTERNATIONAL SOLAR WIND CONFERENCE. AIP, 2010. http://dx.doi.org/10.1063/1.3395827.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Partially ionized plasma"

1

Crockatt, Michael, and John Shadid. Development, Implementation, and Verification of Partially-Ionized Collisional Multifluid Plasma Models in Drekar. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1817837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pogorelov, Nikolai, and Ming Zhang. Collaborative Research: A Model of Partially Ionized Plasma Flows with Kinetic Treatment of Neutral Atoms and Nonthermal Ions. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1326403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pogorelov, Nikolai, Ming Zhang, Sergey Borovikov, Jacob Heerikhuisen, Gary Zank, Konstantin Gamayunov, and Phillip Colella. Collaborative Research: A Model of Partially Ionized Plasma Flows with Kinetic Treatment of Neutral Atoms and Nonthermal Ions. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1326821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kruger, C. H. Fundamental Processes in Partially Ionized Plasmas. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada207910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kruger, Charles H., and Christophe Laux. Fundamental Processes in Partially Ionized Plasmas. Fort Belvoir, VA: Defense Technical Information Center, November 1992. http://dx.doi.org/10.21236/ada259272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kruger, C. H., M. Mitchner, and S. A. Self. Fundamental Processes in Partially Ionized Plasmas. Fort Belvoir, VA: Defense Technical Information Center, May 1988. http://dx.doi.org/10.21236/ada198627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kruger, C. H., M. Mitchner, and S. A. Self. Fundamental Processes in Partially Ionized Plasmas. Fort Belvoir, VA: Defense Technical Information Center, March 1985. http://dx.doi.org/10.21236/ada160011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lawrence, Eric E., Hantao Ji, Masaaki Yamaada, and Jongsoo Yoo. Laboratory Study of Hall Reconnection in Partially Ionized Plasmas. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1062546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography