Academic literature on the topic 'Particle Energy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Particle Energy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Particle Energy"
da Silva, Mariana Vale, Victor Ferreira, and Carlos Pinho. "Determination of biomass combustion rate in a domestic fixed bed boiler." AIMS Energy 9, no. 5 (2021): 1067–96. http://dx.doi.org/10.3934/energy.2021049.
Full textFranji?, Siniša. "In Shortly about Energy and Energy Sources." Advances in Politics and Economics 4, no. 4 (October 25, 2021): p1. http://dx.doi.org/10.22158/ape.v4n4p1.
Full textZhao, Lihao, Helge I. Andersson, and Jurriaan J. J. Gillissen. "Interphasial energy transfer and particle dissipation in particle-laden wall turbulence." Journal of Fluid Mechanics 715 (January 9, 2013): 32–59. http://dx.doi.org/10.1017/jfm.2012.492.
Full textHirosawa, Fumie, Tomohiro Iwasaki, and Masashi Iwata. "Particle Impact Energy Variation with the Size and Number of Particles in a Planetary Ball Mill." MATEC Web of Conferences 333 (2021): 02016. http://dx.doi.org/10.1051/matecconf/202133302016.
Full textHirosawa, Fumie, Tomohiro Iwasaki, and Masashi Iwata. "Particle Impact Energy Variation with the Size and Number of Particles in a Planetary Ball Mill." MATEC Web of Conferences 333 (2021): 02016. http://dx.doi.org/10.1051/matecconf/202133302016.
Full textXU, YONGFU, and YIDONG WANG. "SIZE EFFECT ON SPECIFIC ENERGY DISTRIBUTION IN PARTICLE COMMINUTION." Fractals 25, no. 02 (April 2017): 1750016. http://dx.doi.org/10.1142/s0218348x17500165.
Full textWilliams, Sarah G. W., and David J. Furbish. "Particle energy partitioning and transverse diffusion during rarefied travel on an experimental hillslope." Earth Surface Dynamics 9, no. 4 (July 14, 2021): 701–21. http://dx.doi.org/10.5194/esurf-9-701-2021.
Full textDufner, D. C., S. Danczyk, and M. Wooldridge. "Characterization Of SiOx Smoke Particles by Electron Energy Loss Spectroscopy and Energy-Filtering Imaging." Microscopy and Microanalysis 5, S2 (August 1999): 638–39. http://dx.doi.org/10.1017/s1431927600016512.
Full textSchneiders, Lennart, Konstantin Fröhlich, Matthias Meinke, and Wolfgang Schröder. "The decay of isotropic turbulence carrying non-spherical finite-size particles." Journal of Fluid Mechanics 875 (July 22, 2019): 520–42. http://dx.doi.org/10.1017/jfm.2019.516.
Full textAleksandrin, S. Yu, A. M. Galper, L. A. Grishantzeva, S. V. Koldashov, L. V. Maslennikov, A. M. Murashov, P. Picozza, V. Sgrigna, and S. A. Voronov. "High-energy charged particle bursts in the near-Earth space as earthquake precursors." Annales Geophysicae 21, no. 2 (February 28, 2003): 597–602. http://dx.doi.org/10.5194/angeo-21-597-2003.
Full textDissertations / Theses on the topic "Particle Energy"
Grönqvist, Hanna. "Fluctuations in High-Energy Particle Collisions." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS155/document.
Full textWe study fluctuations that are omnipresent in high-energy particle collisions. These fluctuations can be either of either classical or quantum origin and we will study both. Firstly, we consider the type of quantum fluctuations that arise in proton-proton collisions. These are computable perturbatively in quantum field theory and we will focus on a specific class of diagrams in this set-up. Secondly, we will consider the fluctuations that are present in collisions between nuclei that can be heavier than protons. These are the quantum laws of nature that describe the positions of nucleons within a nucleus, but also the hydrodynamic fluctuations of classical, thermal origin that affect the evolution of the medium produced in heavy-ion collisions. The fluctuations arising in proton-proton collisions can be computed analytically up to a certain order in perturbative quantum field theory. We will focus on one-loop diagrams of a fixed topology. Loop diagrams give rise to integrals that typically are hard to evaluate. We show how modern mathematical methods can be used to ease their computation. We will study the relations among unitarity cuts of a diagram, the discontinuity across the corresponding branch cut and the coproduct. We show how the original integral corresponding to a given diagram can be reconstructed from the information contained in the coproduct. We expect that these methods can be applied to solve more complicated topologies and help in the computation of new amplitudes in the future. Finally, we study the two types of fluctuations arising in heavy-ion collisions. These are related either to the initial state or the intermediate state of matter produced in such collisions. The initial state fluctuations are experimentally observed to give rise to non-Gaussianities in the final-state spectra. We show how these non-Gaussianities can be explained by the random position and interaction energy of `sources' in the colliding nuclei. Furthermore, we investigate the effect of hydrodynamical noise in the evolution of the medium produced just after a collision. This medium behaves like a fluid with a very low viscosity, and so the corresponding evolution is hydrodynamical
Droubi, Mohamad Ghazi. "Monitoring particle impact energy using acoustic emission technique." Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2661.
Full textSchimann, Hubert C. R. "Force and Energy Measurement of Bubble-Particle Detachment." Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/9963.
Full textMaster of Science
Olvegård, Maja. "Emittance and Energy Diagnostics for Electron Beams with Large Momentum Spread." Doctoral thesis, Uppsala universitet, Högenergifysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-198080.
Full textDing, Ailin. "Particle Assisted Wetting." Doctoral thesis, Universitätsbibliothek Chemnitz, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200701494.
Full textWetting and de-wetting of surfaces by a liquid are fascinating and important phenomena in science and technology. Recently, it was discovered that particles can assist the wetting of a water surface by an oil, and a theory describing the principle behind particle assisted wetting was developed. In this thesis, the theory was experimentally investigated qualitatively and quantitatively by using two series of silica particles. The influence of the surface hydrophobicity of the particles on particle assisted wetting was investigated by a series of irregular shaped particles with varying hydrophobicity. By applying mixtures of particles and oil to a water surface, it was found that for the most hydrophilic particles, only lenses of pure oil formed, with the particles being submerged into the aqueous phase. The most hydrophobic particles helped to form patches of stable homogenous mixed layers composed of oil and particles. For particles with intermediate hydrophobicity, lenses and patches of mixed layers were observed. These three different observations verified that the hydrophobicity of the particle surface determines the wetting behaviour of the oil at the water surface. For the irregular shaped particles with unknown contact angles with liquid interfaces, no direct comparison to the theory was possible. To test the theory quantitatively, a series of spherical particles was synthesized and their surfaces were modified by ten kinds of silane coupling agents; then the experimental results were compared with the corresponding theoretical phase diagram. It indicated that the theory agrees at large with the experimental results. All scenarios of wetting layers taken into account in the theoretical description were observed. In the fine print, deviations from the theory were also observed. If the particles have similar affinities to air/oil and oil/water interfaces, the experimentally observed morphology of the wetting layers depends in addition on the surface pressure. It might therefore be necessary to extend the simple theoretical picture to take these observations into accounts
Webb, S. "Unusual effects in particle diffraction." Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234226.
Full textJiang, Min. "Energy based dissolution simulation using smoothed particle hydrodynamic sampling." Thesis, Bournemouth University, 2016. http://eprints.bournemouth.ac.uk/24744/.
Full textWilkason, Thomas Frederick Jr. "Exclusive cone jet algorithms for high energy particle colliders." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100326.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 59-62).
In this thesis, I develop an exclusive cone jet algorithm based on the principles of jet substructure and demonstrate its use for physics analyses at the Large Hadron Collider. Based on the event shape N-jettiness, this algorithm, called "XCone," partitions the event into a fixed number of conical jets of size RO in the rapidity-azimuth plane. This algorithm is designed to locate substructure independent of momentum, allowing accurate resolution of jets at both low and high energy scales. I present three potential analyses using XCone to search for heavy resonances, Higgs bosons, and top quarks at various momenta and show that it reconstructs these particles with efficiencies between 60% and 80% without any additional substructure techniques, and maintains this efficiency over a wide kinematic range. This algorithm provides many key advantages over traditional jet algorithms that make it appealing for use at the LHC and other high energy particle colliders.
by Thomas Frederick Wilkason, Jr.
S.B.
Bylin, Johan. "Analysis of a spin-particle tunnelling junction." Thesis, Uppsala universitet, Materialteori, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-254984.
Full textDetta projekt handlar om att analysera energispektrumet från en spinn-molekyl-tunnelkor-sning som består av molekyler instängda mellan två ledande metaller. När en kontinuerlig elektronström korsar tunnelkorsningen så kan molekylerna växelverka med varandra via en indirekt kraft kallad utbytesinteraktion, och de utbytesinteraktioner som är relevanta i denna uppställning beskrivs av de så kallade Heisenberg-, Ising- och Dzyaloshinski-Moriya-modellerna. Molekylerna kan också växelverka med sig själva anisotropt och om det finns ett externt magnetfält så tillkommer ytterligare en interaktionsterm. Målet för detta projekt är att se hur alla dessa spinnbidrag påverkar det slutliga energispektrumet under variation av korsningens kemiska potential och spänningen mellan metalledarna. Projektet är teoretiskt lagt på så sätt att modellerna är analytiskt anpassade för ett begränsat scenario samt att de är numeriskt beräknade så att energispektrumet kan plottas i grafer och analyseras. Modellerna är begränsade för molekyler av samma spinn och är approximerade så att endast närmsta-granne-interaktioner är beaktade. Resultaten är uppdelade i både analytiskt framtagna energivärden samt numeriskt beräknande energinivåer och båda visar att det finns kritiska värden på variationsparametrarna som automatiskt delar grundtillståndet för systemet samt att självinteraktionerna ytterligare kan dela det degenererade grundtillståndet. Ett möjligt utfall av dessa resultat är att de kan användas till att kontrollera systemets magnetiska ordning på så sätt att det antingen är låst i en antiferromagnetisk konfiguration eller med enkelhet kan mixas genom att ändra den kemiska potentialen eller spänningen mellan metalledarna.
Blanco-Pillado, José Juan. "Topological defects and ultra-high energy cosmic rays /." Thesis, Connect to Dissertations & Theses @ Tufts University, 2001.
Find full textAdviser: Alexander Vilenkin. Submitted to the Dept. of Physics. Includes bibliographical references (leaves 108-114). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Books on the topic "Particle Energy"
Barone, Vincenzo, and Enrico Predazzi. High-Energy Particle Diffraction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04724-8.
Full textBarone, Vincenzo. High-Energy Particle Diffraction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.
Find full textFaccioli, Pietro, and Carlos Lourenço. Particle Polarization in High Energy Physics. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-08876-6.
Full text1954-, Foster B., and Institute of Physics (Great Britain). High Energy Particle Physics Group, eds. Topics in high energy particle physics. Bristol: Institute of Physics, 1988.
Find full textEdwards, D. A. An introduction to the physics of high energy accelerators. New York: Wiley, 1993.
Find full textMelvin, Month, Dahl Per F. 1932-, Dienes Margaret, and Symposium on the State of High Energy Physics (1983 : Brookhaven National Laboratory and State University of New York at Stony Brook), eds. The state of high energy physics. New York: American Institute of Physics, 1985.
Find full text1968-, Qin Hong, ed. Physics of intense charged particle beams in high energy accelerators. London: Imperial College Press, 2001.
Find full textC, Rana N., United States. National Aeronautics and Space Administration., and Fermi National Accelerator Laboratory, eds. Ultrahigh-energy particle flux from cosmic strings. Batavia, IL: Fermi National Accelerator Laboratory, 1990.
Find full textC, Rana N., United States. National Aeronautics and Space Administration., and Fermi National Accelerator Laboratory, eds. Ultrahigh-energy particle flux from cosmic strings. Batavia, IL: Fermi National Accelerator Laboratory, 1990.
Find full textNational Research Council (U.S.). Committee on Elementary-Particle Physics., ed. Elementary-particle physics: Revealing the secrets of energy and matter. Washington, D.C: National Academy Press, 1998.
Find full textBook chapters on the topic "Particle Energy"
Hanagaki, Kazunori, Junichi Tanaka, Makoto Tomoto, and Yuji Yamazaki. "Particle Identification." In Experimental Techniques in Modern High-Energy Physics, 69–114. Tokyo: Springer Japan, 2022. http://dx.doi.org/10.1007/978-4-431-56931-2_6.
Full textCourvoisier, Thierry J. L. "Particle Acceleration." In High Energy Astrophysics, 111–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30970-0_9.
Full textMuvdi, Bichara B., Amir W. Al-Khafaji, and J. W. McNabb. "Particle Kinetics: Energy." In Dynamics for Engineers, 191–249. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1914-9_3.
Full textSegre, Gino C. "Low Energy Physics from Superstrings." In Particle Physics, 105–70. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1877-4_6.
Full textSonderegger, Peter. "Physics with High Energy Ion Beams." In Particle Physics, 79–95. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5790-2_4.
Full textHanagaki, Kazunori, Junichi Tanaka, Makoto Tomoto, and Yuji Yamazaki. "Basic Idea of Measurements in Particle Collisions." In Experimental Techniques in Modern High-Energy Physics, 7–20. Tokyo: Springer Japan, 2022. http://dx.doi.org/10.1007/978-4-431-56931-2_2.
Full textDi Mitri, Simone. "Low Energy Accelerators." In Fundamentals of Particle Accelerator Physics, 25–36. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07662-6_2.
Full textDi Mitri, Simone. "High Energy Accelerators." In Fundamentals of Particle Accelerator Physics, 55–117. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07662-6_4.
Full textOtto, Thomas. "Risks and Hazards of Particle Accelerator Technologies." In Safety for Particle Accelerators, 5–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57031-6_2.
Full textBarone, Vincenzo, and Enrico Predazzi. "Introduction." In High-Energy Particle Diffraction, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04724-8_1.
Full textConference papers on the topic "Particle Energy"
Chen, Huajun, Yitung Chen, Hsuan-Tsung Hsieh, and Nathan Siegel. "CFD Modeling of Gas Particle Flow Within a Solid Particle Solar Receiver." In ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99044.
Full textGaisser, T. K. "Origin of high energy galactic cosmic rays." In Particle astrophysics. AIP, 1990. http://dx.doi.org/10.1063/1.39149.
Full textChen, Huajun, Yitung Chen, Hsuan-Tsung Hsieh, Greg Kolb, and Nathan Siegel. "Numerical Investigation on Optimal Design of Solid Particle Solar Receiver." In ASME 2007 Energy Sustainability Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/es2007-36134.
Full textMcNutt, Jr., Ralph L., Donald G. Mitchell, Edwin P. Keath, Nicholas P. Paschalidis, Robert E. Gold, and Richard W. McEntire. "Compact particle detector for low-energy particle measurements." In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, edited by David M. Rust. SPIE, 1996. http://dx.doi.org/10.1117/12.259708.
Full textSiegel, Nathan, Greg Kolb, Kibum Kim, Vijayarangan Rangaswamy, and Samir Moujaes. "Solid Particle Receiver Flow Characerization Studies." In ASME 2007 Energy Sustainability Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/es2007-36118.
Full textWang, J. W., M. A. van der Hoef, J. A. M. Kuipers, Liejin Guo, D. D. Joseph, Y. Matsumoto, Y. Sommerfeld, and Yueshe Wang. "The role of particle-particle interactions in bubbling gas-fluidized beds of Geldart A particles: A discrete particle study." In THE 6TH INTERNATIONAL SYMPOSIUM ON MULTIPHASE FLOW, HEAT MASS TRANSFER AND ENERGY CONVERSION. AIP, 2010. http://dx.doi.org/10.1063/1.3366461.
Full textGress, J., Y. Lu, A. Anagnostopoulos, J. Kochocki, J. Olson, J. Poirier, S. Mikocki, and A. Trzupek. "Grand particle identification." In High Energy Gamma−Ray Astronomy. AIP, 1991. http://dx.doi.org/10.1063/1.40302.
Full textCarr, John. "Particle astrophysics." In International Europhysics Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2001. http://dx.doi.org/10.22323/1.007.0300.
Full textYue, Lindsey, Nathan Schroeder, and Clifford K. Ho. "Particle Flow Testing of a Multistage Falling Particle Receiver Concept: Staggered Angle Iron Receiver (STAIR)." In ASME 2020 14th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/es2020-1666.
Full textLenters, Geoffrey, and James A. Miller. "Charged particle diffusive transport." In High energy solar physics. AIP, 1996. http://dx.doi.org/10.1063/1.50986.
Full textReports on the topic "Particle Energy"
Albert, Andrea. High-energy Particle Physics -- In Space! Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1469489.
Full textNitz, David F., and Brian E. Fick. Studies of High Energy Particle Astrophysics. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1145912.
Full textRafelski, J. Energy related applications of elementary particle physics. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/6694614.
Full textKeung, Wai Yee. Studies In Theoretical High Energy Particle Physics. Office of Scientific and Technical Information (OSTI), July 2017. http://dx.doi.org/10.2172/1369642.
Full textAratyn, H., L. Brekke, Wai-Yee, Panigrahi, P. Keung, and U. Sukhatme. Studies in theoretical high energy particle physics. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6312025.
Full textHughes, V. W. Medium Energy Particle Physics - Muonium/RHIC - SPIN. Office of Scientific and Technical Information (OSTI), May 2003. http://dx.doi.org/10.2172/836598.
Full textBarker, A. R., J. P. Cumalat, S. P. de Alwis, T. A. DeGrand, W. T. Ford, K. T. Mahanthappa, U. Nauenberg, P. Rankin, and J. G. Smith. Elementary particle physics and high energy phenomena. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/7278109.
Full textBhattacharjee, P. Ultrahigh-energy particle flux from cosmic strings. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6966653.
Full textHeinz, M. Improving High-Energy Particle Detectorswith Machine Learning. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1670544.
Full textAratyn, H., L. Brekke, Wai-Yee Keung, and U. Sukhatme. Studies in theoretical high energy particle physics. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5813351.
Full text