Academic literature on the topic 'Particle filled composites'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Particle filled composites.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Particle filled composites"

1

He, Hong, Renli Fu, Yanchun Han, Yuan Shen, and Deliu Wang. "High Thermal Conductive Si3N4 Particle Filled Epoxy Composites With a Novel Structure." Journal of Electronic Packaging 129, no. 4 (April 4, 2007): 469–72. http://dx.doi.org/10.1115/1.2804097.

Full text
Abstract:
Traditionally, large quantities of ceramic fillers are added to polymers in order to obtain high thermally conductive polymer composites, which are used for electronic encapsulants. However, that is not cost effective enough. In this study, Si3N4 particle filled epoxy composite with a novel structure was fabricated by a processing method and structure design. Epoxy resin used in particle form was obtained by premixing and crushing. Different particle sizes were selected by sieving. High thermal conductivity was achieved at relative low volume fraction of the filler. The microstructure of the composites indicates that a continuous network is formed by the filler, which mainly completes the heat conduction. Thermal conductivity of the composites increases as the filler content increases, and the samples exhibit a highest thermal conductivity of 1.8W∕mK at 30% volume fraction of the filler in the composites using epoxy particles of 2mm. The composites show low dielectric constant and low dielectric loss.
APA, Harvard, Vancouver, ISO, and other styles
2

Amarababu, B., and V. Pandu Rangadu. "Synthesis and Characterization of Mineral Wollastonite Particulate Filled Vinyl-Ester Resin Composites." International Letters of Chemistry, Physics and Astronomy 37 (August 2014): 91–102. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.37.91.

Full text
Abstract:
In the present research presents influence of coupling agent 1 % triethoxymethyl silane sprayed on to the wollastonite particulate powder before it dispersed into the vinylester/composites. Firstly two different composites were developed in which wollastonite is filled with vinylester resin and same wollastonite was sprayed with coupling agent 1 % triethoxymethyl silane then filled with vinylester resin. The particle functionalization with a bi-functional coupling agent 1 % triethoxymethyl silane was observed to have a significant effect on the curing process and subsequent physical properties of the composites. Wollastonite functionalization favors the composite fabrication with a lower curing temperature as compared to the as-received particle filled vinyl ester resin composites. Thermogravimetric analysis showed an increased thermo-stability in the particles functionalized filled vinyl ester resin composites as compared to the unmodified particle filled counterparts. The uniform particle dispersion and the chemical bonding between filler and vinyl ester resin matrix were found to contribute to the increased thermal stability and enhanced tensile strength and modulus.
APA, Harvard, Vancouver, ISO, and other styles
3

Gregorova, Adriana, Michal Machovsky, and Rupert Wimmer. "Viscoelastic Properties of Mineral-Filled Poly(lactic acid) Composites." International Journal of Polymer Science 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/252981.

Full text
Abstract:
Poly(lactic acid) was filled with 20 wt% of the three mineral fillers Mica, Zeolite, and Vansil, differing in the particle shape and surface area. Viscoelastic properties of unfilled and filled composites were investigated via dynamic mechanical analysis, while filler and fracture surface morphology of the composites was analysed through scanning electron microscopy. Results demonstrate the relationships between viscoelastic damping behaviour of filled PLA composites and the filler distribution in the PLA matrix. Both damping reduction and scanning electron microscope analysis revealed that Zeolite was better distributed in the poly(lactic acid) matrix than the other used fillers Mica and Vansil. The interfacial filler/matrix adhesion has again proved to be the key factor determining thermal and mechanical properties of reinforced composite material.
APA, Harvard, Vancouver, ISO, and other styles
4

Ren, Xianjie, Yang Geng, Alfred B. O. Soboyejo, and Katrina Cornish. "REINFORCED MECHANICAL PROPERTIES OF FUNCTIONALIZED SILICA AND EGGSHELL FILLED GUAYULE NATURAL RUBBER COMPOSITES." Rubber Chemistry and Technology 92, no. 4 (October 1, 2019): 687–708. http://dx.doi.org/10.5254/rct.19.81485.

Full text
Abstract:
ABSTRACT Replacing synthetic fillers, which are commonly used to reinforce rubber, with bio-fillers has potential to improve the sustainability of rubber products. Eggshell (ES) (a powder with a maximum particle diameter of 9.4 μm and a median of 1.1 μm) was added to guayule natural rubber (GNR) composites to partially or fully replace bifunctionally silanized, high surface area, precipitated silica (BSS). The mixing energy consumption, mechanical properties, cross-link density, filler dispersion and final particle size, fracture surface morphology, and dyeability of GNR composites were characterized. ES filler effectively reinforced vulcanized GNR compared with unfilled vulcanized GNR. Energy consumption, modulus at 300% strain (M300), and hardness generally decreased with increasing ES fraction (decreasing BSS), but tensile strength, gel fraction, and elongation at break increased even where cross-link density and M300 were similar. Thus, composite cross-link density was not solely influenced by silane content as the ratio and loading of ES and BSS changed. The production of the composites reduced particle size to submicron size. Even a small amount of ES improved the dispersion of BSS filler particles in the composites and hence the mechanical properties. The contributions of the two fillers to the composite properties are explained. Linear mixed models were built to predict the mechanical properties of a broader range of GNR–ES–BSS composites, and r2 (the quality of the model predictability) was above 0.9 for all models. ES filled GNR, with or without BSS, can be dyed different colors for specific applications. The lower-cost, renewability, dyeability, and excellent performance of ES–GNR composites addresses the need for sustainable rubber products with low carbon footprint.
APA, Harvard, Vancouver, ISO, and other styles
5

Bek, Marko, Joamin Gonzalez-Gutierrez, Christian Kukla, Klementina Pušnik Črešnar, Boris Maroh, and Lidija Slemenik Perše. "Rheological Behaviour of Highly Filled Materials for Injection Moulding and Additive Manufacturing: Effect of Particle Material and Loading." Applied Sciences 10, no. 22 (November 11, 2020): 7993. http://dx.doi.org/10.3390/app10227993.

Full text
Abstract:
Within this paper, we are dealing with a mixture of thermoplastic polymer that is filled with inorganic fillers at high concentrations up to 60 vol.%. A high number of particles in the compound can substantially change the rheological behaviour of the composite and can lead to problems during processing in the molten state. The rheological behaviour of highly filled materials is complex and influenced by many interrelated factors. In the present investigation, we considered four different spherical materials: steel, aluminium alloy, titanium alloy and glass. Particles with similar particle size distribution were mixed with a binder system at different filling grades (30–60 vol.%). We showed that the rheological behaviour of highly filled materials is significantly dependent on the chemical interactions between the filler and matrix material. Moreover, it was shown that the changes of the particle shape and size during processing lead to unexpected rheological behaviour of composite materials as it was observed in the composites filled with glass beads that broke at high contents during processing.
APA, Harvard, Vancouver, ISO, and other styles
6

Xue, Peng Jie, Shi Lin Liu, and Jian Jiang Bian. "Effects of polymorphic form and particle size of SiO2 fillers on the properties of SiO2–PEEK composites." Journal of Advanced Dielectrics 11, no. 04 (August 2021): 2150021. http://dx.doi.org/10.1142/s2010135x21500211.

Full text
Abstract:
The effects of polymorphic form and particle size of SiO2 fillers on the dielectric, mechanical and thermal properties of SiO2–Polyetheretherketone (SiO2–PEEK) composites were investigated in this paper. Strong low frequency (<10Hz) Debye-like dielectric dispersions could be observed for all samples. The dielectric permittivity at high frequencies of the composite exhibits little morphology or particle size-sensitive characteristics of the SiO2 fillers. All the composites obtained in this case demonstrate the dielectric permittivities of [Formula: see text] at high frequencies. The crystalline [Formula: see text]-cristobalite filled composite exhibits lower dielectric loss and mechanical strength, but larger thermal expansion coefficient and thermal conductivity, compared with the similar particle sized amorphous SiO2 filled one. The crystalline [Formula: see text]-quartz filled composite demonstrates the lowest mechanical strength and highest dielectric loss. An increase in particle size of the spherical fused silica fillers decreases the dielectric loss, while increases the thermal conductivity of the composite. The flexural strength of the composite reaches the maximum value of 113 MPa when the particle size of spherical SiO2 filler is [Formula: see text]m. Particle packing by combining optimal amounts of differently sized spherical fused silica fillers leads to a substantial improvement of mechanical strength (153MPa) coupled with reasonable dielectric and thermal properties due to the synergic effect (dielectric permittivity ([Formula: see text] = 3.35, dielectric loss (tan[Formula: see text] @10 GHz, thermal conductivity ([Formula: see text] = 0.74 W/m*k ([Formula: see text]C), coefficient of thermal expansion ([Formula: see text]C and relative density ([Formula: see text]) = 99.72%).
APA, Harvard, Vancouver, ISO, and other styles
7

Cavdar, Kadir, and Mahmut Bingol. "Investigation of Mechanical Properties of Basalt Particle-Filled SMC Composites." International Journal of Polymer Science 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/1231606.

Full text
Abstract:
Basalt particles have been investigated as a novel additive for the production of glass fibre reinforced composite using sheet moulding compound (SMC) method. Compared to the CaCO3that are widely used as filler in the SMC composite, the resulting composites exhibit improved mechanical properties. The tensile strength increased by approximately 15%, whereas the flexural strength was enhanced by 8% in SMC composites prepared by basalt particles. Examination of the surface morphology and interfacial debonding of the specimens is also performed via scanning electron microscopy. Superior strength properties are observed in the basalt particle-reinforced composites compared to those with the CaCO3fillers.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Qing, and Xiao Xiang Yang. "Numerical Simulation for Mechanical Behavior of Carbon Black Filled Rubber Composites Based on Cubic Representative Volume Element." Key Engineering Materials 627 (September 2014): 285–88. http://dx.doi.org/10.4028/www.scientific.net/kem.627.285.

Full text
Abstract:
Based on the connection between macroscopic and microscopic characteristics of carbon black filled rubber composites, Representative Volume Element (RVE) containing one single particle has been proposed, and three dimensional cubic RVE has been established to study and analyze the macroscopic mechanical properties of the carbon black filled rubber composites by the micromechanical finite element method. The research shows that the stiffness of the composite is increased with the increase of the volume fraction of carbon black filler particles. By comparison, it is shown that the results of the predictions on the stress-strain behavior of the rubber composite made with the cubic RVE numerical models containing one spherical particle are in good agreement with the experimental results for seven and fifteen percent carbon black filler content, but there is some discrepancy between them for twenty-five percent carbon black filler content. The results of the predictions on the stress-strain behavior of the rubber composite made with the cubic RVE numerical models containing one cubical particle are higher than the experimental results, and the higher the carbon black filler content, the greater is the discrepancy between them.
APA, Harvard, Vancouver, ISO, and other styles
9

Kwon, Soon Chul, Tadaharu Adachi, Wakako Araki, and Akihiko Yamaji. "Effect of Particle Size on Fracture Toughness of Spherical-Silica Particle Filled Epoxy Composites." Key Engineering Materials 297-300 (November 2005): 207–12. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.207.

Full text
Abstract:
We investigated the particle size effects on the fracture toughness of epoxy resin composites reinforced with spherical-silica particles. The silica particles had different mean particle diameters of between 1.56 and 0.24µm and were filled with bisphenol A-type epoxy resin under different mixture ratios of small and large particles and a constant volume fraction for all particles of 0.30. As the content with the added smaller particle increased, the viscosity of each composite before curing remarkably increased. We conducted the single edge notched bending test (SENB) to measure the mode I fracture toughness of each composite. The fracture surface with the small particle content exhibited more rough areas than the surface with larger particles. The fracture toughness increased below the small particle content of 0.8 and saturated above it. Therefore, near the small particle content of 0.8, the composite had a relatively low viscosity and a high fracture toughness.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Huan, Zhiyi Zhang, Guizhe Zhao, Yaqing Liu, Ye Li, Jinquan Shou, and Lizhong Bai. "INFLUENCE OF FILLERS ON SEMI-EFFICIENT VULCANIZED NATURAL RUBBER: DYNAMIC PROPERTIES AND HEAT BUILDUP." Rubber Chemistry and Technology 88, no. 3 (September 1, 2015): 412–20. http://dx.doi.org/10.5254/rct.15.85932.

Full text
Abstract:
ABSTRACT Carbon black and silica have long been recognized as reinforcing fillers, but their effect on the dynamic properties and heat buildup of vulcanizates is rarely reported. Therefore, natural rubber composites filled by carbon black with different particle size and silica were prepared. The Payne effect and heat buildup progressively decrease with an increase of carbon black particle size because of weaker filler network structure and better dispersion, the N754 filled sample in particular shows the lowest value, only 4.7 °C. The tensile strength and tear strength of composites all increase with the reducing carbon black particle size. SiO2-filled composites exhibit obvious Payne effects and inferior mechanical properties; at high strains (&gt;10%), tan δ of SiO2-filled composites surpasses all that of carbon black–filled composites, due to the surface silanol groups on the silica surface and due to the decreased cross-link density.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Particle filled composites"

1

Trautmann, Radoslav. "Effect of Composition on Adhesion Strength Between Particle Filled Composite and Fiber Reinforced Composite." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2010. http://www.nusl.cz/ntk/nusl-233308.

Full text
Abstract:
Disertační práce se zabývala vlivem adheze mezi vláknovým (FRC) a částicovým (PFC) kompozitem a složením obou komponent na mechanické vlastnosti a způsob porušování modelových bi-materiálových kompozitních těles při statickém namáhání. Zkoumán byl také vliv způsobu přípravy bi-materiálového kompozitního tělesa na pevnost adheze mezi jeho kompozitními komponentami. K hodnocení mechanických vlastností bi-materiálových PFC/FRC těles byl použit jak 3 tak 4-bodový ohybový test za pokojové teploty a relativní vlhkosti 70%. Modifikovaný vytrhávací test byl použit k měření smykové pevnosti adheze mezi vláknovým a částicovým kompozitem. Tyto výsledky byly korelovány s výsledky ze strukturní a fraktografické analýzy (TGA, SEM). Experimentální data byla poté analyzována pomocí existujících mikromechanických modelů a byl nalezen vztah mezi tuhostí modelových bi-materiálových těles, složením a geometrií uspořádání jejich komponent a pevností adheze mezi těmito komponentami. Na základě těchto výsledků byl navržen optimální způsob vrstvení a přípravy PFC/FRC bimateriálových těles. Navržené postupy byly použity k přípravě a pre-klinickým testům nosných konstrukcí zubních můstků.
APA, Harvard, Vancouver, ISO, and other styles
2

Marquina, Edgar Alberto. "Use of Dynamic Mechanical Testing, WAXD and SEM Image Analysis to Study the Properties of Polypropylene/Calcium Carbonate Nanocomposites." University of Akron / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=akron1269363578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gentieu, Timothée. "Development of filled polymers for the replacement of ceramics used as ballistic protection layer." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0419.

Full text
Abstract:
Les matériaux céramiques présentent généralement des propriétés mécaniques très intéressantes pour la réalisation de blindages. Ce sont des matériaux très durs et pourtant légers. Les plaques de blindages en céramique sont classiquement mises en forme par pressage à haute température de poudres, ce qui limite la taille et la forme des réalisations tout en impliquant un coût élevé. Une alternative pour produire ces pièces est le moulage d’un composite constitué de particules de céramiques dans une matrice époxy. Ce procédé permet de réduire le coût des pièces tout en autorisant des géométries plus complexes et des dimensions plus importantes.Le comportement mécanique de ce type de matériau dépend de multiples paramètres de conception : propriétés mécaniques des constituants (matrice polymère et particules céramiques), proportion volumique des deux phases, taille et distribution spatiale des particules ou encore l’adhésion entre les constituants. L’objectif de la thèse est d’évaluer l’influence de ces paramètres sur les propriétés d’usage du matériau. Pour ce faire, une analyse multi-échelle du matériau sous sollicitations quasi-statique et dynamique est réalisée.Plus précisément, les propriétés statiques et dynamiques du composite à renforts particulaires ont été déterminées pour différentes combinaisons de ces paramètres de conception. En particulier, le mécanisme de décohésion particule/matrice a été spécifiquement étudié. Les approches de Modèles de Zone Cohésive (CZM) et de Mécanique de la Rupture Finie (FFM) ont été utilisées pour modéliser ce phénomène et un fort effet de taille des particules a été observé
Ceramics have extensively been used for ballistic protection in the last decades. The combination of their mechanical properties makes them very interesting for armouring. Indeed, they exhibit a high hardness, large compression strength, high stiffness and low density. Ceramic armouring plates are commonly manufactured through a sintering process, where ceramic powders are pressed at high temperatures. This manufacturing process tends to limit the size and shape of components and imparts high costs. On the other hand, moulding using a polymer matrix composite provides an alternative process for developing lower cost parts whilst accommodating increased complexity of geometry and size.However, the mechanical behaviour of such a material is not completely known and depends on multiple design parameters: the mechanical properties of the phases, their volume fraction, the size and spatial distributions of the particles, and the adhesion between the components. The objective of the thesis is to evaluate the influence of the main morphological parameters on the overall mechanical properties, emphasising the influence of the particle/matrix adhesion. To do so, both numerical and experimental multiscale analyses of the material under quasi-static and dynamic loadings were carried out.More precisely, static and dynamic properties of the particle-reinforced composite have been determined for different combinations of the design variables. In particular, attention has been dedicated to the particle/matrix decohesion mechanism. Cohesive zone models (CZM) and Finite Fracture Mechanics (FFM) approaches were used to model this phenomenon and a strong effect of the particle size on debonding was observed
APA, Harvard, Vancouver, ISO, and other styles
4

Ibarra, Jonatanh José. "Vliv složení mezivrstvy na pevnost adhezního spoje mezi vláknovým a částicovým kompozitem." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2010. http://www.nusl.cz/ntk/nusl-216635.

Full text
Abstract:
Hlavním cílem této práce je studium aktuálního problému adheze mezi kompozitními materiály, a určení vlivu složení mezivrstvy v pevnosti adhezivního spoje mezi vláknové (FRC) a částicové (PFC) kompozity, používané ve stomatologii. FRC tyčinky byly vytvořené na bázi komerční dimetakrylatové pryskyřice a skleněných S vláken. PFC byl vytvořen ze směsi pryskyřic (bis-GMA a PEGDMA), plněných drceným barnatým sklem. Celkově bylo připraveno a vyzkoušeno 84 vzorků. Vzorky byly rozdělené do pěti hlavních skupin. První skupina byla vytvořena ze série vzorků bez mezivrstvy. Zbylé čtyři skupiny byly rozděleny dle složení mezivrstvy (tloušťky a druhu pryskyřic). Částicové kompozity vzorků se lišily obsahem plniva (0, 10, 40 hm %). FRC tyčinky byly stejné pro všechny vzorky. Univerzální testovací přístroj ZWICK Z010 byl použit k zjištění smykové pevnosti adhezivního spoje všech vzorků. Rastrovací elektronový mikroskop byl použít k pozorování místa porušení. Ze získaných výsledků vyplívá, že s přidáváním mezivrstvy mezi vláknovým a částicovým narůstá smyková pevnost spoje. Důležitost těchto výsledků je způsobená tím, že v posledních letech použití těchto materiálů ve stomatologii narůstá a adheze zůstává jeden z hlavních problémů při klinické praxi.
APA, Harvard, Vancouver, ISO, and other styles
5

Šedivý, Zbyněk. "Pokročilé vrstevnaté kompozity pro stomatologické aplikace." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2013. http://www.nusl.cz/ntk/nusl-233372.

Full text
Abstract:
Disertační práce se zabývá mechanickou odezvou vrstevnatých kompozitů pro stomatologické aplikace. Různé skladby vrstev a různé částicové a vláknové kompozity jsou studovány v tříbodovém ohybu za pokojové teploty. Tyto výsledky jsou korelovány s výstupy dynamické termomechanické analýzy (DMTA) a optické analýzy (vysokorychlostní video záznam, SEM). Exeprimentální data byla použita pro srovnání s výsledky analytických a numerických modelů s cílem určit nejvhodnější model pro predikci základních mechanických vlastností vrstevnatých kompozitů. Na základě těchto analýz jsou navržena základní pravidla pro klinické použití vrstevnatých kompozitů ve stomatologických aplikacích jako jsou minimálně invazivní můstky nebo stabilizační dlahy.
APA, Harvard, Vancouver, ISO, and other styles
6

Ferranti, Louis Jr. "Mechanochemical Reactions and Strengthening in Epoxy-Cast Aluminum Iron-Oxide Mixtures." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19722.

Full text
Abstract:
This investigation is focused on the understanding of mechanical and chemical reaction behaviors of stoichiometric mixtures of nano- and micro-scale aluminum and hematite (Fe2O3) powders dispersed in epoxy. Epoxy-cast Al+Fe2O3 thermite composites are an example of a structural energetic material that can simultaneously release energy while providing structural strength. The structural and energetic response of this material system is investigated by characterizing the mechanical behavior under high-strain rate and shock loading conditions. The mechanical response and reaction behavior are closely interlinked through deformation characteristics. It is, therefore, desirable to understand the deformation behavior up to and beyond failure and establish the necessary stress and strain states required for initiating chemical reactions. The composite s behavior has been altered by changing two main processing parameters; the reactants particle size and the relative volume fraction of the epoxy matrix. This study also establishes processing techniques necessary for incorporating nanometric-scale reactants into energetic material systems. The mechanochemical behavior of epoxy-cast Al+Fe2O3 composites and the influence of epoxy volume fraction have been evaluated for a variety of loading conditions over a broad range of strain rates, which include low-strain rate or quasistatic loading experiments (10-4 to 10-2 1/s), medium-strain rate Charpy and Taylor impacts (103 to 104 1/s), and high-strain rate parallel-plate impacts (105 to 106 1/s). In general, structural strength and toughness have been observed to improve as the volume fraction of epoxy decreases, regardless of the loading strain rate regime explored. Hugoniot experiments show damage occurring at approximately the same critical impact stress for compositions prepared with significantly different volume fractions of the epoxy binder phase. Additionally, Taylor impact experiments have indicated evidence for strain-induced chemical reactions, which subject the composite to large shear accompanied by temperature increase and associated softening, preceding these reactions. Overall, the work aims to establish an understanding of the microstructural influence on mechanical behavior and chemical reactivity exhibited by epoxy-cast Al+Fe2O3 materials when exposed to high stress and high-strain loading conditions. The understanding of fundamental aspects and the results of impact experiment measurements provide information needed for the design of structural energetic materials.
APA, Harvard, Vancouver, ISO, and other styles
7

Brunetti, Lucia. "Electrospinning of PHAs composites filled with bioactive glass particles." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17525/.

Full text
Abstract:
The use of composite materials, especially for the development of scaffolds, is having a great impact in the biomedical field. Every day thousands of surgical procedures are performed to replace or repair tissue that has been damaged through disease or trauma. The developing field of tissue engineering (TE) aims to regenerate damaged tissues by combining cells from the body with highly porous biomaterials scaffold, which act as templates for tissue regeneration, to guide the growth of new tissue. Consequently, there are a lot of researches focused on the development of new materials that must fulfill mandatory requirements such as biocompatibility, biodegradability, bioresorbability and adequate mechanical features. Scaffolds play a key role in the field of TE, thus they provide a healthy environment for cells attachment, differentiation, proliferation, and migration. Therefore, according to the native tissue, the mechanical and physiological characteristics of the biomaterials used for scaffolding are expected to be similar. In this work, electrospun fibers will be realized by investigating an innovative composition of the homopolymer Poly(3-hydroxybutyrate) (PHB) and the copolymer Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) for what regards the polymeric matrix, and the latter will be filled with bioactive glasses, in order to realize a composite material suitable for biomedical applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Huang, Huan Yao, and barbar0324@gmail com. "The preparation and characterization of polypropylene-compatibilizer-filler composites." RMIT University. Applied Sciences, 2010. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20100218.101808.

Full text
Abstract:
Polypropylene (PP) composites includ a mineral filler, though they can be enhanced by blending with an elastomer. Blending rigid fillers with PP increased strength while decreasing toughness. Blending soft elastomers with PP decreased strength while increasing toughness. PP-elastomer-filler ternary composites offer synergism because the increase of strength due to filler may compensate the loss of strength due to the elastomer. Two morphologies were identified, separated elastomer and filler particles in PP, and filler particles encapsulated by elastomer in PP. Interaction between filler and PP matrix are proposed to increase with the addition of polar elastomers when encapsulated morphology is formed, leading to enhanced mechanical properties. PP-elastomer-filler blended tapes were prepared via single-screw extrusion. Annealing was performed after cooling the tapes, and this combination proved to increase the modulus. Characterization of the composites was carri ed out using thermogravimetry, dynamic-force thermomechanometry, modulated-force thermomechanometry, and Fourier transform infrared imaging. Incorporation of polysiloxane elastomer increased the mobility of PP during extrusion. Elongation at break increased with increasing polysiloxane content, while the tensile modulus was slightly decreased. The silica core within the polysiloxane particles provided an additional strength enhancement. Polar elastomers aided binding between PP and fillers, while enhancing strength and toughness. Glass transition temperature and segmental motion activation energy was shifted to higher temperature with addition of elastomer and filler, including kaolin and talc.
APA, Harvard, Vancouver, ISO, and other styles
9

Aronow, Roger Lockwood. "Toughening mechanisms in composites of miscible polymer blends with rigid filler particles." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35520.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2006.
Vita.
Includes bibliographical references (leaves 97-98).
Fillers are often added to polymers improve stiffness at the cost of reduced toughness, but this tradeoff is not universal. Well-dispersed microscopic particles have been shown to improve toughness and stiffness simultaneously in some cases. The effect depends on interparticle distance as well as interfacial adhesion. This type of toughening has been more successful in semicrystalline than in amorphous systems. An amorphous polymer blend was chosen to elucidate the effect of matrix properties on the toughening mechanism. The ternary blend of PMMA, PVC, and DOP (a common plasticizer) was characterized using TEM, and was found to be miscible over much of the PVC-rich domain. The blend Tg's fit well to an empirical model, which was used to predict a constant-Tg ([approx.] 40°C) blend series. Mechanical testing showed a wide, systematic variation in properties among these blends, although all were brittle in tension. The blend 90% PVC / 10% DOP was mixed with barium sulfate filler and evaluated for toughness in slow tension. In general, the composites showed decreasing toughness with increasing filler content. However, several specimens at 5 vol% filler exhibited a large increase in ductility and toughness ([approx.] 19-fold).
(cont.) SEM examination of tough specimens revealed several important findings: (1) Filler is present both as micron-scale agglomerates and as well dispersed particles. (2) Well-dispersed particles remain bonded to the matrix even for large deformations. (3) Filler agglomerates are prone to debonding and internal fracture, creating void space and enabling deformation. Base blend properties significantly affect the response to filler. The blend 8% PMMA / 80% PVC / 12% DOP showed small increases in ductility for 5 and 10 vol% filler, with the best result being a 10 vol% specimen showing a 6-fold toughness increase over the neat-blend average. This specimen showed similar microscopic behavior to the 90/10 blend, i.e. agglomerate debonding and fracture, but to a lesser degree. The blend 16% PMMA / 70% PVC / 14% DOP, showed no significant toughening. Also investigated were high-Tg ([approx.] 70°C) blends, which were brittle and became weaker with filler, and low-Tg ([approx.] 30°C) blends, which were intrinsically ductile and were not toughened by filler.
by Roger Lockwood Aronow.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
10

MURUGESAN, SURESH. "IN SITU PREPARATION AND STRUCTURE - PROPERTY STUDIES OF FILLER PARTICLES IN POLY(DIMETHYLSILOXANE) ELASTOMERS." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1059393661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Particle filled composites"

1

Wood, B. M. A study into the effects of particle size and structure level of carbon black fillers on the crystallisation behaviour andmechanical properties of polypropylene composites. Manchester: UMIST, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Particle filled composites"

1

Garnier, Bertrand, Boudjemaa Agoudjil, and Abderrahim Boudenne. "Metallic Particle-Filled Polymer Microcomposites." In Polymer Composites, 575–612. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645213.ch19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kazantseva, Natalie E. "Magnetic Particle-Filled Polymer Microcomposites." In Polymer Composites, 613–72. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645213.ch20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nakamura, Toshio, and Marc Leonard. "Large Deformation of Particle-Filled Rubber Composites." In Conference Proceedings of the Society for Experimental Mechanics Series, 149–53. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21762-8_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Şahin, Yusuf, and H. Şahin. "Microstructure and Abrasive Wear of Particle-Filled Composites." In Lecture Notes in Mechanical Engineering, 623–34. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9893-7_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kwon, Soon Chul, Tadaharu Adachi, Wakako Araki, and Akihiko Yamaji. "Effect of Particle Size on Fracture Toughness of Spherical-Silica Particle Filled Epoxy Composites." In Key Engineering Materials, 207–12. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-978-4.207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Joy, Jithin, Anu Tresa Sunny, Lovely P. Mathew, Laly A. Pothen, and Sabu Thomas. "CHAPTER 11. Micro and Nano Metal Particle Filled Natural Rubber Composites." In Polymer Chemistry Series, 307–25. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737654-00307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nadot, Carole, Sophie Dartois, Damien Halm, André Dragon, and Alain Fanget. "A “Morphological” Approach for Modelling the Anisotropic Damage Behaviour of Highly-filled Particulate Composites." In Particle and Continuum Aspects of Mesomechanics, 777–87. London, UK: ISTE, 2010. http://dx.doi.org/10.1002/9780470610794.ch80.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Corral, Erica L., Bryan D. Gauntt, and Ronald E. Loehman. "Properties of Particle-Filled Glass Composites Used for Sealing Solid Oxide Fuel Cells." In Advances in Solid Oxide Fuel Cells III, 313–23. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470339534.ch29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Panin, Sergey V., Lyudmila A. Kornienko, Nguyen Duc Anh, Vladislav O. Alexenko, Dmitry G. Buslovich, and Svetlana A. Bochkareva. "Three-Component Wear-Resistant PEEK-Based Composites Filled with PTFE and MoS2: Composition Optimization, Structure Homogenization, and Self-lubricating Effect." In Springer Tracts in Mechanical Engineering, 275–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60124-9_13.

Full text
Abstract:
AbstractThe aim of this work was to design and optimize compositions of three-component composites based on polyetheretherketone (PEEK) with enhanced tribological and mechanical properties. Initially, two-component PEEK-based composites loaded with molybdenum disulfide (MoS2) and polytetrafluoroethylene (PTFE) were investigated. It was shown that an increase in dry friction mode tribological characteristics in metal-polymer and ceramic-polymer tribological contacts was attained by loading with lubricant fluoroplastic particles. In addition, molybdenum disulfide homogenized permolecular structure and improved matrix strength properties. After that, a methodology for identifying composition of multicomponent PEEK-based composites having prescribed properties which based on a limited amount of experimental data was proposed and implemented. It was shown that wear rate of the “PEEK + 10% PTFE + 0.5% MoS2” composite decreased by 39 times when tested on the metal counterpart, and 15 times on the ceramic one compared with neat PEEK. However, in absolute terms, wear rate of the three-component composite on the metal counterpart was 1.5 times higher than on the ceramic one. A three-fold increase in wear resistance during friction on both the metal and ceramic counterparts was achieved for the “PEEK + 10% PTFE + 0.5% MoS2” three-component composite compared with the “PEEK + 10% PTFE”. Simultaneous loading with two types of fillers slightly deteriorated the polymer composite structure compared with neat PEEK. However, wear rate was many times reduced due to facilitation of transfer film formation. For this reason, there was no microabrasive wear on both metal and ceramic counterpart surfaces.
APA, Harvard, Vancouver, ISO, and other styles
10

Ibraheem, Shahad, Sheila Devasahayam, Owen Standard, and Sri Bandyopadhyay. "Fabrication and Surface Characterization of Spherical Fly Ash Particle-Reinforced Epoxy Resin." In Spherical and Fibrous Filler Composites, 39–66. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527670222.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Particle filled composites"

1

Lateju, Omotinuola S., Modupe A. Onitiri, and Esther T. Akinlabi. "Compressive Properties of Post Cured Talc/Fiber Glass Filled Epoxy Composites." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71448.

Full text
Abstract:
The inclusion of fillers in conventional materials has been found to have significant effect on the various properties of the parent materials. In this present work, epoxy composite was fabricated using talc and fiber glass as fillers varying the particle size and loading while the composites were then post cured at temperatures of 50°C, 75°C, 100°C, 125°C and 150°C. The compressive behavior of the composites was then quantified by conducting compression tests in a controlled environment using specimens of simple geometry. It was discovered that compressive property increased with increase in post cure temperature and particle size and a decrease with increase in filler content.
APA, Harvard, Vancouver, ISO, and other styles
2

Kirchberg, S., M. Anhalt, and B. Weidenfeller. "Correlation Between Thermal Diffusivity and Dynamic Mechanical Properties of Soft Magnetic Particle Filled Thermoplastic Composites." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44054.

Full text
Abstract:
Measurements of thermal diffusivity α by laser flash method (LFA) and storage modulus E′ by dynamic mechanical analysis (DMA) have been performed on polypropylene-iron silicon (PP/FeSi6.8) composites with filler particle content from 10 vol.-% to 60 vol.-% at temperatures from 300 K to 415 K and 200 K to 425 K, respectively. The thermal diffusivity induces a decline with increased temperature for all examined materials. The drop in thermal diffusivity versus temperature corresponds with the filler fraction. Observing the behavior of the storage modulus of FeSi6.8 filled PP one can show that the larger the filler fraction of particles in the polymer the stronger is the decrease of storage modulus versus temperature. The inflection point of the dynamic mechanical measurement curve at about 360 K corresponds very well with starting increase of thermal conductivity. The achieved results can be explained by the relation of the velocity v of phonons and its free path length l to the thermal diffusivity α according to α = (1/3)vl (Einstein approximation). Moreover, v is correlated to the bulk modulus K (and specific density ρ) via v ≈ (K/ρ)0.5.
APA, Harvard, Vancouver, ISO, and other styles
3

Weidenfeller, Bernd, Mathias Anhalt, Hauke Marquardt, Frank R. Schilling, Muhammad Y. Razzaq, and Lars Frormann. "Thermal Properties of Polyurethane Shape Memory Polymer Filled With Magnetite Particles." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44050.

Full text
Abstract:
Temperature dependent thermal diffusivity (295K ≤ T ≤ 375K), specific heat capacity (290K ≤ T ≤ 380K) and thermal conductivity (300K ≤ T ≤ 340K) were measured on extrusion compounded and injection molded polyurethane shape memory polymers filled with different volume fractions (0%, 10%, 20%, 30%, 40%) of magnetite particles (10μm, 50μm and 150μm). With increasing particle content thermal diffusivity arises from α(PU + 0% Fe3O4) ≈ 0.13mm2/s to α(PU + 40% Fe3O4) ≈ 0.31mm2/s whereas d = 10μm particle sizes lead to higher values than larger particle sizes. Values measured for 150μm large particles are lying between values of composites with 10μm and 50μm particle sizes in the whole investigated temperature range. For higher filler contents differences in thermal diffusivity between composites of different particle sizes disappear. Thermal diffusivity decreases with increasing temperature, while thermal conductivity is increasing from λ(PU+0% Fe3O4) ≈ 0.2W/mK to λ(PU+40% Fe3O4) ≈ 0.6W/mK. Corresponding to glass transition temperatures of the polymer, the specific heat capacity shows a rise between 300K and 320K and a decrease between 350K and 370K.
APA, Harvard, Vancouver, ISO, and other styles
4

Ganguli, Sabyasachi, Ajit K. Roy, David Anderson, and Josh Wong. "Thermally Conductive Epoxy Nanocomposites." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43347.

Full text
Abstract:
The quest for improvement of thermal conductivity in aerospace structures is gaining momentum. This is even more important as modern day aerospace structures are embedded with electronics which generate considerable amounts of heat energy. This generated heat if not dissipated might potentially affect the structural integrity of the composite structure. The use of polymer based composites in aerospace applications has also increased due to their obvious superior specific properties. But the thermal conductivity of the polymer matrix is very low and not suited for the design demands in aerospace applications. Several research studies have been conducted to improve the thermal conductivity of the polymeric composites. Different fillers have been used to improve the thermal conductivity of the polymeric matrix. Fillers may be in the form of fibers or in the form of particles uniformly distributed in the polymer matrix. The thermophysical properties of fiber filled composites are anisotropic, except for the very short, randomly distributed fibers, while the thermophysical properties of particle filled polymers are isotropic. Numerous studies have also been conducted in recent years where nanoparticles have been dispersed in the polymeric matrix to improve the thermal conductivity. Putman et al. [1] used the 3ω method to study the thermal conductivity of composites of nanoscale alumina particles in polymethylmethacrylate (PMMA) matrices in the temperature range 40 to 280 K. For 10% of 60 nm of alumina particle filler by weight (3.5% by volume) thermal conductivity of the composite slightly decreased at low temperatures. Whereas, above 100 K, thermal conductivity of the nanocomposite increased by 4% at room temperature. Kruger and Alam [2] studied the thermal conductivity of aligned, vapor grown carbon nanoscale fiber reinforced polypropylene composite. They measured thermal conductivity by laser flash instrument in the longitudinal and transverse directions for 9%, 17% and 23% fiber reinforcements by volume. The values of thermal conductivity as reported by them were 2.09, 2.75, 5.38 W/m.K for the longitudinal directions and 2.42, 2.47, 2.49 W/m-K for the transverse direction respectively, while the thermal conductivity of unfilled PP was 0.24 W/m-K. Exfoliated graphite platelets are another filler material of promise for improving the thermo-mechanical properties of the polymeric matrix. Aylsworth [3, 4] developed and proposed expanded graphite as reinforcement of polymers in 1910s. Lincoln and Claude [5] in 1980s proposed the dispersion of intercalated graphite in polymeric resins by conventional composite processing techniques. Since that time, research has been conducted on exfoliated graphite reinforced polymers using graphite particles of various dimensions and a wide range of polymers. Drzal et al. [6] have demonstrated the use of exfoliated graphite platelets to enhance the thermal and mechanical properties of polymeric resins. They concluded that composites made by in situ processing have better mechanical properties compared to composites made by melt-mixing or other ex situ fabrication methods due to better dispersion, prevention of agglomeration and stronger interactions between the reinforcement and the polymer. In the present study we use silver nano-filaments, nickel nano-filaments, alumina and exfoliated graphite platelets to enhance the thermal conductivity of an epoxy thermoset resin. The objective of this research is to identify the right filler to achieve the thermal conductivity as required by aerospace design engineers which is around 10 W/ m-K. An arbitrary filler loading of 8 wt% was chosen to compare the different fillers used in this study.
APA, Harvard, Vancouver, ISO, and other styles
5

Tavman, Ismail, and Tuba Evgin. "Metal particle filled, thermally conductive polymer composites for electronic packaging applications." In 2015 IEEE 21st International Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE, 2015. http://dx.doi.org/10.1109/siitme.2015.7342290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Devaprakasam, D., P. V. Hatton, G. Moebus, and B. J. Inkson. "Nanomechanical and Nanotribological Properties of Nano- and Micro-Particle Filled Polymer Composites Used for Dental Restorative Applications." In ASME/STLE 2007 International Joint Tribology Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ijtc2007-44182.

Full text
Abstract:
The objective of this work is to quantify nanomechanical and nanotribological properties of nano- and micro-particles filled polymer composites used for the dental restorative applications. Nanotribological performances of the two polymer composites with different reinforcing particulates were investigated using advanced microscopy techniques. Both the polymer composites composed of same dimethacrylate based monomeric mixture, Bisphenol-A-glycidyldimethacrylate (Bis-GMA), triethylene glycoldimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), as matrix. It was found that the elastic modulus, hardness, particle size, shape, distribution and agglomeration significantly influence the friction and wear characteristics of the polymer composites. The results show that nanotribological performance of nanoparticle reinforced polymer composites is better than the microparticle reinforced polymer composites.
APA, Harvard, Vancouver, ISO, and other styles
7

Yusoff, P. M., F. Ahmad, N. Amir, S. F. Leong, Mohamad Rusop, Rihanum Yahaya Subban, Norlida Kamarulzaman, and Wong Tin Wui. "Effect Of Particle Dispersion On Thermal Conductivity Of Copper Powder Filled Epoxy Composites." In INTERNATIONAL CONFERENCE ON ADVANCEMENT OF MATERIALS AND NANOTECHNOLOGY: (ICAMN—2007). AIP, 2010. http://dx.doi.org/10.1063/1.3377845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Widdowson, Denise, Paris von Lockette, Anil Erol, and Manuel A. Rodriguez. "A Computational Framework for Predicting Properties From Multifield Processing Conditions in Polymer Matrix Composites." In ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2390.

Full text
Abstract:
Abstract Composites can be tailored to specific applications by adjusting process variables. These variables include those related to composition, such as volume fraction of the constituents and those associated with processing methods, methods that can affect composite topology. In the case of particle matrix composites, orientation of the inclusions affects the resulting composite properties, particularly so in instances where the particles can be oriented and arranged into structures. In this work, we study the effects of coupled electric and magnetic field processing with externally applied fields on those structures, and consequently on the resulting material properties that arise. The ability to vary these processing conditions with the goal of generating microstructures that yield target material properties adds an additional level of control to the design of composite material properties. Moreover, while analytical models allow for the prediction of resulting composite properties from constituents and composite topology, these models do not build upward from process variables to make these predictions. This work couples simulation of the formation of microscale architectures, which result from coupled electric and magnetic field processing of particulate filled polymer matrix composites, with finite element analysis of those structures to provide a direct and explicit linkages between process, structure, and properties. This work demonstrates the utility of these method as a tool for determining composite properties from constituent and processing parameters. Initial particle dynamics simulation incorporating electromagnetic responses between particles and between the particles and the applied fields, including dielectrophoresis, are used to stochastically generate representative volume elements for a given set of process variables. Next, these RVEs are analyzed as periodic structures using FEA yielding bulk material properties. The results are shown to converge for simulation size and discretization, validating the RVE as an appropriate representation of the composite volume. Calculated material properties are compared to traditional effective medium theory models. Simulations allow for mapping of composite properties with respect to not only composition, but also fundamentally from processing simulations that yield varying particle configurations, a step not present in traditional or more modern effective medium theories such as the Halpin Tsai or double-inclusion theories.
APA, Harvard, Vancouver, ISO, and other styles
9

Callaghan, D. J., A. Vaziri, and H. Nayeb-Hashemi. "Wear Characteristics of Fiber-Reinforced Dental Bio-Composites." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59222.

Full text
Abstract:
From the available biocompatible fibers, glass fibers have drawn the most attention due to their esthetic qualities and easy manipulation. While some investigators have studied the effect of the fibers on mechanical properties such as ultimate strength and fracture resistance of these bio-composites [1], the literature survey reflects that there are very few studies on the wear properties of such fiber-reinforced bio-composites. Thus, the main objective of this study is to investigate the wear characteristics of the fiber-reinforced dental bio-composite. The relationship between fiber weight fraction and fiber length of glass fibers incorporated into a dental resin and the wear resistance of these bio-composites is studied for various applied loads. For comparison, a particle filled bio-composite was also subjected to the wear test. The main objective of this study is to gain some insight into the micromechanisms of wear of these dental bio-composites and their relative performance.
APA, Harvard, Vancouver, ISO, and other styles
10

Pati, Pravat Ranjan, and Alok Satapathy. "A Study on Tribological Behavior of Linz-Donawitz Slag Filled Polypropylene Composites Using Experimental Design and Neural Networks." In ASME 2017 Gas Turbine India Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gtindia2017-4514.

Full text
Abstract:
Short fiber-reinforced polymer composites are used in numerous tribological applications. In the present work, an attempt has been made to improve the wear resistance of short glass fiber (SGF) reinforced polypropylene composites by incorporation of micro-sized Linz-Donawitz slag (LDS) particles. Composites with different LDS content (0, 7.5, 15 and 22.5 wt%) in a polypropylene matrix base with 20 wt% SGF reinforcement are prepared by injection molding technique. Solid particle erosion trials, as per ASTM G76 test standards, are conducted on the composite samples following a well-planned experimental schedule based on Taguchi design-of-experiments. Significant process parameters predominantly influencing the rate of erosion are identified. The study reveals that the LDS content and impact velocity are the most significant among various factors influencing the wear rate of these composites. Further, a prediction model based on artificial neural network (ANN) is proposed to predict the erosion performance of the composites under a wide range of erosive wear conditions. This work shows that an ANN model is quite helpful in saving time and resources that are required for a large number of experimental trials and thus, successfully predicts the erosion rate of composites both within and beyond the experimental domain.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Particle filled composites"

1

Kennedy, Alan, Mark Ballentine, Andrew McQueen, Christopher Griggs, Arit Das, and Michael Bortner. Environmental applications of 3D printing polymer composites for dredging operations. Engineer Research and Development Center (U.S.), January 2021. http://dx.doi.org/10.21079/11681/39341.

Full text
Abstract:
This Dredging Operations Environmental Research (DOER) technical note disseminates novel methods to monitor and reduce contaminant mobility and bioavailability in water, sediments, and soils. These method advancements are enabled by additive manufacturing (i.e., three-dimensional [3D] printing) to deploy and retrieve materials that adsorb contaminants that are traditionally applied as unbound powders. Examples of sorbents added as amendments for remediation of contaminated sediments include activated carbon, biochar, biopolymers, zeolite, and sand caps. Figure 1 provides examples of sorbent and photocatalytic particles successfully compounded and 3D printed using polylactic acid as a binder. Additional adsorptive materials may be applicable and photocatalytic materials (Friedmann et al. 2019) may be applied to degrade contaminants of concern into less hazardous forms. This technical note further describes opportunities for U.S. Army Corps of Engineers (USACE) project managers and the water and sediment resource management community to apply 3D printing of polymers containing adsorptive filler materials as a prototyping tool and as an on-site, on-demand manufacturing capability to remediate and monitor contaminants in the environment. This research was funded by DOER project 19-13, titled “3D Printed Design for Remediation and Monitoring of Dredged Material.”
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography