Dissertations / Theses on the topic 'Particle-In-Cell code'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 24 dissertations / theses for your research on the topic 'Particle-In-Cell code.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Lawrence-Douglas, Alistair. "Ionisation effects for laser-plasma interactions by particle-in-cell code." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/57465/.
Full textPayne, Joshua Estes. "Implementation and performance evaluation of a GPU particle-in-cell code." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76970.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 105-107).
In this thesis, I designed and implemented a particle-in-cell (PIC) code on a graphical processing unit (GPU) using NVIDA's Compute Unified Architecture (CUDA). The massively parallel nature of computing on a GPU nessecitated the development of new methods for various steps of the PIC method. I investigated different algorithms and data structures used in the past for GPU PIC codes, as well as developed some of new ones. The results of this research and development were used to implement an efficient multi-GPU version of the 3D3v PIC code SCEPTIC3D. The performance of the SCEPTIC3DGPU code was evaluated and compared to that of the CPU version on two different systems. For test cases with a moderate number of particles per cell, the GPU version of the code was 71x faster than the system with a newer processor, and 160x faster than the older system. These results indicate that SCEPTIC3DCPU can run problems on a modest workstation that previously would have required a large cluster.
by Joshua Estes Payne.
S.B.
S.M.and S.B.
Pierru, Julien. "Development of a Parallel Electrostatic PIC Code for Modeling Electric Propulsion." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/34597.
Full textMaster of Science
Chae, Gyoo-Soo. "Numerical Simulation of Ion Waves in Dusty Plasmas." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/29165.
Full textPh. D.
Bramer, Elinor C. "Development of a particle in cell code for the simulation of dual stage ion thrusters." Thesis, University of Sussex, 2014. http://sro.sussex.ac.uk/id/eprint/48913/.
Full textSpicer, Randy Lee. "Validation of the DRACO Particle-in-Cell Code using Busek 200W Hall Thruster Experimental Data." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/34460.
Full textThe DRACO code has been recently modified to improve simulation results, functionality and performance. A particle source has been added that uses the Hall Thruster device code HPHall as input for a source to model Hall Thrusters. The code is now also capable of using a non-uniform mesh that uses any combination of uniform, linear and exponential stretching schemes in any of the three directions. A stretched mesh can be used to refine simulation results in certain areas, such as the exit of a thruster, or improve performance by reducing the number of cells in a mesh. Finally, DRACO now has the capability of using a DSMC collision scheme as well as performing recombination collisions.
A sensitivity analysis of the newly upgraded DRACO code was performed to test the new functionalities of the code as well as validate the code using experimental data gathered at AFRL using a Busek 200 W Hall Thruster. A simulation was created that attempts to numerically recreate the AFRL experiment and the validation is performed by comparing the plasma potential, polytropic temperature, ion number density of the thruster plume as well as Faraday and ExB probe results. The study compares the newly developed HPHall source with older source models and also compares the variations of the HPHall source. The field solver and collision model used are also compared to determine how to achieve the best results using the DRACO code. Finally, both uniform and non-uniform meshes are tested to determine if a non-uniform mesh can be properly implemented to improve simulation results and performance.
The results from the validation and sensitivity study show that the DRACO code can be used to recreate a vacuum chamber simulation using a Hall Thruster. The best results occur when the newly developed HPHall source is used with a MCC collision scheme using a projected background neutral density and CEX collision tracking. A stretched mesh was tested and proved results that are as accurate as a uniform mesh, if not more accurate in locations of high mesh refinement.
Master of Science
Martinez, Bertrand. "Effets radiatifs et quantiques dans l'interaction laser-matière ultra-relativiste." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0442/document.
Full textForthcoming multi-petawatt laser systems, such as the French Apollon and European Extreme Light Infrastructure facilities, are expected to deliver on-target laser intensities exceeding 10^22 W/cm^2. A novel regime of laser-matter interaction will ensue, where ultra-relativistic plasma effects are coupled with copious generation of high-energy photons and electron-positron pairs. This will pave the way for many transdisciplinary applications in fundamental and applied research, including the development of unprecedentedly intense, compact particle and radiation sources, the experimental investigation of relativistic astrophysical scenarios and tests of quantum electrodynamics theory.In recent years, most theoretical studies performed in this research field have focused on the impact of synchrotron photon emission and Breit-Wheeler pair generation, both directly induced by the laser field and believed to be dominant at intensities >10^22 W/cm^2. At the lower intensities (≲10^21 Wcm^(-2)) currently attainable, by contrast, photon and pair production mainly originate from, respectively, Bremsstrahlung and Bethe-Heitler/Trident processes, all triggered by atomic Coulomb fields. The conditions for a transition between these two regimes have, as yet, hardly been investigated, particularly by means of integrated kinetic numerical simulations. The purpose of this PhD is precisely to study the aforementioned processes under various physical scenarios involving extreme laser-plasma interactions. This work is carried out using the particle-in-cell CALDER code developed at CEA/DAM which, over the past few years, had been enriched with modules describing the synchrotron and Breit-Wheeler processes.Our first study aimed at extending the simulation capabilities of CALDER to the whole range of photon and positron generation mechanisms arising during relativistic laser-plasma interactions. To this purpose, we have implemented modules for the Coulomb-field-mediated Bremsstrahlung, Bethe-Heitler and Trident processes. Refined Bremsstrahlung and Bethe-Heitler cross sections have been obtained which account for electronic shielding effects in arbitrarily ionized plasmas. Following validation tests of the Monte Carlo numerical method, we have examined the competition between Bremsstrahlung/Bethe-Heitler and Trident pair generations by relativistic electrons propagating through micrometer copper foils. Our self-consistent simulations qualitatively agree with a 0-D theoretical model, yet they show that the deceleration of the fast electrons due to target expansion significantly impacts pair production.We then address the competition between Bremsstrahlung and synchrotron emission from copper foils irradiated at 10^22 Wcm^(-2). We show that the maximum radiation yield (into >10 keV photons) is achieved through synchrotron emission in relativistically transparent targets of a few 10 nm thick. The efficiency of Bremsstrahlung increases with the target thickness, and takes over synchrotron for >2μm thicknesses. The spectral properties of the two radiation processes are analyzed in detail and correlated with the ultrafast target dynamics.Finally, we investigate the potential of nanowire-array targets to enhance the synchrotron yield of a 10^22 Wcm^(-2) femtosecond laser pulse. Several radiation mechanisms are identified depending on the target parameters and as a function of time. A simulation scan allows us to identify the optimal target geometry in terms of nanowire width and interspacing, yielding a ∼10% radiation efficiency. In this configuration, the laser-driven nanowire array rapidly expands to form a quasi-uniform, relativistically transparent plasma. Furthermore, we demonstrate that uniform sub-solid targets can achieve synchrotron yields as high as in nanowire arrays, but that the latter enable a strong emission level to be sustained over a broader range of average plasma density
Doche, Antoine. "Particle acceleration with beam driven wakefield." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX023/document.
Full textPlasma wakefield accelerators (PWFA) or laser wakefield accelerators (LWFA) are new technologies of particle accelerators that are particularly promising, as they can provide accelerating fields of hundreds of Gigaelectronvolts per meter while conventional facilities are limited to hundreds of Megaelectronvolts per meter. In the Plasma Wakefield Acceleration scheme (PWFA) and the Laser Wakefield Acceleration scheme (LWFA), a bunch of particles or a laser pulse propagates in a gas, creating an accelerating structure in its wake: an electron density wake associated to electromagnetic fields in the plasma. The main achievement of this thesis is the very first demonstration and experimental study in 2016 of the Plasma Wakefield Acceleration of a distinct positron bunch. In the scheme considered in the experiment, a lithium plasma was created in an oven, and a plasma density wave was excited inside it by a first bunch of positrons (the drive bunch) while the energy deposited in the plasma was extracted by a second bunch (the trailing bunch). An accelerating field of 1.36 GeV/m was reached during the experiment, for a typical accelerated charge of 40 pC. In the present manuscript is also reported the feasibility of several regimes of acceleration, which opens promising prospects for plasma wakefield accelerator staging and future colliders. Furthermore, this thesis also reports the progresses made regarding a new scheme: the use of a LWFA-produced electron beam to drive plasma waves in a gas jet. In this second experimental study, an electron beam created by laser-plasma interaction is refocused by particle bunch-plasma interaction in a second gas jet. A study of the physical phenomena associated to this hybrid LWFA-PWFA platform is reported. Last, the hybrid LWFA-PWFA scheme is also promising in order to enhance the X-ray emission by the LWFA electron beam produced in the first stage of the platform. In the last chapter of this thesis is reported the first experimental realization of this last scheme, and its promising results are discussed
Hammel, Jeffrey Robert. "Development of an unstructured 3-D direct simulation Monte Carlo/particle-in-cell code and the simulation of microthruster flows." Link to electronic thesis, 2002. http://www.wpi.edu/Pubs/ETD/Available/etd-0510102-153614.
Full textClaypool, Ian Randolph. "A theoretical and numerical study of the use of grid embedded axial magnetic fields to reduce charge exchange ion induced grid erosion in electrostatic ion thrusters." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1172690635.
Full textBordikar, Maitrayee Ranade. "Analysis of Plasma Wave Irregularities Generated during Active Experiments in Near-Earth Space Environment." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/23206.
Full textPh. D.
Ferri, Julien. "Étude des rayonnements Bétatron et Compton dans l'accélération d'électrons par sillage laser." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX094/document.
Full textAn ultra-short and ultra-intense laser pulse propagating in a low-density gas can accelerate in its wake a part of the electrons ionized from the gas to relativistic energies of a few hundreds of MeV over distances of a few millimeters only. During their acceleration, as a consequence of their transverse motion, these electrons emit strongly collimated X-rays in the forward direction, which are called betatron radiations. The characteristics of this source turn it into an interesting tool for high-resolution imagery.In this thesis, we explore three different axis to work on this source using simulations on the Particles-In-Cells codes CALDER and CALDER-Circ. We first study the creation of a betatron X-ray source with kilojoule and picosecond laser pulses, for which duration and energy are then much higher than usual in this domain. In spite of the unusual laser parameters, we show that X-ray sources can still be generated, furthermore in two different regimes.In a second study, the generally observed discrepancies between experiments and simulations are investigated. We show that the use of realistic laser profiles instead of Gaussian ones in the simulations strongly degrades the performances of the laser-plasma accelerator and of the betatron source. Additionally, this leads to a better qualitative and quantitative agreement with the experiment.Finally, with the aim of improving the X-ray emission, we explore several techniques based on the manipulation of the plasma density profile used for acceleration. We find that both the use of a transverse gradient and of a density step increases the amplitude of the electrons transverse motions, and then increases the radiated energy. Alternatively, we show that this goal can also be achieved through the transition from a laser wakefield regime to a plasma wakefield regime induced by an increase of the density. The laser wakefield optimizes the electron acceleration whereas the plasma wakefield favours the X-ray emission
Xi, Hong. "Theoretical and Numerical Studies of Frequency Up-shifted Ionospheric Stimulated Radiation." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/29279.
Full textPh. D.
Bösl, Mathias Helmut [Verfasser], Frank [Akademischer Betreuer] Jenko, Frank [Gutachter] Jenko, and Laurent [Gutachter] Villard. "PICLS: a gyrokinetic full-f particle-in-cell code for the scrape-off layer / Mathias Helmut Bösl ; Gutachter: Frank Jenko, Laurent Villard ; Betreuer: Frank Jenko." München : Universitätsbibliothek der TU München, 2021. http://d-nb.info/1236343190/34.
Full textNakata, Michael Takeshi. "Simulating the FTICR-MS Signal of a Decaying Beryllium-7 Ion Plasma in a 2D Electrostatic PIC Code." Diss., CLICK HERE for online access, 2010. http://contentdm.lib.byu.edu/ETD/image/etd3370.pdf.
Full textBaraka, Suleiman. "Etude de l'interactionentre le vent solaire et la magnetosphere de la Terre: Modele theorique et Application sur l'analyse de donnees de l'evenement du Halloween d'octobre 2003." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00138416.
Full textGrassi, Anna. "Collisionless shocks in the context of Laboratory Astrophysics." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066483/document.
Full textThe work presented in this thesis belongs to the general framework of Laboratory Astrophysics. We address various aspects of the physics of collisionless shocks developing in the presence of relativistic plasma flows, in configurations of interest for the astrophysical and the laser-plasma interaction (LPI) communities. The approach used throughout this thesis relied on both analytical modeling and high-performance kinetic simulations, a central tool to describe LPI processes as well as the non-linear physics behind shock formation. The PIC code SMILEI has been widely used and developed during this work. Three physical configurations are studied. First we consider the Weibel instability driven by two counter-streaming electron beams aligned with an external magnetic field. The linear and non-linear phases are explained using theoretical models confirmed by simulations.Then the generation of non-collisional shocks during the interaction of two relativistic plasma pairs is studied in the presence of a perpendicular magnetic field. We focus on the comparison of theoretical predictions for macroscopic variables with the simulation results, as well as on the definition and measurement of the shock formation time, all of which are of great importance for future experiments.Finally, we proposed a scheme to produce, in the laboratory, the ion-Weibel-instability with the use of an ultra-high-intensity laser. The produced flows are faster and denser than in current experiments, leading to a larger growth rate and stronger magnetic fields. These results are important for the LPI at very high intensity
Bourgeois, Pierre-Louis. "Modélisation de sources X générées par interaction laser-plasma en régime relativiste." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX073.
Full textWhen an ultra-short ultra-intense laser impulsion propagates through a low density gas jet, a plasma is created and a bunch of electrons can be accelerated through laser wakefield acceleration to Gev energies in only a few centimetres. Those accelerated electrons then emit what is called Betatron radiation: a highly focused X-ray source with extremely good spatial and temporal properties, which has a lot of possible applications including ultra-high resolution imaging.In this thesis, we investigate possible improvements to one of the main numerical tools used to simulate those phenomenons: the Particle-In-Cell codes (CALDER). We have especially studied a numerical artefact called the numerical Cherenkov radiation, that occurs when relativistic particles move at speeds aproaching the speed of light in a vaccuum.We show that this artefact has a negative impact on the behaviour of the accelerated electron beam, especially on its transverse motion, which leads to important errors on the betatron radiation calculated using PIC simulations.We then introduce a new approach to mitigate the impact of this numerical Cherenkov radiation on laser wakefield acceleration simulation with a simple modification of the electromagnetic field interpolation method used in PIC codes. The results obtained with this new technique show a meaningful improvement on the electron motion wich becomes close to the theoretically expected behaviour.We then explore other possible applications for this new technique, notably improving the modelization of betatron sources, vacuum laser acceleration or direct laser acceleration.The improvement of the computation of the particles transverse motion thanks to this new method leads to more accurate results but also enables us to study physical phenomenon with subtle effects that would otherwise be hidden among the numerical noise of the simulation
Larsgård, Nils Magnus. "Parallelizing Particle-In-Cell Codes with OpenMP and MPI." Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-8722.
Full textToday's supercomputers often consists of clusters of SMP nodes. Both OpenMP and MPI are programming paradigms that can be used for parallelization of codes for such architectures. OpenMP uses shared memory, and hence is viewed as a simpler programming paradigm than MPI that is primarily a distributed memory paradigm. However, the Open MP applications may not scale beyond one SMP node. On the other hand, if we only use MPI, we might introduce overhead in intra-node communication. In this thesis we explore the trade-offs between using OpenMP, MPI and a mix of both paradigms for the same application. In particular, we look at a physics simulation and parallalize it with both OpenMP and MPI for large-scale simulations on modern supercomputers. A parallel SOR solver with OpenMP and MPI is implemented and the effects of such hybrid code are measured. We also utilize the FFTW-library that includes both system-optimized serial implementations and a parallel OpenMP FFT implementation. These solvers are used to make our existing Particle-In-Cell codes be more scalable and compatible with current programming paradigms and supercomputer architectures. We demonstrate that the overhead from communications in OpenMP loops on an SMP node is significant and increases with the number of CPUs participating in execution of the loop compared to equivalent MPI implementations. To analyze this result, we also present a simple model on how to estimate the overhead from communication in OpenMP loops. Our results are both surprising and should be of great interest to a large class of parallel applications.
Forestier-Colleoni, Pierre. "Etude expérimentale des champs magnétiques en surface d'une cible irradiée par laser et leurs implications sur le faisceau d'électrons." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0036/document.
Full textThis thesis concerns magnetic fields, generated by the interaction between strong laser pulse (intensity up to1018 W/cm2) and solid target, and their effects on the fast electron beam. Indeed, the various magnetic fields created during this interaction can inuence the divergence of the fast electron beam. The magnetic field createdduring this interaction have a fundamental role on the fast electron beam characteristics : its source and its transportin the material. Diagnotics of polarimetry and crossed interferometry were developed during this thesis to observethe on-surface magnetic field of the target, and in particular, their spatial and temporal evolutions. Two types oftemporal evolution of the magnetic field were observed according to the contrast in intensity of the laser pulse : afast rise of magnetic field followed by a slower decrease created by the travel of the fast electrons in the material,and a slower growth of logarithmic form created by the pre-pulse of the laser by thermoelectric effect. The interpretation of our results obtained by these diagnotics allowed us to estimate the resistivity of the plasma.This resistivity named "anomalously high resistivity" in the literature can be explained by taking into account theinuence of the magnetic field on the electrons transport (creation of an anisotropy) and thus on the resitivity.The last diagnotic allowing the estimation of the magnetic field detailed in this thesis is the proton deectometry. itallows to observe the deviation of a proton beam during its propagation under the inuence of electric and magneticfields. Other experiments were focused on the fast electron beam divergence. Two main diagnotics were used : the K α imaging and the coherent transition radiation (C.T.R) imaging at the rear side of solid targets. These diagnoticsallowed to estimate the fast electron beam divergence for two distinct energetic electron populations. The differenceof divergence coming from characteristics of both diagnotics (electrons in charge of the emissions in different energies). The diagnotics of on-surface magnetic fields of target irradiated by intense laser, such as the technics of polarimetry and crossed interferometry developed in this thesis, are dedicated to be combined with diagnotics determining the evolution of the radial size of the fast electron beam generated by the laser-matter interaction. Their simultaneous use, and the correlation between their respective data, should allow to establish experimentally, in the short term, the inuence of the on-surface magnetic fields on the fast electron beam initial characteristics, in particular the angular and energy distributions. Our results of polarimetry on the spatio-temporal evolution of the magnetic fields of surface establish the state of the art for this type of measures. There are possible improvements, in particular as regards their use in conditions of irradiation by lasers of intensities > 1018 W/cm2. These perspectives are also the object of discussions in this manuscript
Vauzour, Benjamin. "Étude expérimentale du transport d'électrons rapides dans le cadre de l'allumage rapide pour la fusion inertielle." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14496/document.
Full textThe framework of this PhD thesis is the validation of the fast ignition scheme for the nuclear fusion by inertial confinement. It consists in the experimental study of the various processes involved in fast electron beams propagation, produced by intense laser pulses (10^{19} W.cm-2), through dense matter either solid or compressed. In this work we present the results of three experiments carried out on different laser facilities in order to generate fast electron beams in various conditions and study their propagation in different states of matter, from the cold solid to the warm and dense plasma.The first experiment was performed with a high intensity contrast on the UHI100 laser facility (CEA Saclay). The study of fast electron energy deposition inside thin aluminium targets highlights a strong target heating at shallow depths, where the collectivs effects are predominant, thus producing a steep temperature profile between front (300eV) and rear (20eV) sides over 20µm thickness. A numerical simulation of the experiment shows that this temperature gradient induces the formation of a shock wave, breaking through the rear side of the target and thus leading to increase the thermal emission. The experimental chronometry of the shock breakthrough allowed validating the model of the collective transport of electrons.Two other experiments were dedicated to the study of fast electron beam propagation inside compressed targets. In the first experiment on the LULI2000 laser facility, the plane compression geometry allowed to precisely dissociate the energy losses due to resistive effects from those due to the collisional ones. By comparing our experimental results with simulations, we observed a significative increase of the fast electron beam energy losses with the compression and the target heating to temperatures close to the Fermi temperature. The second experiment, performed in a cylindrical geometry, demonstrated a fast electron beam guiding phenomenon due to self-generated magnetic fields in presence of sharp radial resistivity gradients. Furthermore, in the temperature and density conditions achieved here, the increase of collisional energy losses with density is compensated by the decreasing resistive energy losses due to the transition of the conductivity into the high-temperatures Spitzer regime
Carrié, Michaël. "Accélération de protons par laser à ultra-haute intensité : étude et application au chauffage isochore." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00608050.
Full textBarsamian, Yann. "Pic-Vert : une implémentation de la méthode particulaire pour architectures multi-coeurs." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD039/document.
Full textIn this thesis, we are interested in solving the Vlasov–Poisson system of equations (useful in the domain of plasma physics, for example within the ITER project), thanks to classical Particle-in-Cell (PIC) and semi-Lagrangian methods. The main contribution of our thesis is an efficient implementation of the PIC method on multi-core architectures, written in C, called Pic-Vert. Our implementation (a) achieves close-to-minimal number of memory transfers with the main memory, (b) exploits SIMD instructions for numerical computations, and (c) exhibits a high degree of shared memory parallelism. To put our work in perspective with respect to the state-of-the-art, we propose a metric to compare the efficiency of different PIC implementations when using different multi-core architectures. Our implementation is 3 times faster than other recent implementations on the same architecture (Intel Haswell)
Hadj-Bachir, Mokrane. "Laser à rayons X ultra-compact Raman XFEL." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0400/document.
Full textThe quest for a compact X-ray laser has long been a major objective of laser science. Several schemes using optical undulators are currently considered, in order to trigger the amplification of back scattered radiation, in Compton or inverse Compton regime. We have proposed a new concept of compact XFEL based on a combination between the physics of free electron lasers, of laser-plasma interactions, and of nonlinear optics. In this thesis, we study the necessary steps to trigger a X-ray laser during the interaction between a free relativistic electron bunch and an optical lattice created by the interference of two intense transverse laser pulses. For this purpose I developed a particular tracking code dubbed RELIC. RELIC allowed us to study the dynamics and injection process of a bunch of relativistic electrons into the optical lattice. Thanks to RELIC, we distinguished several interaction regimes depending on the relativistic electron bunch parameters, and on those of the optical lattice and its geometry. These studies are applied to the X ray amplification and supported by PIC simulations. RELIC also allowed us to model and analyze the first experiment conducted in october 2015 on the ”Salle Jaune” laser facility at LOA. This first experiment was very important to validate our theoretical models, and should prove to be an essential milestone for the development of a Raman X-ray free electron laser