Academic literature on the topic 'Partition en cycles disjoints'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Partition en cycles disjoints.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Partition en cycles disjoints"

1

Kandan, P. "Multidecomposition of cartesian product of some graphs into even cycles and matchings." Filomat 31, no. 18 (2017): 5525–37. http://dx.doi.org/10.2298/fil1718525k.

Full text
Abstract:
Let C2p and pK2 denote a cycle with 2p edges and p vertex-disjoint edges, respectively. For graphs G,H' and H'',a (H',H'')-multidecomposition of G is a partition of the edge set of G into copies of H' and copies of H'' with at least one copy of H' and at least one copy of H''. In this paper, we investigate (C2p, pK2)-multidecomposition of the Cartesian product of paths, cycles and complete graphs, for some values p ? 3.
APA, Harvard, Vancouver, ISO, and other styles
2

Irving, John. "Minimal Transitive Factorizations of Permutations into Cycles." Canadian Journal of Mathematics 61, no. 5 (2009): 1092–117. http://dx.doi.org/10.4153/cjm-2009-052-2.

Full text
Abstract:
Abstract. We introduce a new approach to an enumerative problem closely linked with the geometry of branched coverings, that is, we study the number ${{H}_{\alpha }}({{i}_{2}},{{i}_{3}},...)$) of ways a given permutation (with cycles described by the partition $\alpha $) can be decomposed into a product of exactly ${{i}_{2}}$ 2-cycles, ${{i}_{3}}$ 3-cycles, etc., with certain minimality and transitivity conditions imposed on the factors. The method is to encode such factorizations as planar maps with certain descent structure and apply a new combinatorial decomposition to make their enumeration more manageable. We apply our technique to determine ${{H}_{\alpha }}({{i}_{2}},{{i}_{3}},...)$ when $\alpha $ has one or two parts, extending earlier work of Goulden and Jackson. We also show how these methods are readily modified to count inequivalent factorizations, where equivalence is defined by permitting commutations of adjacent disjoint factors. Our technique permits us to generalize recent work of Goulden, Jackson, and Latour, while allowing for a considerable simplification of their analysis.
APA, Harvard, Vancouver, ISO, and other styles
3

DeTemple, Duane, and Jack M. Robertson. "Graphs associated with triangulations of lattice polygons." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 47, no. 3 (1989): 391–98. http://dx.doi.org/10.1017/s1446788700033115.

Full text
Abstract:
AbstractTwo graphs, the edge crossing graph E and the triangle graph T are associated with a simple lattice polygon. The maximal independent sets of vertices of E and T are derived including a formula for the size of the fundamental triangles. Properties of E and T are derived including a formula for the size of the maximal independent sets in E and T. It is shown that T is a factor graph of edge-disjoint 4-cycles, which gives corresponding geometric information, and is a partition graph as recently defined by the authors and F. Harary.
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Guangjun, Qiang Sun, and Zuosong Liang. "On Hamiltonian Decomposition Problem of 3-Arc Graphs." Computational Intelligence and Neuroscience 2022 (April 28, 2022): 1–6. http://dx.doi.org/10.1155/2022/5837405.

Full text
Abstract:
A 4-tuple y , x , v , w in a graph is a 3-arc if each of y , x , v and x , v , w is a path. The 3-arc graph of H is the graph with vertex set all arcs of H and edge set containing all edges joining x y and v w whenever y , x , v , w is a 3-arc of H . A Hamilton cycle is a closed path meeting each vertex of a graph. A graph H including a Hamilton cycle is called Hamiltonian and H has a Hamiltonian decomposition provided its edge set admits a partition into disjoint Hamilton cycles (possibly with a single perfect matching). The current paper proves that every connected 3-arc graph consists of more than one Hamilton cycle. Since the 3-arc graph of a cubic graph is 4-regular, it further proves that each 3-arc graph of a cubic graph in a certain family has a Hamiltonian decomposition.
APA, Harvard, Vancouver, ISO, and other styles
5

Hartke, Stephen G., and Tyler Seacrest. "Random partitions and edge-disjoint Hamiltonian cycles." Journal of Combinatorial Theory, Series B 103, no. 6 (2013): 742–66. http://dx.doi.org/10.1016/j.jctb.2013.09.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, C. C., and G. P. Jin. "Cycle Partitions in Graphs." Combinatorics, Probability and Computing 5, no. 2 (1996): 95–97. http://dx.doi.org/10.1017/s0963548300001887.

Full text
Abstract:
In this paper, we prove that every graph contains a cycle intersecting all maximum independent sets. Using this, we further prove that every graph with stability number α is spanned by α disjoint cycles. Here, the empty set, the graph of order 1 and the path of order 2 are all considered as degenerate cycles.
APA, Harvard, Vancouver, ISO, and other styles
7

Borgwardt, Steffen. "On the diameter of partition polytopes and vertex-disjoint cycle cover." Mathematical Programming 141, no. 1-2 (2011): 1–20. http://dx.doi.org/10.1007/s10107-011-0504-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jung, Ho Yub, and Kyoung Mu Lee. "Image Segmentation by Edge Partitioning over a Nonsubmodular Markov Random Field." Mathematical Problems in Engineering 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/683176.

Full text
Abstract:
Edge weight-based segmentation methods, such as normalized cut or minimum cut, require a partition number specification for their energy formulation. The number of partitions plays an important role in the segmentation overall quality. However, finding a suitable partition number is a nontrivial problem, and the numbers are ordinarily manually assigned. This is an aspect of the general partition problem, where finding the partition number is an important and difficult issue. In this paper, the edge weights instead of the pixels are partitioned to segment the images. By partitioning the edge weights into two disjoints sets, that is, cut and connect, an image can be partitioned into all possible disjointed segments. The proposed energy function is independent of the number of segments. The energy is minimized by iterating the QPBO-α-expansion algorithm over the pairwise Markov random field and the mean estimation of the cut and connected edges. Experiments using the Berkeley database show that the proposed segmentation method can obtain equivalently accurate segmentation results without designating the segmentation numbers.
APA, Harvard, Vancouver, ISO, and other styles
9

Liebenau, Anita, and Yanitsa Pehova. "An approximate version of Jackson’s conjecture." Combinatorics, Probability and Computing 29, no. 6 (2020): 886–99. http://dx.doi.org/10.1017/s0963548320000152.

Full text
Abstract:
AbstractA diregular bipartite tournament is a balanced complete bipartite graph whose edges are oriented so that every vertex has the same in- and out-degree. In 1981 Jackson showed that a diregular bipartite tournament contains a Hamilton cycle, and conjectured that in fact its edge set can be partitioned into Hamilton cycles. We prove an approximate version of this conjecture: for every ε > 0 there exists n0 such that every diregular bipartite tournament on 2n ≥ n0 vertices contains a collection of (1/2–ε)n cycles of length at least (2–ε)n. Increasing the degree by a small proportion allows us to prove the existence of many Hamilton cycles: for every c > 1/2 and ε > 0 there exists n0 such that every cn-regular bipartite digraph on 2n ≥ n0 vertices contains (1−ε)cn edge-disjoint Hamilton cycles.
APA, Harvard, Vancouver, ISO, and other styles
10

Lichiardopol, Nicolas. "Vertex-Disjoint Subtournaments of Prescribed Minimum Outdegree or Minimum Semidegree: Proof for Tournaments of a Conjecture of Stiebi." International Journal of Combinatorics 2012 (August 3, 2012): 1–9. http://dx.doi.org/10.1155/2012/273416.

Full text
Abstract:
It was proved (Bessy et al., 2010) that for r≥1, a tournament with minimum semidegree at least 2r−1 contains at least r vertex-disjoint directed triangles. It was also proved (Lichiardopol, 2010) that for integers q≥3 and r≥1, every tournament with minimum semidegree at least (q−1)r−1 contains at least r vertex-disjoint directed cycles of length q. None information was given on these directed cycles. In this paper, we fill a little this gap. Namely, we prove that for d≥1 and r≥1, every tournament of minimum outdegree at least ((d2+3d+2)/2)r−(d2+d+2)/2 contains at least r vertex-disjoint strongly connected subtournaments of minimum outdegree d. Next, we prove for tournaments a conjecture of Stiebitz stating that for integers s≥1 and t≥1, there exists a least number f(s,t) such that every digraph with minimum outdegree at least f(s,t) can be vertex-partitioned into two sets inducing subdigraphs with minimum outdegree at least s and at least t, respectively. Similar results related to the semidegree will be given. All these results are consequences of two results concerning the maximum order of a tournament of minimum outdegree d (of minimum semidegree d) not containing proper subtournaments of minimum outdegree d (of minimum semidegree d).
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Partition en cycles disjoints"

1

Kobeissi, Mohamed. "Plongement de graphes dans l'hypercube." Phd thesis, Grenoble 1, 2001. https://theses.hal.science/tel-00004683.

Full text
Abstract:
Le but principal de ce manuscrit est de montrer que certaines familles de graphes sont des graphes plongeables dans l'hypercube. Un problème d'une autre nature sera traité, il concerne la partition de l'hypercube en des cycles sommet-disjoints de longueur paires. Nous prouvons que l'hypercube de dimension n peut être partitionné en k cycles sommet-disjoints si k<n-1, et qui utilisent des arêtes de même direction dans l'hypercube. Le problème de plongement de graphes dans l'hypercube fera l'objet du dernier chapitre. Dans ce chapitre, nous introduisons une nouvelle famille de graphes, les MD-graphes. Nous avons montré que les quasi-étoiles et les double quasi-étoiles sont des graphes plongeables dans certain MD-graphes. Nous avons réussi à montrer que les MD-graphes sont des graphes plongeables dans l'hypercube, ce qui nous remontre que les quasi-étoiles, mais également montre que les double quasi-étoiles sont des graphes plongeables dans Qn. Ce qui résout un problème ouvert posé par Ivan Havel depuis 1984
APA, Harvard, Vancouver, ISO, and other styles
2

Kobeissi, Mohamed. "Plongement de graphes dans l'hypercube." Phd thesis, Université Joseph Fourier (Grenoble), 2001. http://tel.archives-ouvertes.fr/tel-00004683.

Full text
Abstract:
Le but principal de ce manuscrit est de montrer que certaines familles de graphes sont des graphes plongeables dans l'hypercube. Un problème d'une autre nature sera traité, il concerne la partition de l'hypercube en des cycles sommet-disjoints de longueur paires. Nous prouvons que l'hypercube de dimension n peut être partitionné en k cycles sommet-disjoints si k
APA, Harvard, Vancouver, ISO, and other styles
3

Pedron, Mark [Verfasser]. "Zero Partition Cycles : A Recursive Formula for Characteristic Classes of Surface Bundles / Mark Pedron." Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1132711517/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bai, Yandong. "Arc colorings and cycles in digraphs." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112356/document.

Full text
Abstract:
Cette thèse étudie la coloration d'arcs et de cycles dans les graphes orientés. Elle se concentre sur les sujets suivants : la coloration propre d'arcs avec des sommet-distingué dans les graphes orientés, les cycles courts dans les graphes orientés avec des sous-graphes interdits, les cycles sommet-disjoints dans dans les tournois bipartis, les cycle-facteurs dans les tournois bipartis régulier et les arcs universels dans les tournois. La thèse est basée sur cinq articles originaux publiés ou présentés dans des journaux. Les principaux résultats sont les suivants. Nous introduisons la coloration propre d'arcs avec des sommet-distingué dans les graphes orientés. Nous avons proposé une conjecture sur le nombre arc-chromatique sommet-distingué et nous avons aussi donné quelque résultats partiels. Nous avons étendu un résultat de Razborov en prouvant que la conjecture de Caccetta-Häggkvist est vraie pour certains graphes orientés avec des sous-graphes interdits. Nous avons montré que chaque tournoi biparti avec degré sortant minimum au moins qr-1 contient r cycles de sommets-disjoints de toutes longueurs possibles. Le cas spécial q=2 confirme le cas du tournoi biparti de la conjecture de Bermond-Thomassen. Nous avons montré que chaque tournoi biparti k-régulier avec k&gt;2 que l'on notera B a deux cycles complémentaires de longueurs 6 et |V(B)-6|, à moins que B soit isomorphe à un graphe spécifique, étayant ainsi une conjecture sur des 2-cycles-facteurs dans les tournois bipartis. En outre, nous montrons que tous les tournois bipartis réguliers ont un k-cycle-facteur. Nous donnons une condition nécessaire et suffisante pour l'existence d'un arc universel dans un tournoi et nous caractérisons tous les tournois où chaque arc est universel<br>In this thesis, we study arc colorings and cycles in digraphs. The following topics are considered: vertex-distinguishing proper arc colorings in digraphs, short cycles in digraphs with forbidden subgraphs , disjoint cycles in bipartite tournaments, cycle factors in regualr bipartite tournaments and universal arcs in tournaments. The main results are contained in five original articles published or submitted to an international journal. We introduce vertex-distinguishing proper arc colorings of digraphs. A conjecture on the vertex-distinguishing arc-chromatic number is given and some partial results are obtained. We extend a result of Razborov by proving that the Caccetta-Häggkvist conjecture is true for digraphs with certain induced forbidden subgraphs or with certain forbidden subgraphs. We show that every bipartite tournament with minimum outdegree at least qr-1 has r vertex disjoint cycles of any given possible lengths. The special case q=2 of the result verifies the bipartite tournament case of the Bermond-Thomassen conjecture. As a partial support of a conjecture on 2-cycle-factors in bipartite tournaments, we prove that every k-regular bipartite tournament B with k&gt;2 has two complementary cycles of lengths 6 and |V(B)|-6, unless B is isomorphic to a special digraph. Besides, we show that every k-connected regular bipartite tournament has a k-cycle-factor. We also give a sufficient and necessary condition for the existence of a universal arc in a tournament and characterize all the tournaments in which every arc is universal
APA, Harvard, Vancouver, ISO, and other styles
5

Shepard, Samuel Steven. "Anonymous Opt-Out and Secure Computation in Data Mining." Bowling Green State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1194282001.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Partition en cycles disjoints"

1

Sauer, N., and M. El-Zahar. "Partition Theorems for Graphs Respecting the Chromatic Number." In Cycles and Rays. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0517-7_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wallis, W. D. "The Clique Partition Number of the Complement of a Cycle." In Annals of Discrete Mathematics (27): Cycles in Graphs. Elsevier, 1985. http://dx.doi.org/10.1016/s0304-0208(08)73026-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Partition en cycles disjoints"

1

Lijuan, Chen. "Bipartite Graph Partition Problems into Cycles." In 2010 Third International Conference on Information and Computing Science (ICIC). IEEE, 2010. http://dx.doi.org/10.1109/icic.2010.53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rechard, Rob P., Joon Lee, Mark Sutton, Harris R. Greenberg, Bruce A. Robinson, and W. Mark Nutt. "Impact of Advanced Fuel Cycles on Uncertainty Associated With Geologic Repositories." In ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icem2013-96211.

Full text
Abstract:
This paper provides a qualitative evaluation of the impact of advanced fuel cycles, particularly partition and transmutation of actinides, on the uncertainty associated with geologic disposal. Based on the discussion, advanced fuel cycles, will not materially alter (1) the repository performance, (2) the spread in dose results around the mean, (3) the modeling effort to include significant features, events, and processes in the performance assessment, or (4) the characterization of uncertainty associated with a geologic disposal system in the regulatory environment of the United States.
APA, Harvard, Vancouver, ISO, and other styles
3

Durgun, Derya Doğan, and Eray Sam. "Equi Integrity Partitions in Graphs." In International Students Science Congress. Izmir International Guest Student Association, 2021. http://dx.doi.org/10.52460/issc.2021.031.

Full text
Abstract:
In this paper some definitions and theorems of equi integrity defined by Sundareswaran and Swaminathan are given. Equi integrity partition of transformation graphs of paths and cycles are calculated where n&gt;3.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!