Journal articles on the topic 'Passivated perovskite'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Passivated perovskite.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Song, Changjian, Xiaodong Li, Yueming Wang, et al. "Sulfonyl-based non-fullerene electron acceptor-assisted grain boundary passivation for efficient and stable perovskite solar cells." Journal of Materials Chemistry A 7, no. 34 (2019): 19881–88. http://dx.doi.org/10.1039/c9ta06439g.
Full textZhou, Donglei, Li Tao, Zhongzheng Yu, Jiannan Jiao, and Wen Xu. "Efficient chromium ion passivated CsPbCl3:Mn perovskite quantum dots for photon energy conversion in perovskite solar cells." Journal of Materials Chemistry C 8, no. 35 (2020): 12323–29. http://dx.doi.org/10.1039/d0tc03115a.
Full textFu, Qingxia, Xianglan Tang, Dengxue Li, et al. "An efficient and stable tin-based perovskite solar cell passivated by aminoguanidine hydrochloride." Journal of Materials Chemistry C 8, no. 23 (2020): 7786–92. http://dx.doi.org/10.1039/d0tc01464h.
Full textZhang, Yue, Yuxia Han, Yanting Xu, et al. "Enhancing efficiency and stability of perovskite solar cells via in situ incorporation of lead sulfide layer." Sustainable Energy & Fuels 5, no. 14 (2021): 3700–3704. http://dx.doi.org/10.1039/d1se00751c.
Full textRao, K. D. M., Mozakkar Hossain, Umesh, et al. "Transparent, flexible MAPbI3 perovskite microwire arrays passivated with ultra-hydrophobic supramolecular self-assembly for stable and high-performance photodetectors." Nanoscale 12, no. 22 (2020): 11986–96. http://dx.doi.org/10.1039/d0nr01394c.
Full textKe, Weijun, Dewei Zhao, Chuanxiao Xiao, et al. "Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells." Journal of Materials Chemistry A 4, no. 37 (2016): 14276–83. http://dx.doi.org/10.1039/c6ta05095f.
Full textCao, Bingbing, Longkai Yang, Shusen Jiang, Hong Lin, Ning Wang, and Xin Li. "Flexible quintuple cation perovskite solar cells with high efficiency." Journal of Materials Chemistry A 7, no. 9 (2019): 4960–70. http://dx.doi.org/10.1039/c8ta11945g.
Full textCao, Yue, Wenlei Zhu, Lingling Li, et al. "Size-selected and surface-passivated CsPbBr3 perovskite nanocrystals for self-enhanced electrochemiluminescence in aqueous media." Nanoscale 12, no. 13 (2020): 7321–29. http://dx.doi.org/10.1039/d0nr00179a.
Full textAbuhelaiqa, Mousa, Sanghyun Paek, Yonghui Lee, et al. "Stable perovskite solar cells using tin acetylacetonate based electron transporting layers." Energy & Environmental Science 12, no. 6 (2019): 1910–17. http://dx.doi.org/10.1039/c9ee00453j.
Full textShen, Dongyang, Chengzhao Luo, Ronghong Zheng, Qinyi Li, and Yu Chen. "Improvement of photoluminescence intensity and film morphology of perovskite by Ionic liquids additive." E3S Web of Conferences 257 (2021): 03066. http://dx.doi.org/10.1051/e3sconf/202125703066.
Full textWang, Tun, Zhendong Cheng, Yulin Zhou, Hong Liu, and Wenzhong Shen. "Highly efficient and stable perovskite solar cells via bilateral passivation layers." Journal of Materials Chemistry A 7, no. 38 (2019): 21730–39. http://dx.doi.org/10.1039/c9ta08084h.
Full textGuo, Yanru, Shuai Yuan, Dongping Zhu, et al. "Influence of the MACl additive on grain boundaries, trap-state properties, and charge dynamics in perovskite solar cells." Physical Chemistry Chemical Physics 23, no. 10 (2021): 6162–70. http://dx.doi.org/10.1039/d0cp06575g.
Full textHuang, Shao-Ku, Ying-Chiao Wang, Wei-Chen Ke, et al. "Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells." Journal of Materials Chemistry A 8, no. 44 (2020): 23607–16. http://dx.doi.org/10.1039/d0ta08752a.
Full textWang, Helong, Guanchen Liu, Chongyang Xu, Fanming Zeng, Xiaoyin Xie, and Sheng Wu. "Surface Passivation Using N-Type Organic Semiconductor by One-Step Method in Two-Dimensional Perovskite Solar Cells." Crystals 11, no. 8 (2021): 933. http://dx.doi.org/10.3390/cryst11080933.
Full textHossain, Maimur, Rabindranath Garai, Ritesh Kant Gupta, Rahul Narasimhan Arunagirinathan, and Parameswar Krishnan Iyer. "Fluoroarene derivative based passivation of perovskite solar cells exhibiting excellent ambient and thermo-stability achieving efficiency >20%." Journal of Materials Chemistry C 9, no. 32 (2021): 10406–13. http://dx.doi.org/10.1039/d1tc02335g.
Full textRuan, Wei, Zhiwei Zhang, Yanqiang Hu, Fan Bai, Ting Qiu, and Shufang Zhang. "Self-passivated perovskite solar cells with wider bandgap perovskites as electron blocking layer." Applied Surface Science 465 (January 2019): 420–26. http://dx.doi.org/10.1016/j.apsusc.2018.09.176.
Full textCao, Jia Xing, Hui Feng Shen, Lei Cheng, et al. "Perovskite solar cell with improved performance passivated by all inorganic perovskite quantum dots." Journal of Physics: Conference Series 1885, no. 2 (2021): 022019. http://dx.doi.org/10.1088/1742-6596/1885/2/022019.
Full textFu, Peng-Fei, Dan-Ni Yu, Zi-Jian Peng, Jin-Kang Gong, and Zhi-Jun Ning. "Perovskite solar cells passivated by distorted two-dimensional structure." Acta Physica Sinica 68, no. 15 (2019): 158802. http://dx.doi.org/10.7498/aps.68.20190306.
Full textLu, Haizhou, Huotian Zhang, Sijian Yuan, Jiao Wang, Yiqiang Zhan, and Lirong Zheng. "An optical dynamic study of MAPbBr3 single crystals passivated with MAPbCl3/I3-MAPbBr3 heterojunctions." Physical Chemistry Chemical Physics 19, no. 6 (2017): 4516–21. http://dx.doi.org/10.1039/c6cp07182a.
Full textZhu, Yongsheng, Jun Zhao, Gang Yang, Xiumei Xu, and Gencai Pan. "Ammonium acetate passivated CsPbI3 perovskite nanocrystals for efficient red light-emitting diodes." Nanoscale 12, no. 14 (2020): 7712–19. http://dx.doi.org/10.1039/d0nr01378a.
Full textLiu, Na, Qin Du, Guangzhong Yin, et al. "Extremely low trap-state energy level perovskite solar cells passivated using NH2-POSS with improved efficiency and stability." Journal of Materials Chemistry A 6, no. 16 (2018): 6806–14. http://dx.doi.org/10.1039/c7ta11345e.
Full textXie, Lisha, Jianwei Wang, Kejun Liao, et al. "Low-cost coenzyme Q10 as an efficient electron transport layer for inverted perovskite solar cells." Journal of Materials Chemistry A 7, no. 31 (2019): 18626–33. http://dx.doi.org/10.1039/c9ta06317j.
Full textMing-Yue, Lin, Ju Bo, Li Yan, and Chen Xue-Lian. "Performance of 2-bromoterephthalic acid passivated all-inorganic perovskite cells." Acta Physica Sinica 70, no. 12 (2021): 128803. http://dx.doi.org/10.7498/aps.70.20202005.
Full textShen, Yalong, Jun Yin, Bo Cai, et al. "Lead-free, stable, high-efficiency (52%) blue luminescent FA3Bi2Br9 perovskite quantum dots." Nanoscale Horizons 5, no. 3 (2020): 580–85. http://dx.doi.org/10.1039/c9nh00685k.
Full textDeng, Longhui, Zhihao Zhang, Yifeng Gao, et al. "Electron-deficient 4-nitrophthalonitrile passivated efficient perovskite solar cells with efficiency exceeding 22%." Sustainable Energy & Fuels 5, no. 8 (2021): 2347–53. http://dx.doi.org/10.1039/d1se00188d.
Full textChen, Yichuan, Qi Meng, Yueyue Xiao, et al. "Mechanism of PbI2 in Situ Passivated Perovskite Films for Enhancing the Performance of Perovskite Solar Cells." ACS Applied Materials & Interfaces 11, no. 47 (2019): 44101–8. http://dx.doi.org/10.1021/acsami.9b13648.
Full textEzike, Sabastine Chinedu, Aderemi Babatunde Alabi, Amarachukwu Nneka Ossai, and Adebayo Olaniyi Aina. "Stability-improved perovskite solar cells through 4-tertbutylpyridine surface-passivated perovskite layer fabricated in ambient air." Optical Materials 112 (February 2021): 110753. http://dx.doi.org/10.1016/j.optmat.2020.110753.
Full textZhao, Yicheng, Qi Li, Wenke Zhou, et al. "Double-Side-Passivated Perovskite Solar Cells with Ultra-low Potential Loss." Solar RRL 3, no. 2 (2018): 1800296. http://dx.doi.org/10.1002/solr.201800296.
Full textGarai, Rabindranath, Ritesh Kant Gupta, Arvin Sain Tanwar, Maimur Hossain, and Parameswar Krishnan Iyer. "Conjugated Polyelectrolyte-Passivated Stable Perovskite Solar Cells for Efficiency Beyond 20%." Chemistry of Materials 33, no. 14 (2021): 5709–17. http://dx.doi.org/10.1021/acs.chemmater.1c01436.
Full textDutt, V. G. Vasavi, Syed Akhil, and Nimai Mishra. "Enhancement of photoluminescence and the stability of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals with phthalimide passivation." Nanoscale 13, no. 34 (2021): 14442–49. http://dx.doi.org/10.1039/d1nr03916d.
Full textSingh, Manvika, Rudi Santbergen, Indra Syifai, Arthur Weeber, Miro Zeman, and Olindo Isabella. "Comparing optical performance of a wide range of perovskite/silicon tandem architectures under real-world conditions." Nanophotonics 10, no. 8 (2020): 2043–57. http://dx.doi.org/10.1515/nanoph-2020-0643.
Full textLiu, Bo-Tau, Bo-Wei Guo, and Rathinam Balamurugan. "Effect of Polyethylene Glycol Incorporation in Electron Transport Layer on Photovoltaic Properties of Perovskite Solar Cells." Nanomaterials 10, no. 9 (2020): 1753. http://dx.doi.org/10.3390/nano10091753.
Full textAbdi-Jalebi, Mojtaba, Zahra Andaji-Garmaroudi, Andrew J. Pearson, et al. "Potassium- and Rubidium-Passivated Alloyed Perovskite Films: Optoelectronic Properties and Moisture Stability." ACS Energy Letters 3, no. 11 (2018): 2671–78. http://dx.doi.org/10.1021/acsenergylett.8b01504.
Full textLu, Min, Jie Guo, Po Lu, et al. "Ammonium Thiocyanate-Passivated CsPbI3 Perovskite Nanocrystals for Efficient Red Light-Emitting Diodes." Journal of Physical Chemistry C 123, no. 37 (2019): 22787–92. http://dx.doi.org/10.1021/acs.jpcc.9b06144.
Full textJiang, Ershuai, Yuqian Ai, Jin Yan, et al. "Phosphate-Passivated SnO2 Electron Transport Layer for High-Performance Perovskite Solar Cells." ACS Applied Materials & Interfaces 11, no. 40 (2019): 36727–34. http://dx.doi.org/10.1021/acsami.9b11817.
Full textJiang, Lu-Lu, Zhao-Kui Wang, Meng Li, et al. "Passivated Perovskite Crystallization via g -C3 N4 for High-Performance Solar Cells." Advanced Functional Materials 28, no. 7 (2017): 1705875. http://dx.doi.org/10.1002/adfm.201705875.
Full textYuan, Beilei, Chen Li, Wencai Yi, et al. "PMMA passivated CsPbI2Br perovskite film for highly efficient and stable solar cells." Journal of Physics and Chemistry of Solids 153 (June 2021): 110000. http://dx.doi.org/10.1016/j.jpcs.2021.110000.
Full textTai, Edward Guangqing, Ryan Taoran Wang, Jason Yuanzhe Chen, and Gu Xu. "A Water-Stable Organic-Inorganic Hybrid Perovskite for Solar Cells by Inorganic Passivation." Crystals 9, no. 2 (2019): 83. http://dx.doi.org/10.3390/cryst9020083.
Full textYang, Zilu, Qin Fan, Tao Shen, et al. "Amine-passivated ZnO electron transport layer for thermal stability-enhanced perovskite solar cells." Solar Energy 204 (July 2020): 223–30. http://dx.doi.org/10.1016/j.solener.2020.04.074.
Full textSong, Li, Xiaoyang Guo, Yongsheng Hu, et al. "Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr3 Films." Journal of Physical Chemistry Letters 8, no. 17 (2017): 4148–54. http://dx.doi.org/10.1021/acs.jpclett.7b01733.
Full textPeng, Jun, Daniel Walter, Yuhao Ren, et al. "Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells." Science 371, no. 6527 (2021): 390–95. http://dx.doi.org/10.1126/science.abb8687.
Full textWang, Xian, Dayujia Huo, Xin Wang, Minjie Li, Yong Wang та Yan Wan. "Hot Carrier Dynamics and Charge Trapping in Surface Passivated β-CsPbI3 Inorganic Perovskite". Journal of Physical Chemistry Letters 12, № 29 (2021): 6907–13. http://dx.doi.org/10.1021/acs.jpclett.1c01922.
Full textYu, Huanqin, Ting Liu, Chen Li, Beilei Yuan, Jinbiao Jia, and Bingqiang Cao. "Guanidinium cation passivated Pb-Cu alloyed perovskite for efficient low-toxicity solar cells." Applied Surface Science 567 (November 2021): 150778. http://dx.doi.org/10.1016/j.apsusc.2021.150778.
Full textZhang, Cong-Cong, Meng Li, Zhao-Kui Wang, et al. "Passivated perovskite crystallization and stability in organic–inorganic halide solar cells by doping a donor polymer." Journal of Materials Chemistry A 5, no. 6 (2017): 2572–79. http://dx.doi.org/10.1039/c6ta08970d.
Full textGao, Yanbo, Yanjie Wu, Yue Liu, et al. "Interface and grain boundary passivation for efficient and stable perovskite solar cells: the effect of terminal groups in hydrophobic fused benzothiadiazole-based organic semiconductors." Nanoscale Horizons 5, no. 12 (2020): 1574–85. http://dx.doi.org/10.1039/d0nh00374c.
Full textJiang, Lu-Lu, Zhao-Kui Wang, Meng Li, et al. "Perovskite Solar Cells: Passivated Perovskite Crystallization via g -C3 N4 for High-Performance Solar Cells (Adv. Funct. Mater. 7/2018)." Advanced Functional Materials 28, no. 7 (2018): 1870047. http://dx.doi.org/10.1002/adfm.201870047.
Full textMa, Zhu, Weiya Zhou, Dejun Huang, et al. "Nicotinamide as Additive for Microcrystalline and Defect Passivated Perovskite Solar Cells with 21.7% Efficiency." ACS Applied Materials & Interfaces 12, no. 47 (2020): 52500–52508. http://dx.doi.org/10.1021/acsami.0c12030.
Full textPopoola, AbdulJelili, Mohammed A. Gondal, Idris K. Popoola, Luqman E. Oloore, and Osman M. Bakr. "Fabrication of bifacial sandwiched heterojunction photoconductor – Type and MAI passivated photodiode – Type perovskite photodetectors." Organic Electronics 84 (September 2020): 105730. http://dx.doi.org/10.1016/j.orgel.2020.105730.
Full textYang, Fei, Hongting Chen, Rui Zhang, et al. "Efficient and Spectrally Stable Blue Perovskite Light‐Emitting Diodes Based on Potassium Passivated Nanocrystals." Advanced Functional Materials 30, no. 10 (2020): 1908760. http://dx.doi.org/10.1002/adfm.201908760.
Full textTennyson, Elizabeth M., Mojtaba Abdi‐Jalebi, Kangyu Ji, et al. "Correlated Electrical and Chemical Nanoscale Properties in Potassium‐Passivated, Triple‐Cation Perovskite Solar Cells." Advanced Materials Interfaces 7, no. 17 (2020): 2000515. http://dx.doi.org/10.1002/admi.202000515.
Full text