Academic literature on the topic 'Passive UHF RFID tags'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Passive UHF RFID tags.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Passive UHF RFID tags"

1

Gigac, Juraj, Mária Fišerová, Maroš Kováč, and Svetozár Hegyi. "PASSIVE UHF RFID TAGS WITH THERMAL-TRANSFER-PRINTED ANTENNAS." Materiali in tehnologije 55, no. 2 (April 15, 2021): 277–82. http://dx.doi.org/10.17222/mit.2020.184.

Full text
Abstract:
Papers for the thermal transfer printing of UHF RFID antennas were prepared by coating and calendering. Real and imaginary components of the impedance of the UHF RFID antennas depended on their design, coating composition and conditions of paper calendering. Passive UHF RFID tags were constructed from antennas and chips whose real and imaginary components of impedance in the 860–960 MHz frequency band were at approximately the same level. The communication quality of passive UHF RFID tags was evaluated by measuring the reading range using the designed UHF RFID reading unit. The reading range of experimental UHF RFID tags with printed antennas on paper and commercial UHF RFID tags with chemically etched antennas on a PET film were identical in the 860 MHz frequency.
APA, Harvard, Vancouver, ISO, and other styles
2

He, Han, Lauri Sydänheimo, Johanna Virkki, and Leena Ukkonen. "Experimental Study on Inkjet-Printed Passive UHF RFID Tags on Versatile Paper-Based Substrates." International Journal of Antennas and Propagation 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/9265159.

Full text
Abstract:
We present the possibilities and challenges of passive UHF RFID tag antennas manufactured by inkjet printing silver nanoparticle ink on versatile paper-based substrates. The most efficient manufacturing parameters, such as the pattern resolution, were determined and the optimal number of printed layers was evaluated for each substrate material. Next, inkjet-printed passive UHF RFID tags were fabricated on each substrate with the optimized parameters and number of layers. According to our measurements, the tags on different paper substrates showed peak read ranges of 4–6.5 meters and the tags on different cardboard substrates exhibited peak read ranges of 2–6 meters. Based on their wireless performance, these inkjet-printed paper-based passive UHF RFID tags are sufficient for many future wireless applications and comparable to tags fabricated on more traditional substrates, such as polyimide.
APA, Harvard, Vancouver, ISO, and other styles
3

Hu, Shengbo, Bing Si, Heng Shu, and Jinrong Mo. "Power Transmission of UHF Passive Embedded RFID in Tires." International Journal of Antennas and Propagation 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/897041.

Full text
Abstract:
UHF passive RFID tags embedded in tires have a deep impact on tire life cycle management and tire monitoring. In this work, we present the power transmission of UHF passive embedded RFID in tires. In UHF passive embedded RFID systems in tires, the bidirectional radio link between reader and tags goes through air and tires. The total path loss contains reflection loss at tire-air boundaries and attenuation loss in the tires. The power transmission is based on the permittivity of tires and tire-air boundary conditions. We give an OCP method for measuring the permittivity of tires. By analyzing the radio link for UHF passive RFID, we establish a model of wave propagation of UHF embedded RFID in tires and make numerical analyses. Numerical analyses show that the error of the OCP methods for measuring the permittivity of tires is small, the parallel polarization and normal incidence of wave are chosen for improving the performance of the UHF embedded RFID in tires, and distance is chosen to keep power transmission function from locating valley.
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, He, Ye Ding, Peng Li, and Ruchuan Wang. "Indoor Localization Using the Reference Tags and Phase of Passive UHF-RFID Tags." International Journal of Business Data Communications and Networking 13, no. 2 (July 2017): 69–82. http://dx.doi.org/10.4018/ijbdcn.2017070106.

Full text
Abstract:
In recent years, indoor position has been an important role in many applications, such as production management, store management and shelves in supermarket or library. Much time and energy are exhausted because one object cannot be quickly and accurately located. Traditional indoor position systems have some problems, such as complicated software and hardware system, inaccurate position and high time complexity. In this paper, the authors propose an RFID-based collaborative information system, Tagrom, for indoor localization using COTS RFID readers and tags. Unlike former methods, Tagrom works with reference tags and phase of Passive UHF-RFID tags, which improves traditional distribution of reference tags and utilize RF phase replace of traditional RSSI or multipath profile to determine the position of target RFID tags.
APA, Harvard, Vancouver, ISO, and other styles
5

Kolarovszki, Peter, Zuzana Kolarovszká, Dragan Perakovic, and Marko Periša. "Laboratory Testing of Active and Passive UHF RFID Tags." Transport and Telecommunication Journal 17, no. 2 (June 1, 2016): 144–54. http://dx.doi.org/10.1515/ttj-2016-0014.

Full text
Abstract:
Abstract This article deals with research of laboratory testing by active and passive UHF tags and therefore mutual coexistence of active and passive RFID technology, which is a part of automatic identification and data capture. In this article we would like to describe an identification of transport unit based on passive technology and also by active technology. We would like to specify, how this technologies can work together and in which application focuses on postal and logistics. All results are verified by measurement in our AIDC laboratory, which is located at the University of Žilina. Our research contains different types of measurements in order to point out the possible influence of these two technologies. The results of our research bring the new point of view and indicate the ways using of UHF RFID technology in postal and logistics applications. At the end of this article is characterized the utilization of the RFID technology in postal logistics chain by using both passive and active technologies.
APA, Harvard, Vancouver, ISO, and other styles
6

Virtanen, Juha, Toni Bjorninen, Leena Ukkonen, and Lauri Sydanheimo. "Passive UHF Inkjet-Printed Narrow-Line RFID Tags." IEEE Antennas and Wireless Propagation Letters 9 (2010): 440–43. http://dx.doi.org/10.1109/lawp.2010.2050050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

De Donno, Danilo. "Unconventional UHF RFID Tags with Sensing and Computing Capabilities." Journal of Communications Software and Systems 10, no. 2 (June 23, 2014): 83. http://dx.doi.org/10.24138/jcomss.v10i2.128.

Full text
Abstract:
The design of fully-passive UHF RFID tags preserving cost-effectiveness, yet supplying augmented capabilities, represents an ambitious and stimulating challenge, as such devices would pave the way to a large class of applications where identification, computation, automatic cognition, and wireless sensing are required. In this work, two solutions are proposed. The former, named RAMSES, is optimized for RFID-based sensing and relies on a novel approach exploiting a new-generation I2C-UHF RFID chip. RAMSES is able to write sensor data into the EPC and communicate up to 5 m of distance from a conventional UHF RFID Class-1 Generation-2 (Gen2) reader. The latter solution, named SPARTACUS, renounces part of this long operating range in exchange for additional computing capabilities enabling an increased interaction with RFID readers. SPARTACUS represents the first example in literature of RFID device embedding sensing/actuation functionalities, distributed computation, and fully bidirectional communication with the reader. Satisfactory operating range, sensing, computation, data storage, and cost-effectiveness are the main strengths making the proposed devices definitely suitable for a wide array of novel and unconventional RFID applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Bhogal, Varun, Zornitza Genova Prodanoff, Sanjay P. Ahuja, and Kenneth Martin. "On BFSA Collision Resolution in LF, HF, and UHF RFID Networks." International Journal of Wireless Networks and Broadband Technologies 4, no. 2 (April 2015): 44–55. http://dx.doi.org/10.4018/ijwnbt.2015040104.

Full text
Abstract:
RFID (radio frequency identification) technology has gained popularity in a number of applications. Decreased cost of hardware components along with wide adoption of international RFID standards have led to the rise of this technology. One of the major factors associated with the implementation of RFID infrastructure is the cost of tags. RFID tags operating in the low frequency spectrum are widely used because they are the least expensive, but have a small implementation range. This paper presents an analysis of RFID performance across low frequency (LF), high frequency (HF), and ultra-high frequency (UHF) environments. The authors' evaluation is theoretical, using a passive-tag BFSA based simulation model that assumes 10 to 1,500 tags per reader and is created with OPNET Modeler 17. Ceteris paribus, the authors' results indicate that total census delay is lowest for UHF tags, while network throughput performance of LF tags is highest for large scale implementations of hundreds of tags in reader's range. A statistical analysis has been conducted on the findings for the three different sets.
APA, Harvard, Vancouver, ISO, and other styles
9

Catarinucci, Luca, Riccardo Colella, Mario De Blasi, Luigi Patrono, and Luciano Tarricone. "Experimental Performance Evaluation of Passive UHF RFID Tags in Electromagnetically Critical Supply Chains." Journal of Communications Software and Systems 7, no. 2 (June 22, 2011): 59. http://dx.doi.org/10.24138/jcomss.v7i2.179.

Full text
Abstract:
Radio Frequency Identification is going to play a veryimportant role as auto-identification solution for manyapplication scenarios, where item-level tagging and highperformance are crucial. In such a context, the use of passive Ultra High Frequency (UHF) tags is strongly suggested but, unfortunately, general-purpose commercial tags could not meet all the requirements in presence of critical operating conditions, including the presence of metals and liquids, the misalignment between tag and reader antennas, and the need of multiple reading of tags. In this paper, the main features that a UHF tag should own to work properly in the whole supply chain are presented. A tag, named below Enhanced tag, satisfying all theindividuated requirements has been also realized and validated in a controlled test environment simulating the pharmaceutical supply chain. Tests have been focused on the above-mentioned critical conditions. The performance of the Enhanced tag, in terms of successful read rate, has been compared with that of some commercial Far Field and Near Field UHF tags. The experimental results are impressive and clearly demonstrate that ad hoc Far Field UHF tags are able to effectively solve many of the performance degradation problems affecting generalpurpose tags. Finally, the proposed tag has been also tested in extreme conditions, applying it directly on Tetra Pak packages containing liquid, with interesting results in terms of platformtolerant features.
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Honggang, Ruixue Yu, Ruoyu Pan, Mengyuan Liu, Qiongdan Huang, and Jingfeng Yang. "Fast tag identification for mobile RFID robots in manufacturing environments." Assembly Automation 41, no. 3 (March 19, 2021): 292–301. http://dx.doi.org/10.1108/aa-11-2020-0182.

Full text
Abstract:
Purpose In manufacturing environments, mobile radio frequency identification (RFID) robots need to quickly identify and collect various types of passive tag and active tag sensor data. The purpose of this paper is to design a robot system compatible with ultra high frequency (UHF) band passive and active RFID applications and to propose a new anti-collision protocol to improve identification efficiency for active tag data collection. Design/methodology/approach A new UHF RFID robot system based on a cloud platform is designed and verified. For the active RFID system, a grouping reservation–based anti-collision algorithm is proposed in which an inventory round is divided into reservation period and polling period. The reservation period is divided into multiple sub-slots. Grouped tags complete sub-slot by randomly transmitting a short reservation frame. Then, in the polling period, the reader accesses each tag by polling. When tags’ reply collision occurs, the reader tries to re-query collided tags once, and the pre-reply tags avoid collisions through random back-off and channel activity detection. Findings The proposed algorithm achieves a maximum theoretical system throughput of about 0.94, and very few tag data frame transmissions overhead. The capture effect and channel activity detection in physical layer can effectively improve system throughput and reduce tag data transmission. Originality/value In this paper, the authors design and verify the UHF band passive and active hybrid RFID robot architecture based on cloud collaboration. And, the proposed anti-collision algorithm would improve active tag data collection speed and reduce tag transmission overhead in complex manufacturing environments.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Passive UHF RFID tags"

1

Contractor, Bhavik. "Two Dimensional Localization of Passive UHF RFID Tags." Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1229465514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sajal, Sayeed Zebaul Haque. "Low-Cost Passive UHF RFID Tags on Paper Substrates." Thesis, North Dakota State University, 2014. https://hdl.handle.net/10365/27426.

Full text
Abstract:
To reduce the significant cost in the widespread deployment of UHF radio frequency identification (RFID) systems, an UHF RFID tag design is presented on paper substrates. The design is based on meander-line miniaturization techniques and open complementary split ring resonator (OCSRR) elements that reduce required conducting materials by 30%. Another passive UHF RFID tag is designed to sense the moisture based on the antenna's polarization. An inexpensive paper substrate and copper layer are used for flexibility and low-cost. The key characteristic of this design is the sensitivity of the antenna's polarization on the passive RFID tag to the moisture content in the paper substrate. In simulations, the antenna is circularly-polarized when the substrate is dry (?r = 2.38) and is linearly-polarized when the substrate is wet (?r = 35.35). It was shown that the expected read-ranges and desired performance could be achieved reducing the over-all cost of the both designs.
APA, Harvard, Vancouver, ISO, and other styles
3

Gao, Jinlan. "Antenna-based passive UHF RFID sensor tags : Design and application." Doctoral thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-19889.

Full text
Abstract:
RFID, as a low cost technology with a long life time, provides great potential for transmitting sensor data in combination with the ordinary ID number. The sensor can, for example, be integrated either in the chip or in the antenna of an RFID tag.This thesis focuses on the design of antenna-based UHF RFID sensor tags as wireless sensors at the lowest possible cost level compatible with standard communication systems in logistics. The applications of the sensor tags, in this work, mainly target remote humidity sensing. Antenna-based sensory UHF RFID tags utilize the influence that the physical or chemical parameters to be sensed have on the electrical properties of a tag antenna. The variations of the electrical properties of the tag antenna can be measured in many ways. In the thesis, a description is provided as to how these variations are normally measured by an RFID reader without any other assistant equipment. Three structures of antenna-based RFID sensor tags are presented with detailed characterizations. The first one utilizes the sensitivity of the antenna to the surrounding environment to construct RFID sensor tags, where a moisture absorbing layer providing wetness/humidity sensor functionality is placed on the RFID tag antenna to increase the humidity concentration surrounding the tag antenna and the thesis describes how to overcome certain limitations due to disturbances associated with background materials. The second structure directly integrates a small resistive sensor element into an RFID tag antenna and the sensor information can thus modulate the antenna performance by means of galvanic contact. The third structure embeds a small resistive sensor element into a loop which is positioned on top of the tag antenna and the sensor information can thus modulate the performance of the tag antenna by means of electromagnetic coupling. Both theoretical analysis and fullwave simulations are presented for the latter two sensor tag structures in order to characterize the performance of the sensor tags. An ultra-low cost printed humidity sensor with memory functionality is also designed and thoroughly characterized for integration into RFID tag antennas by means of galvanic contact or electromagnetic coupling. The sensor is a 1-bit write-once-read-many (WORM) memory printed using conductive ink. The WORM works as a pure resistive humidity sensor and can provide information about an historical event. The WORM sensor is presented by introducing its geometry, characterizingits behavior in humidity and explaining the principle of the humidity effect. The WORM sensors are also integrated into the RFID tags by means of both galvanic contact and electromagnetic coupling in order to experimentally verify the two concepts. To lower the cost of the RFID tags, the antennas are normally printed, milledor etched on flexible substrates using low-cost high-speed manufacturing methods which in some cases cause a high degree of edge roughness. The edge roughness will affect the behavior of the antenna, however, the characteristics of edge roughness on RFID antennas have previously not received any significant attention. Unforeseen antenna behavior can affect the antenna-based sensor tags, thus the influence of edge roughness is also investigated in the thesis.
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Xunxun. "Design of Passive UHF RFID Tag Antennas and Industry Application." Thesis, Högskolan i Gävle, Institutionen för teknik och byggd miljö, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-8052.

Full text
Abstract:
Nowadays, there is a growing demand for reliable assets security and management in various industries. The company SolarWave is eager to implement a comprehensive security system to produce active protection for their expensive product: solar panels. This security system is not only including assets tracking, monitoring but also combined with a control system, which is used to binary control a switch of solar panel to be on in presence of the correct ID and off in absence of the correct ID. One of the technologies that made this concept viable is known as Radio Frequency Identification (RFID). The thesis project is a sub-project in the development project whose content is mentioned as above. It contains two main parts. One is the system solution for the company. The other is RFID tag design which is in parallel with the company solution in order to reach a scientific level of a master thesis. In this thesis, I systematically analyze the operating mechanism and characteristics of RFID, and propose both active and passive RFID solutions for the company. And I also suggest an alternative radio technology ZigBee which can be used instead or as a complement to RFID. Meanwhile, I propose two designs of RFID tag according to the specification of the solar panel. One is modified meandering antenna. This kind of antenna is very effective and popular in RFID tag design in order to minimize the size of antenna. The other is inductively coupled loop antenna. It is a very useful method for conjugate matching in RFID tag antenna. The required input resistance and reactance can be achieved separately by choosing appropriate geometry parameters. It makes the antenna easier to match to the tag chips. Both the RFID antenna designs are simulated on Ansoft HFSS 12.
APA, Harvard, Vancouver, ISO, and other styles
5

Miranda, Hugo Manuel Oliveira de. "Sistemas RFID UHF." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/16273.

Full text
Abstract:
Mestrado em Engenharia Eletrónica e Telecomunicações
O interesse por sistemas de identificação por radiofrequência (RFID) tem aumentado de forma significativa nos últimos anos, principalmente na identificação e tracking de objectos, animais e pessoas através de um modo de comunicação sem fios. Esta comunicação é feita por ondas de rádio que são transmitidas por um leitor, através de uma antena a um identificador (etiqueta) que atribui a um objeto uma identidade única, o chamado código de identificação único. Esta tecnologia não só identifica, mas também armazena dados atribuídos a determinado objeto, animal ou pessoa. No entanto, o RFID apresenta ainda consideráveis limitações, que inviabilizam o seu uso. Duas importantes razões que tornam esta tecnologia menos interessante _e o seu excessivo custo, causado não só pelos preços dos leitores e das antenas, mas também pelo preço do processo de fabrico das etiquetas; e devido ao facto de serem usados leitores não-reconfiguráveis a novos protocolos de comunicação, novas etiquetas ou até mesmo alterações de frequências. O primeiro objetivo deste projeto foi então desenvolver um front end de radiofrequência para a construção de um leitor RFID UHF reconfigurável de baixo custo, baseado em circuitos programáveis DSP ou FPGA, com um processador embutido e software-defined radio. Com isto pretende-se que os leitores RFID não dependam de transceivers RFID comerciais. Além disso, com este estudo pretendeu-se também a desenvolver antenas e etiquetas RFID, em material orgânico flexível, com um processo de produção de etiquetas simples e de baixo custo. Na primeira parte deste projeto, foi proposto um front end para a banda RFID UHF Europeia e para a banda Americana, que poderá ser usado, no futuro, no desenvolvimento de um leitor RFID. Este front end foi desenhado para ser robusto, de baixo custo, e com o objetivo de emitir e receber sinais de rádio. Na segunda parte, foram desenvolvidas duas antenas para leitores, uma para a banda RFID UHF Americana e outra para a banda RFID UHF Europeia. Por _ultimo, foi alterada uma impressora convencional, comercialmente disponível, e foram feitas também alterações na tinta de impressão, tornando-a condutora, para impressão de antenas para etiquetas RFID em substratos _a base de papel. Todos os parâmetros fundamentais das antenas foram simulados numericamente e testados experimentalmente. As duas antenas testadas mostraram boas performances, em particular, a antena para a banda RFID UHF Europeia, cujos valores resultantes dos testes experimentais foram muitos similares aos encontrados computacionalmente, sendo mesmo melhores para alguns parâmetros. Esta antena, não só apresentou uma boa performance na banda mencionada, mas também na banda RFID UHF Americana. Foram desenvolvidas sete etiquetas RFID, ou seja, desenhadas e impressas usando a impressora jato de tinta modificada, e testadas posteriormente. Todas as etiquetas funcionaram, embora uma delas não tenha apresentado resultados tão satisfatórios. Podemos então concluir que a nossa tecnologia permitiu ter etiquetas impressas por uma impressora convencional e, desta forma, poderá oferecer uma maior independência ás empresas que as produzem, podendo mesmo ser utilizada em ambientes de I&D, em Universidades ou Escolas, de modo simples e barato.
In recent years, Radio Frequency IDentification (RFID) technology has received special attention, especially for identifying and tracking objects, animals and people through a wireless communication connection. Radio waves transmitted from a reader, through an antenna to an identifier, called tag, which attributes an Unique Identification Number (UID) to a object, animal or person are used for this communication. This technology not only helps to identify, but also to collect data attributes about a certain person or object. However, RFID still has important limitations, which slows down its growth considerably. The two main reasons for that are related not only with the excessive cost of this system due to the readers and antennas, but also because it uses non-reconfigurable readers to new communication protocols, tags or even changes in frequencies. Therefore, the first purpose of this project was to develop a front-end to be included into a low-cost reconfigurable RFID UHF reader, based on FPGA or DSP, with an embedded processor and a software-defined radio. In a long-term, it is intended to have readers that does not require commercial RFID transceivers. The second purpose of this study was to develop a simple and low-cost manufacturing process of antennas and tags in exible and organic material. Firstly, a front end for RFID UHF bandwidth across the European Union and in the North America was proposed to be implemented in the future. This front end was designed to be low-cost, robust, in order to emit and receive radio signals. Secondly, two antennas, respectively, for an American and European UHF bandwidth RFID reader were developed in this project. Ultimately, an ordinary home inkjet-printer was modified to jet conductive ink, created as a part of this study, to print tag antennas in paper based substrate. All of the fundamental parameters that needed to be evaluated for antennas were experimentally simulated and tested for the two antennas. Both showed high performances, particularly, the antenna for a European UHF bandwidth RFID reader. This antenna obtained results more similar to the numerical model, and experimental findings were even better for some parameters. Its performance was found to be high even for an American UHF bandwidth RFID reader. Furthermore, seven RFID tags were developed, meaning they were designed and printed on the modified home inkjet-printer, and then its performance was tested. Although one of these tags showed not to be highly efficient, all tags worked adequately for the purpose. Therefore, we can conclude that our technology allowed to print RFID tags using a modified home inkjet-printer, indicating that this method can offer more independency to RFID tag manufacturers and, also allow an extensive use of this system in I&D environment, University or Schools, since it is simple and cheap.
APA, Harvard, Vancouver, ISO, and other styles
6

Cremer, Markus. "Digital beamforming techniques for passive UHF RFID tag localization." Thesis, London South Bank University, 2016. http://researchopen.lsbu.ac.uk/1819/.

Full text
Abstract:
Radio-frequency identification (RFID) technology is on the way to substitute traditional bar codes in many fields of application. Especially the availability of passive ultra-high frequency (UHF) RFID transponders (or tags) in the frequency band between 860 MHz and 960 MHz has fostered the global application in supply chain management. However, the full potential of these systems will only be exploited if the identification of objects is complemented by accurate and robust localization. Passive UHF RFID tags are cost-effective, very small, extremely lightweight, maintenancefree, rugged and can be produced as adhesive labels that can be attached to almost any object. Worldwide standards and frequency regulations have been established and a wide infrastructure of identification systems is operated today. However, the passive nature of the technology requires a simple communication protocol which results in two major limitations with respect to its use for localization purposes: the small signal bandwidth and the small allocated frequency bandwidth. In the presence of multipath reflections, these limitations reduce the achievable localization accuracy and reliability. Thus, new methods have to be found to realize passive UHF RFID localization systems which provide sufficient performance in typical multipath situations. In this thesis, an enhanced transmission channel model for passive UHF RFID localization systems has been proposed which allows an accurate estimation of the channel behaviour to multipath. It has been used to design a novel simulation environment and to identify three solutions to minimize multipath interference: a) by varying the channel interface parameters, b) by applying diversity techniques, c) by installation of UHF absorbers. Based on the enhanced channel model, a new method for tag readability prediction with high reliability has been introduced. Furthermore, a novel way to rate the magnitude of multipath interference has been proposed. A digital receiver beamforming localization method has been presented which uses the Root MUSIC algorithm for angulation of a target tag and multipath reducing techniques for an optimum localization performance. A new multiangulation algorithm has been proposed to enable the application of diversity techniques. A novel transmitter beamforming localization approach has been presented which exploits the precisely defined response threshold of passive tags in order to achieve high robustness against multipath. The basic technique has been improved significantly with respect to angular accuracy and processing times. Novel experimental testbeds for receiver and transmitter beamforming have been designed, built and used for verification of the localization performance in real-world measurements. All the improvements achieved contribute to an enhancement of the accuracy and especially the robustness of passive UHF RFID localization systems in multipath environments which is the main focus of this research.
APA, Harvard, Vancouver, ISO, and other styles
7

Atojoko, Achimugu A. "Design and Modelling of Passive UHF RFID Tags for Energy Efficient Liquid Level Detection Applications. A study of various techniques in the design, modelling, optimisation and deployment of RFID reader and passive UHF RFID tags to achieve effective performance for liquid sensing applications." Thesis, University of Bradford, 2016. http://hdl.handle.net/10454/15906.

Full text
Abstract:
Sewer and oil pipeline spillage issues have become major causes of pollution in urban and rural areas usually caused by blockages in the water storage and drainage system, and oil spillage of underground oil pipelines. An effective way of avoiding this problem will be by deploying some mechanism to monitor these installations at each point in time and reporting unusual liquid activity to the relevant authorities for prompt action to avoid a flooding or spillage occurrence. This research work presents a low cost energy efficient liquid level monitoring technique using Radio Frequency Identification Technology. Passive UHF RFID tags have been designed, modelled and optimized. A simple rectangular tag, the P-shaped tag and S-shaped tag with UHF band frequency of operation (850-950 MHz) has been designed and modelled. Detailed parametric analysis of the rectangular tag is made and the optimised design results analysed and presented in HFSS and Matlab. The optimised rectangular tag designs are then deployed as level sensors in a gully pot. Identical tags were deployed to detect 4 distinct levels in alternate positions and a few inches in seperation distance within the gully pot height (Low, Mid, High and Ultra high). The radiation characteristic of tag sensors in deployment as modelled on HFSS is observed to show consistent performance with application requirements. An in-manhole chamber antenna for an underground communication system is analysed, designed, deployed and measured. The antenna covers dual-band impedance bandwidths (i.e. 824 to 960 MHz, and 1710 to 2170 MHz). The results show that the antenna prototype exhibits sufficient impedance bandwidth, suitable radiation characteristics, and adequate gains for the required underground wireless sensor applications. Finally, a Linearly Shifted Quadrifilar Helical Antenna (LSQHA) designed using Genetic Algorithm optimisation technique for adoption as an RFID reader antenna is proposed and investigated. The new antenna confirms coverage of the RFID bandwidth 860-960 MHz with acceptable power gain of 13.1 dBi.
APA, Harvard, Vancouver, ISO, and other styles
8

Taoufik, Sanae. "Fiabilité et analyse de défaillance des tags RFID UHF passifs sous contraintes environnementales sévères." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR009/document.

Full text
Abstract:
Ces dernières années, la technologie RFID (identification par radiofréquence) s’est fortement développée dans de nombreuses applications industrielles parmi lesquelles les secteurs de l’aéronautique et l’automobile où il y a une forte demande en systèmes d’auto-identification fonctionnant dans des environnements difficiles. Dans ce contexte, l'objectif de ces travaux de thèse est d'étudier les effets du stockage thermique sur la fiabilité des tags RFID UHF passifs. Pour ce faire nous avons adopté une méthodologie homogène contribuant de façon significative à atteindre nos objectifs. La première étape de cette méthodologie consistait à choisir le tag à tester, deux types de tags Web et Tageos provenant de deux fabricants différents ont été soumis à des tests de vieillissement accélérés sous différentes températures. La deuxième étape était de définir les paramètres des tests de vieillissement et de caractériser les tags vieillis. À l'aide d'un banc de mesure dédié, la puissance réfléchie par l’ensemble des tags vieillis est mesurée après chaque phase de vieillissement en fonction de la distance entre l’antenne du tag et celle du lecteur RFID. La puissance réfléchie diminue considérablement après chaque phase de vieillissement avec différentes dynamiques de dégradation pour tous les tags vieillis. Cette dynamique de dégradation dépend du type de tag testé et de la température de test. La dernière étape de la méthodologie comportait l’analyse statistique et physique de défaillance, des différences claires dans les modes, les mécanismes et les temps de défaillance entre les tags Web et Tageos ont été observées. L’analyse physique de défaillance par microscopie optique et MEB a révélé des fissures dans les conducteurs métalliques de l'antenne pour une partie des tags vieillis, cependant pour l’autre partie des tags, aucune défaillance de l'antenne n'a été observée. Des déformations au niveau de la matrice polymère de l'ACP ont été révélées, ce qui a modifié l'adaptation d'impédance entre le RFIC et l'antenne. Des simulations en utilisant le logiciel de modélisation multi-physique COMSOL a été mise en place dans le but de reproduire les mécanismes de défaillances révélés expérimentalement soit au niveau de l’antenne ou de la RFIC. Ces travaux de thèse ont démontré l'importance d'étudier les effets du stockage en haute température sur la fiabilité des tags RFID passifs. Les défaillances sont apparues plus rapidement et les tests ont coûté considérablement moins onéreux par rapport aux autres types de tests de vieillissement accélérés
Nowadays, RFID has strongly developed in many industrial applications, including the aeronautics and automotive sectors, where there is a strong demand for auto-identification systems operating in severe environments. In this context, the objective of this thesis is to study the effects of thermal storage on the reliability of passive UHF RFID tags. To achieve this, we adopted a consistent methodology. The first step of this methodology was to choose the tag under test. Two types of tags Web and Tageos from two different manufacturers are aged under high temperatures. The second step was to define the parameters of the aging tests and to characterize the aged tags. Using a dedicated measurement bench, the reflected power is measured after each aging phase for all tested tags to determine the power loss caused by the high temperature storage. Reflected power decrease significantly after each aging phase with different dynamics of degradation for all aged tags. This dynamics of degradation depends on the temperature test and the type of tag. The final step involved statistical and physical failure analysis. Clear differences about modes, mechanisms and failure times between Web and Tageos tags have been observed, it seems that Tageos tags are more reliable than Web tags. Failure analysis of the samples, using an optical microscope and SEM, has revealed, cracks in the antenna metallic conductors on a part of the aged tags. In another part of the tags, no failures in the antenna have been seen, but clear deformations at the polymer matrix of the ACP have been observed, thus changing the impedance matching between the RFIC and the antenna. Simulations using the COMSOL multiphysics software have been implemented in order to reproduce the experimental failure mechanisms. This thesis work has demonstrated the importance of studying the effects of high temperature storage on the reliability of passive RFID tags. Failures appeared faster and tests cost considerably less than other types of accelerated aging tests
APA, Harvard, Vancouver, ISO, and other styles
9

Proffitt, Donnie E. II. "EXPERIMENTAL INVESTIGATION TO INFORM OPTIMAL CONFIGURATIONS FOR DYNAMIC NEAR-FIELD PASSIVE UHF RFID SYSTEMS." UKnowledge, 2013. http://uknowledge.uky.edu/me_etds/29.

Full text
Abstract:
RFID has been characterized as a “disruptive technology” that has the potential to revolutionize numerous key sectors. A key advantage of passive RFID applications is the ability to wirelessly transmit automatic identification and related information using very little power. This paper presents an experimental investigation to inform the optimal configuration for programming passive ultra-high frequency (UHF) RFID media in dynamic applications. Dynamic programming solutions must be designed around the tag’s functionality, the physical programming configuration and environment. In this investigation, we present a methodology to determine an optimal configuration to maximize the systems programming efficiency for dynamic applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Andia, Vera Gianfranco. "Analyse et exploitation des non linéarités dans les systèmes RFID UHF passifs." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT052/document.

Full text
Abstract:
Avec l'explosion de l'Internet des Objets (IoT), de nouveaux dispositifs permettant de tagguer les objets sont nécessaires afin de permettre non seulement leur identification mais aussi d'assurer des communications fiables et de nouvelles fonctionnalités comme la détection, la localisation ou la capture d'informations. Cette tendance s'appuie sur la technologie bien établie qu'est la radiofréquence par identification (RFID) et donc l'utilisation d'étiquettes (ou tags) faibles coûts et télé-alimentés. Dans ce contexte, de nombreux travaux au niveau de la couche d'application se tournent vers la mise au point de traitements logiciels complémentaires visant à produire de nouveaux types d'information. D'autres travaux visent à améliorer la couche physique avec l'objectif de miniaturiser encore le tag mais aussi de le doter de nouvelles capacités. Jusqu'à présent, il n'existe quasiment pas de travaux concernant la transmission du signal et aucun sur l'exploitation du comportement non-linéaire des puces RFID. Cette thèse vise à étudier les phénomènes non-linéaires produits lors d'une communication RFID.Dans la première partie, deux plateformes de mesure et de caractérisation spécifiques ont été développées : la première vise à observer les signaux au cours d'une communication RFID, et alors caractériser et analyser les effets liés aux phénomènes non linéaires ; la seconde permet d'effectuer différentes mesures directement sur les puces et les caractériser en termes d'impédance, production d'harmoniques et sensibilité. Ces plateformes ont permis : 1) de mettre en évidence que les fréquences harmoniques sont porteuses d'informations qui peuvent être exploitées et même offrir de nouvelles fonctionnalités ; 2) d'obtenir de nombreuses informations sur les propriétés des puces et d'en établir un modèle électrique précis ; 3) de déterminer des critères permettant d'évaluer la performance des tags dans le contexte étudié.Dans la deuxième partie, plusieurs nouveaux tags RFID ont été conçus, fabriqués, mesurés et évalués. Ces nouveaux tags fonctionnent non seulement dans la bande UHF mais aussi sont adaptés à la troisième harmonique dans la bande des microondes. Une méthodologie et des lignes directives d'aide à la conception de ce type de tags ont été établies et s'appuient sur les deux plateformes développées afin de caractériser les différents éléments. Dans un même temps, les effets liés à la fabrication ont aussi été étudiés et des études paramétriques ont permis de mettre en évidence l'effet sur les performances de la géométrie de l'antenne et du type de puce utilisée.Dans une troisième partie, les études se sont focalisées à exploiter les effets non-linéaires des dispositifs de redressement. L'idée générale est de coupler la RFID passive avec les dispositifs de transferts de puissance et de récupération d'énergie avec pour objectifs 1) de maximiser l'efficacité de conversion RF – continu 2) et d'augmenter la distance de lecture des tags passifs. Plusieurs prototypes ont été réalisés et leurs performances ont été démontrées.L'ensemble de ces travaux a mis en évidence un nouveau concept de communication RFID exploitant les non-linéarités générées par les puces RFID. Ce concept ouvre la voie à de nouvelles applications. et a fait l'objet d'une demande de brevet international
Powered by the exploding popularity of the Internet-of-Things (IoT), the demand for tagged devices with labels capable to ensure a reliable communication with added functions beyond the identification, such as sensing, location, health-care, among others, is growing rapidly. Certainly this growing is headed by the well-established Radio Frequency Identification (RFID) technology, and the use of wireless low-cost self-powered tags, in other words passive RFID tags, is the most widespread used alternative. In the constant evolution on this field, usually new software treatments are offered at the application layer with the objective to processing data to produce some new information. Further works aimed at improving the physical layer around the tag antenna miniaturization and matching techniques. So far, little or no work had been done on the exploitation of the communication channel, and certainly none has been done on the exploitation of the non-linear behavior of RFID chips.After presenting the RFID technology and phenomena produced by Radio Frequency (RF) non-linear devices, and leaning in some nearby works on the field, the core of this thesis starts by exposing two characterization platforms for the evaluation of non-linear phenomena presented during the reader-tag communication. One is specialized in radiating measurements considering the whole tag (antenna and chip) under test. The other is specialized in conducted measurements directly over RFID chips, allowing performing different parametric studies (power dependency, impedance, harmonic production, sensitivity). The characterization results show that harmonic signals generated from the passive RFID chip carry information.By exploiting the characterization results and to verify the hypothesis of exploitation of non-linearities in RFID, i.e. the use of harmonic signals, the research is pursued by designing, fabricating, and measuring four different configurations of RFID tags. The new RFID tags operate at the fundamental frequency in the UHF band and at its $3^{rd}$ harmonic in the microwave band. Antenna design policies, fabrication details, and parametric studies on the performance of the new prototypes are presented. The parametric study takes special care in the antenna structure, kind of chip used, received power, and read range.Finally, some alternatives approaches for the exploitation of non-linear effects generated by rectifying devices are presented. Some theoretical aspects and experimental results are discussed linking the passive RFID technology to the theories of Wireless Power Transfer (WPT) and Electromagnetic Energy Harvesting (EEH). The solution takes advantage of the non-linear nature of rectifying elements in order to maximize the RF-to-DC conversion efficiency of EEH devices and increase the read range of passive RFID tags. The solution triggers on the design of a RF multi-device system. The design procedure and tests consider three non-linear phenomena: (1) the impedance power dependency, (2) the harmonic production, and (3) the rectifying dependence on the RF waveform
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Passive UHF RFID tags"

1

Dobkin, Daniel Mark. The RF in RFID: Passive UHF RFID in practice. Amsterdam: Elsevier/ Newnes, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

The RF in RFID: Passive UHF RFID in Practice. Newnes, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Curty, Jari-Pascal, Michel Declercq, Catherine Dehollain, and Norbert Joehl. Design and Optimization of Passive UHF RFID Systems. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Curty, Jari-Pascal, Michel Declercq, Catherine Dehollain, and Norbert Joehl. Design and Optimization of Passive UHF RFID Systems. Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Design and Optimization of Passive UHF RFID Systems. Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Design and Optimization of Passive UHF RFID Systems. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-44710-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Passive UHF RFID tags"

1

Ukkonen, Leena, and Lauri Sydänheimo. "Performance Characterization of Passive UHF RFID Tags." In The Internet of Things, 229–38. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-1674-7_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Deavours, Daniel, and Daniel Dobkin. "UHF Passive RFID Tag Antennas." In Microstrip and Printed Antennas, 263–303. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470973370.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Suzhen, and Gang Wang. "Passive UHF RFID Tag for Cigarette Pack Identification." In Lecture Notes in Electrical Engineering, 405–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25905-0_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zuffanelli, Simone. "A High-Gain Passive UHF-RFID Tag with Increased Read Range." In Antenna Design Solutions for RFID Tags Based on Metamaterial-Inspired Resonators and Other Resonant Structures, 133–41. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62030-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Park, Sangdo, Taeho Kim, and Hongchul Lee. "Improving Position Estimation Accuracy of Mobile Robot by Using UHF Passive RFID Tags." In Convergence and Hybrid Information Technology, 538–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24082-9_66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Choi, Jae Sung, Won Seok Kang, Chang Sik Son, Byung Rak Son, and Dong Ha Lee. "Tag Interference Based Mobile Object Tracking with Passive UHF RFID System." In Computer Science and its Applications, 751–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45402-2_106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Plos, Thomas. "Evaluation of the Detached Power Supply as Side-Channel Analysis Countermeasure for Passive UHF RFID Tags." In Topics in Cryptology – CT-RSA 2009, 444–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00862-7_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Taoufik, Sanae, Ahmed El Oualkadi, Farid Temcamani, Bruno Delacressonniere, and Pascal Dherbécourt. "Simulation and Experimentation of an RFID System in the UHF Band for the Reliability of Passive Tags." In Lecture Notes in Electrical Engineering, 35–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30301-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Costanzo, Sandra, Antonio Costanzo, Antonio Raffo, and Antonio Borgia. "Environmental Effects on the Performances of a UHF Passive Tag-Based Commercial RFID System." In New Advances in Information Systems and Technologies, 317–23. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31307-8_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Choi, Jae Sung, and Hyun Lee. "Deep Analysis of Tag Interference by Tag to Tag Relative Angles with Passive Far Field UHF RFID System." In Advances in Computer Science and Ubiquitous Computing, 660–64. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3023-9_101.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Passive UHF RFID tags"

1

Thomas, Stewart, and Matthew S. Reynolds. "QAM backscatter for passive UHF RFID tags." In 2010 IEEE International Conference on RFID (IEEE RFID 2010). IEEE, 2010. http://dx.doi.org/10.1109/rfid.2010.5467238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Andia-Vera, G., Y. Duroc, and S. Tedjini. "Toward augmented UHF RFID passive tags." In 2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC). IEEE, 2015. http://dx.doi.org/10.1109/ursi-at-rasc.2015.7303025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lum, Kassy M., Donnie Proffitt, Ann Whitney, and Johné M. Parker. "Experimental Investigation and Numerical Optimization of Key Factors Affecting the Programming Efficacy of Passive UHF RFID Tags." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65265.

Full text
Abstract:
Radio Frequency Identification (RFID) is a disruptive technology that uses radio waves to uniquely identify objects. As such, it has the potential to bring significant benefits to numerous government and private sector initiatives. However, significant technical challenges remain. A key area of study is in system performance: while the major hardware components in an RFID system (i.e., tags, readers and middleware) have been and continue to be studied extensively, there has been little research, comparatively, in characterizing RFID system performance. The research presented in this paper was inspired, in part, by a laser printer RFID solution; i.e., one in which the printer simultaneously prints and programs ultra-high frequency (UHF) tags embedded in print media. In this paper, we have conducted a detailed experimental investigation of the primary factors influencing the performance of RFID systems similar to the print solution. This study aims to provide a systematic experimental process for investigating key factors — e.g., the air gap between reader antenna and tag, in-plane orientation of the tag with respect to the reader antenna, and power level output of the reader — which affect the programmability of UHF RFID tags. Results provide a baseline evaluation of the functionality of RFID systems of similar designs and provide a basis for a detailed exploration of the primary factors which affect RFID UHF passive tag dynamic programming capabilities. By understanding which factors significantly affect the readability and programming of RFID tags, this research suggests optimal designs for system functionality and provides data needed in order to advance such designs. Additionally, a key obstacle for RFID implementation is tag selection. Effectively matching tags to applications requires numerous economic and technical considerations; these considerations generate different implementation constraints. This paper lays the foundation for a multi-objective optimization algorithm to help determine optimal tag selection for a given application, based upon tag performance and cost.
APA, Harvard, Vancouver, ISO, and other styles
4

Seigneuret, Gary, Emmanuel Bergeret, and Philippe Pannier. "Auto-tuning in passive UHF RFID tags." In 2010 8th IEEE International NEWCAS Conference (NEWCAS). IEEE, 2010. http://dx.doi.org/10.1109/newcas.2010.5603749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nikitin, Pavel V., and K. V. S. Rao. "Harmonic scattering from passive UHF RFID tags." In 2009 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE, 2009. http://dx.doi.org/10.1109/aps.2009.5171788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Huan-Yang, Sangchul Bae, Atul Bhadkamkar, Yue Weng Mak, and Daniel W. van der Weide. "Coupling passive sensors to UHF RFID tags." In 2012 IEEE Radio and Wireless Symposium (RWS). IEEE, 2012. http://dx.doi.org/10.1109/rws.2012.6175373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lagunes-Aranda, Luis F., Andrea G. Martinez-Lopez, Jaime Martinez-Castillo, Luis E. Carrion-Rivera, Ruben A. Gonzalez-Benitez, and Jose L. Garcia Gervacio. "Testbed module for UHF passive RFID tags." In 2016 IEEE International Engineering Summit. II. IEEE, 2016. http://dx.doi.org/10.1109/iesummit.2016.7459772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Teran Guerra, J. D., J. Martinez-Castillo, R. Lopez-Leal, I. Arceo-Rosas, C. Caldernn-Ramon, L. J. Morales-Mendoza, A. L. Herrera-May, and J. E. Escalante-Martinez. "Antennas Design for UHF Passive RFID Tags." In 2019 Latin American Electron Devices Conference (LAEDC). IEEE, 2019. http://dx.doi.org/10.1109/laed.2019.8714725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

de Souza, A. C., T. P. Vuong, Y. Duroc, and A. Luce. "Normalized power calculation to UHF RFID passive tags characterization." In 2014 IEEE Brasil RFID. IEEE, 2014. http://dx.doi.org/10.1109/brasilrfid.2014.7128965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hua, Meng-Chang, and Hsin-Chin Liu. "Simultaneous AoA estimations for two passive UHF RFID tags." In 2015 IEEE International Conference on RFID Technology and Applications (RFID-TA). IEEE, 2015. http://dx.doi.org/10.1109/rfid-ta.2015.7379791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography