Journal articles on the topic 'Path fields'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Path fields.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cho, Yong Seung, and Soon-Tae Hong. "Jacobi Fields in Path Space." Journal of the Korean Physical Society 57, no. 6 (2010): 1344–49. http://dx.doi.org/10.3938/jkps.57.1344.
Full textBorsari, Lucilía D., Fernanda S. P. Cardona, and Peter Wong. "Equivariant path fields on topological manifolds." Topological Methods in Nonlinear Analysis 33, no. 1 (2009): 1. http://dx.doi.org/10.12775/tmna.2009.001.
Full textKo, Inyoung, Beobkyoon Kim, and Frank Chongwoo Park. "Randomized path planning on vector fields." International Journal of Robotics Research 33, no. 13 (2014): 1664–82. http://dx.doi.org/10.1177/0278364914545812.
Full textLaflamme, R. "Thermo fields from Euclidean path integrals." Physica A: Statistical Mechanics and its Applications 158, no. 1 (1989): 58–63. http://dx.doi.org/10.1016/0378-4371(89)90507-4.
Full textNolan, John P. "Path Properties of Index-$\beta$ Stable Fields." Annals of Probability 16, no. 4 (1988): 1596–607. http://dx.doi.org/10.1214/aop/1176991586.
Full textHWANG, Cheolhoi, and Haewon LEE*. "Fermi Fields, Clifford Alegebras and Path Integrals." New Physics: Sae Mulli 66, no. 6 (2016): 742–47. http://dx.doi.org/10.3938/npsm.66.742.
Full textWong, Peter. "Equivariant Path Fields on $\bf G$-complexes." Rocky Mountain Journal of Mathematics 22, no. 3 (1992): 1139–45. http://dx.doi.org/10.1216/rmjm/1181072717.
Full textTANIMURA, SHOGO, and IZUMI TSUTSUI. "INDUCED GAUGE FIELDS IN THE PATH-INTEGRAL." Modern Physics Letters A 10, no. 34 (1995): 2607–17. http://dx.doi.org/10.1142/s021773239500274x.
Full textde Montigny, M., F. C. Khanna, and F. M. Saradzhev. "Path-integral quantization of Galilean Fermi fields." Annals of Physics 323, no. 5 (2008): 1191–214. http://dx.doi.org/10.1016/j.aop.2007.08.002.
Full textZiemiański, Krzysztof. "Directed path spaces via discrete vector fields." Applicable Algebra in Engineering, Communication and Computing 30, no. 1 (2018): 51–74. http://dx.doi.org/10.1007/s00200-018-0360-4.
Full textDoria, R. M., and J. A. Helayel-Neto. "A possible path towards massive vector fields." Acta Physica Hungarica 71, no. 1-2 (1992): 89–98. http://dx.doi.org/10.1007/bf03156290.
Full textSISSAKIAN, A. N., I. L. SOLOVTSOV та O. Yu. SHEVCHENKO. "δ2-QUANTIZATION OF GAUGE FIELDS". Modern Physics Letters A 07, № 30 (1992): 2819–26. http://dx.doi.org/10.1142/s0217732392004195.
Full textCaicedo, Xavier, and Guillermo Mantilla-Soler. "On a characterization of path connected topological fields." Journal of Pure and Applied Algebra 223, no. 12 (2019): 5279–84. http://dx.doi.org/10.1016/j.jpaa.2019.03.021.
Full textHwang, Kyo-Shin, and Yong-Kab Choi. "PATH PROPERTIES OF $l^\infty$-VALUED RANDOM FIELDS." Taiwanese Journal of Mathematics 17, no. 2 (2013): 601–20. http://dx.doi.org/10.11650/tjm.17.2013.2014.
Full textKajuri, Nirmalya. "Path integral representation for polymer quantized scalar fields." International Journal of Modern Physics A 30, no. 34 (2015): 1550204. http://dx.doi.org/10.1142/s0217751x15502048.
Full textNolan, John P. "Correction: Path Properties of Index-$\beta$ Stable Fields." Annals of Probability 20, no. 3 (1992): 1601–2. http://dx.doi.org/10.1214/aop/1176989709.
Full textHWANG, Cheolhoi, and Haewon LEE*. "Fermi Fields, Clifford Alegebras and Path Integrals II." New Physics: Sae Mulli 67, no. 6 (2017): 733–37. http://dx.doi.org/10.3938/npsm.67.733.
Full textLyons, T. J., and Z. M. Qian. "A Class of Vector Fields on Path Spaces." Journal of Functional Analysis 145, no. 1 (1997): 205–23. http://dx.doi.org/10.1006/jfan.1996.3013.
Full textMoussa, Majda, and Giovanni Beltrame. "Real-Time Path Planning With Virtual Magnetic Fields." IEEE Robotics and Automation Letters 6, no. 2 (2021): 3279–86. http://dx.doi.org/10.1109/lra.2021.3063992.
Full textLyons, Terry, and Zhongmin Qian. "Stochastic Jacobi fields and vector fields induced by varying area on path spaces." Probability Theory and Related Fields 109, no. 4 (1997): 539. http://dx.doi.org/10.1007/s004400050141.
Full textYuan, Quan Bo, Hui Juan Wang, Peng Hua Zhu, and Hui Zhao. "A Hybrid Algorithm to Solute the Problem of the Robot Path Planning." Advanced Materials Research 383-390 (November 2011): 385–89. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.385.
Full textMATSUO, TOSHIHIRO, and YUUICHIROU SHIBUSA. "QUANTIZATION OF FIELDS BASED ON GENERALIZED UNCERTAINTY PRINCIPLE." Modern Physics Letters A 21, no. 16 (2006): 1285–96. http://dx.doi.org/10.1142/s0217732306020639.
Full textPark, Jae Beom, Tapan Sabuwala, and Gustavo Gioia. "The origin of similarity fields in steady elastoplastic crack propagation under K–T loading." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467, no. 2130 (2010): 1739–48. http://dx.doi.org/10.1098/rspa.2010.0383.
Full textSoulignac, Michaël. "Feasible and Optimal Path Planning in Strong Current Fields." IEEE Transactions on Robotics 27, no. 1 (2011): 89–98. http://dx.doi.org/10.1109/tro.2010.2085790.
Full textIvanov, Dentcho V., and Julian I. Burov. "Mean path length in random acoustic fields in solids." Journal of the Acoustical Society of America 80, no. 3 (1986): 813–14. http://dx.doi.org/10.1121/1.393956.
Full textConkur, Erdinc Sahin. "Path planning using potential fields for highly redundant manipulators." Robotics and Autonomous Systems 52, no. 2-3 (2005): 209–28. http://dx.doi.org/10.1016/j.robot.2005.03.005.
Full textZhu, Chengjun, and John R. Klauder. "Nontrivial path integrals for nonrenormalizable fields—Multicomponent ultralocal models." Journal of Mathematical Physics 36, no. 8 (1995): 4020–27. http://dx.doi.org/10.1063/1.530944.
Full textFanourgakis, George S., Thomas E. Markland, and David E. Manolopoulos. "A fast path integral method for polarizable force fields." Journal of Chemical Physics 131, no. 9 (2009): 094102. http://dx.doi.org/10.1063/1.3216520.
Full textELWORTHY, K. D., and XUE-MEI LI. "SOME FAMILIES OF q-VECTOR FIELDS ON PATH SPACES." Infinite Dimensional Analysis, Quantum Probability and Related Topics 06, supp01 (2003): 1–27. http://dx.doi.org/10.1142/s0219025703001213.
Full textReid, Max B. "Optical calculation of potential fields for robotic path planning." Applied Optics 33, no. 5 (1994): 881. http://dx.doi.org/10.1364/ao.33.000881.
Full textMoreau, Julien, Pierre Melchior, Stéphane Victor, François Aioun, and Franck Guillemard. "Path planning with fractional potential fields for autonomous vehicles." IFAC-PapersOnLine 50, no. 1 (2017): 14533–38. http://dx.doi.org/10.1016/j.ifacol.2017.08.2076.
Full textChoi, Yong-Kab, and Miklós Csörgo. "Path properties of l p -valued Gaussian random fields." Science in China Series A: Mathematics 50, no. 10 (2007): 1501–20. http://dx.doi.org/10.1007/s11425-007-0084-6.
Full textAtkinson, C., J. M. Bastero, and I. Miranda. "Path-independent integrals in fracture dynamics using auxiliary fields." Engineering Fracture Mechanics 25, no. 1 (1986): 53–62. http://dx.doi.org/10.1016/0013-7944(86)90203-1.
Full textCooper, Benjamin S., and Raghvendra V. Cowlagi. "Path-planning with waiting in spatiotemporally-varying threat fields." PLOS ONE 13, no. 8 (2018): e0202145. http://dx.doi.org/10.1371/journal.pone.0202145.
Full textWang, Tong, Olivier P. Le Maître, Ibrahim Hoteit, and Omar M. Knio. "Path planning in uncertain flow fields using ensemble method." Ocean Dynamics 66, no. 10 (2016): 1231–51. http://dx.doi.org/10.1007/s10236-016-0979-2.
Full textLi, Zhen, Jing Sun, and Robert F. Beck. "Evaluation and Modification of a Robust Path Following Controller for Marine Surface Vessels in Wave Fields." Journal of Ship Research 54, no. 02 (2010): 141–47. http://dx.doi.org/10.5957/jsr.2010.54.2.141.
Full textDjordjević, Goran S., Branko Dragovich, and Ljubiša Nešić. "Adelic Path Integrals for Quadratic Lagrangians." Infinite Dimensional Analysis, Quantum Probability and Related Topics 06, no. 02 (2003): 179–95. http://dx.doi.org/10.1142/s0219025703001134.
Full textBotteghi, N., A. Kamilaris, L. Sinai, and B. Sirmacek. "MULTI-AGENT PATH PLANNING OF ROBOTIC SWARMS IN AGRICULTURAL FIELDS." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-1-2020 (August 3, 2020): 361–68. http://dx.doi.org/10.5194/isprs-annals-v-1-2020-361-2020.
Full textMason, Jesse David, Jesse David Mason, Yimin Xiao, and Yimin Xiao. "Sample Path Properties of Operator-Slef-Similar Gaussian Random Fields." Teoriya Veroyatnostei i ee Primeneniya 46, no. 1 (2001): 94–116. http://dx.doi.org/10.4213/tvp3953.
Full textJacquot, J. L. "Path integral regularization of QED by means of Stueckelberg fields." Physics Letters B 631, no. 1-2 (2005): 83–92. http://dx.doi.org/10.1016/j.physletb.2005.09.065.
Full textKubalak, Joseph R., Alfred L. Wicks, and Christopher B. Williams. "Deposition path planning for material extrusion using specified orientation fields." Procedia Manufacturing 34 (2019): 754–63. http://dx.doi.org/10.1016/j.promfg.2019.06.209.
Full textReceveur, Jean-Baptiste, Stéphane Victor, and Pierre Melchior. "New interpretation of fractional potential fields for robust path planning." Fractional Calculus and Applied Analysis 22, no. 1 (2019): 113–27. http://dx.doi.org/10.1515/fca-2019-0007.
Full textBeckhaus, Steffi, Felix Ritter, and Thomas Strothotte. "Guided Exploration with Dynamic Potential Fields: the Cubical Path System." Computer Graphics Forum 20, no. 4 (2001): 201–10. http://dx.doi.org/10.1111/1467-8659.00549.
Full textGozzi, E., and M. Reuter. "Metaplectic spinor fields on phase space: A path integral approach." Journal of Physics A: Mathematical and General 26, no. 22 (1993): 6319–35. http://dx.doi.org/10.1088/0305-4470/26/22/030.
Full textMason, J. D., and Xiao Yimin. "Sample Path Properties of Operator-Slef-Similar Gaussian Random Fields." Theory of Probability & Its Applications 46, no. 1 (2002): 58–78. http://dx.doi.org/10.1137/s0040585x97978749.
Full textBotelho, Luiz C. L. "A Note on Feynman Path Integral for Electromagnetic External Fields." International Journal of Theoretical Physics 56, no. 8 (2017): 2535–39. http://dx.doi.org/10.1007/s10773-017-3406-7.
Full textDeck, T. "Non-Gaussian Complex Random Fields, their Skeletons and Path Measures." Potential Analysis 24, no. 1 (2006): 63–86. http://dx.doi.org/10.1007/s11118-005-8567-y.
Full textAyache, Antoine, and Geoffrey Boutard. "Stationary Increments Harmonizable Stable Fields: Upper Estimates on Path Behaviour." Journal of Theoretical Probability 30, no. 4 (2016): 1369–423. http://dx.doi.org/10.1007/s10959-016-0698-0.
Full textAouachria, M., and L. Chetouani. "Rabi oscillations in gravitational fields: Exact solution via path integral." European Physical Journal C 25, no. 2 (2002): 333–38. http://dx.doi.org/10.1007/s10052-002-0984-0.
Full textShin, Yujin, and Euiho Kim. "Hybrid path planning using positioning risk and artificial potential fields." Aerospace Science and Technology 112 (May 2021): 106640. http://dx.doi.org/10.1016/j.ast.2021.106640.
Full text