Academic literature on the topic 'Path Loss Prediction Models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Path Loss Prediction Models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Path Loss Prediction Models"
Naik, Udaykumar, and Vishram N. Bapat. "Adaptive Empirical Path Loss Prediction Models for Indoor WLAN." Wireless Personal Communications 79, no. 2 (July 9, 2014): 1003–16. http://dx.doi.org/10.1007/s11277-014-1914-9.
Full textNguyen, Chi, and Adnan Ahmad Cheema. "A Deep Neural Network-Based Multi-Frequency Path Loss Prediction Model from 0.8 GHz to 70 GHz." Sensors 21, no. 15 (July 28, 2021): 5100. http://dx.doi.org/10.3390/s21155100.
Full textYamamoto, A., K. Ogawa, T. Horimatsu, A. Kato, and M. Fujise. "Path-Loss Prediction Models for Intervehicle Communication at 60 GHz." IEEE Transactions on Vehicular Technology 57, no. 1 (January 2008): 65–78. http://dx.doi.org/10.1109/tvt.2007.901890.
Full textGarah, Messaoud, Houcine Oudira, Lotfi Djouane, and Nazih Hamdiken. "Particle Swarm Optimization for the Path Loss Reduction in Suburban and Rural Area." International Journal of Electrical and Computer Engineering (IJECE) 7, no. 4 (August 1, 2017): 2125. http://dx.doi.org/10.11591/ijece.v7i4.pp2125-2131.
Full textFaruk, Nasir, N. T. Surajudeen-Bakinde, Abubakar Abdulkarim, Segun I. Popoola, A. Abdulkarim, Lukman A. Olawoyin, and Aderemi A. Atayero. "ANFIS Model for Path Loss Prediction in the GSM and WCDMA Bands in Urban Area." ELEKTRIKA- Journal of Electrical Engineering 18, no. 1 (April 24, 2019): 1–10. http://dx.doi.org/10.11113/elektrika.v18n1.140.
Full textJuang, Rong-Terng. "Explainable Deep-Learning-Based Path Loss Prediction from Path Profiles in Urban Environments." Applied Sciences 11, no. 15 (July 21, 2021): 6690. http://dx.doi.org/10.3390/app11156690.
Full textPhillips, Caleb, Douglas Sicker, and Dirk Grunwald. "Bounding the Practical Error of Path Loss Models." International Journal of Antennas and Propagation 2012 (2012): 1–21. http://dx.doi.org/10.1155/2012/754158.
Full textNossire, Zyad, Navarun Gupta, Laiali Almazaydeh, and Xingguo Xiong. "New Empirical Path Loss Model for 28 GHz and 38 GHz Millimeter Wave in Indoor Urban under Various Conditions." Applied Sciences 8, no. 11 (November 1, 2018): 2122. http://dx.doi.org/10.3390/app8112122.
Full textO., Ogbeide K., and Eko Mwenrenren E. J. "Path-Loss Prediction for UHF/VHF Signal Propagation in Edo State: Neural Network Approach." APTIKOM Journal on Computer Science and Information Technologies 1, no. 2 (June 1, 2016): 77–84. http://dx.doi.org/10.34306/csit.v1i2.52.
Full textO., Ogbeide K., and Eko Mwenrenren E. J. "Path-Loss Prediction for UHF/VHF Signal Propagation in Edo State: Neural Network Approach." APTIKOM Journal on Computer Science and Information Technologies 1, no. 2 (July 1, 2016): 77–84. http://dx.doi.org/10.11591/aptikom.j.csit.113.
Full textDissertations / Theses on the topic "Path Loss Prediction Models"
Akkasli, Cem. "Methods for Path loss Prediction." Thesis, Växjö University, School of Mathematics and Systems Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-6127.
Full textLarge scale path loss modeling plays a fundamental role in designing both fixed and mobile radio systems. Predicting the radio coverage area of a system is not done in a standard manner. Wireless systems are expensive systems. Therefore, before setting up a system one has to choose a proper method depending on the channel environment, frequency band and the desired radio coverage range. Path loss prediction plays a crucial role in link budget analysis and in the cell coverage prediction of mobile radio systems. Especially in urban areas, increasing numbers of subscribers brings forth the need for more base stations and channels. To obtain high efficiency from the frequency reuse concept in modern cellular systems one has to eliminate the interference at the cell boundaries. Determining the cell size properly is done by using an accurate path loss prediction method. Starting from the radio propagation phenomena and basic path loss models this thesis aims at describing various accurate path loss prediction methods used both in rural and urban environments. The Walfisch-Bertoni and Hata models, which are both used for UHF propagation in urban areas, were chosen for a detailed comparison. The comparison shows that the Walfisch-Bertoni model, which involves more parameters, agrees with the Hata model for the overall path loss.
Cavalcante, Gustavo Ara?jo. "Otimiza??o de modelos de predi??o da perda de propaga??o aplic?veis em 3,5GHZ utilizando algoritmos gen?ticos." Universidade Federal do Rio Grande do Norte, 2010. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15319.
Full textCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
The telecommunications industry has experienced recent changes, due to increasing quest for access to digital services for data, video and multimedia, especially using the mobile phone networks. Recently in Brazil, mobile operators are upgrading their networks to third generations systems (3G) providing to users broadband services such as video conferencing, Internet, digital TV and more. These new networks that provides mobility and high data rates has allowed the development of new market concepts. Currently the market is focused on the expansion of WiMAX technology, which is gaining increasingly the market for mobile voice and data. In Brazil, the commercial interest for this technology appears to the first award of licenses in the 3.5 GHz band. In February 2003 ANATEL held the 003/2002/SPV-ANATEL bidding, where it offered blocks of frequencies in the range of 3.5 GHz. The enterprises who purchased blocks of frequency were: Embratel, Brazil Telecom (Vant), Grupo Sinos, Neovia and WKVE, each one with operations spread in some regions of Brazil. For this and other wireless communications systems are implemented effectively, many efforts have been invested in attempts to developing simulation methods for coverage prediction that is close to reality as much as possible so that they may become believers and indispensable tools to design wireless communications systems. In this work wasm developed a genetic algorithm (GA's) that is able to optimize the models for predicting propagation loss at applicable frequency range of 3.5 GHz, thus enabling an estimate of the signal closer to reality to avoid significant errors in planning and implementation a system of wireless communication
O setor de telecomunica??es vem passando por grandes transforma??es, devido ao aumento da busca por acesso a servi?os digitais de transmiss?o de dados, v?deo e multim?dia, especialmente, por meios das redes de telefonia m?vel. Recentemente, no Brasil, as operadoras de telefonia m?vel v?m atualizando suas redes para sistemas de terceira gera??o (3G) proporcionando aos usu?rios servi?os em banda larga como v?deo confer?ncia, Internet e TV digital, dentre outros. Essas novas redes que proporcionam mobilidade e elevadas taxas de transmiss?o t?m permitido o desenvolvimento de novos conceitos de mercado de servi?os. Atualmente o mercado est? voltado para a expans?o da tecnologia WiMAX, que v?m ganhando cada vez mais o mercado das comunica??es m?veis de voz e de dados. No Brasil o interesse comercial para esta tecnologia aparece com a primeira outorga de licen?as em 3,5 GHz. Em fevereiro de 2003, a ANATEL realizou a licita??o 003/2002/SPV-ANATEL, onde ofereceu blocos de frequ?ncia em 3,5 GHz. As operadoras que adquiriram os blocos de frequ?ncia foram: Embratel, Brasil Telecom (Vant), Grupo Sinos, Neovia e WKVE, cada uma com opera??es distribu?das em regi?es do Brasil. Para que esse e outros sistemas de comunica??es sem fio sejam implementados com efici?ncia, muitos esfor?os t?m sido investidos na tentativa de desenvolvimento de m?todos de simula??o, de predi??o e de cobertura que se aproximem da realidade o melhor poss?vel, de forma a que se possam tornar ferramentas fi?is e indispens?veis no planejamento dos sistemas de comunica??es sem fio. Neste trabalho, foi desenvolvido um algoritmo gen?tico (AG s) capaz de otimizar os modelos de predi??o de perda de propaga??o aplic?veis na frequ?ncia de 3,5 GHz, possibilitando dessa forma uma estimativa do sinal mais pr?xima da realidade, evitando erros significativos no planejamento e implementa??o de um sistema de comunica??o sem fio
Matsunaga, Richard. "Path loss prediction and location variability for mobile radio." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq21124.pdf.
Full textKidner, David B. "Digital terrain models for radio path loss calculations." Thesis, University of South Wales, 1991. https://pure.southwales.ac.uk/en/studentthesis/digital-terrain-models-for-radio-path-loss-calculations(6733f679-d3c0-4a25-916f-0464321ea520).html.
Full textAlfaro, Hidalgo Luis Adolfo. "Experimental path loss models for UWB multistatic radar systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14656/.
Full textJones, Margaret. "Point prediction in survival time models." Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340616.
Full textIsnin, Ismail. "A study on wireless communication error performance and path loss prediction." Thesis, University of Plymouth, 2011. http://hdl.handle.net/10026.1/324.
Full textSanz, Solaesa Sergio. "Analytical prediction of turbocharger compressor performance: A comparison of loss models with numerical data." Thesis, KTH, Maskinkonstruktion (Inst.), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-201613.
Full textEndimensionella modeller för prestandaprediktering av radialkompressor har i regel en kort ledtid. Detta gör dessa verktyg mycket användbara under designfasen. I modellerna antas att flödet genom kompressorn är uniformt. Vidare används bevarande av massa, rörelsemängd och energi samt empiriska förlusttermer för uppskattning av kompressorns prestanda. I denna avhandling tillämpas en endimensionell metodik för turboladdarkompressorn. Två olika modeller är implementerade. Dessa består av: en rotor, en diffusor utan ledskenor, och en volut. Modellernas uppskattning av kompressorns tryckförhållande samt verkningsgrad jämförs med experimentella mätningar. Därefter jämförs modellernas förlustuppskattningar med validerat Reynolds Averaged Navier-Stokes (RANS) data. Modellerna har implementerats med hjälp av dokumentation från valda källor i litteraturen. Båda modellerna använder samma diffusor- och volutmodell, men har olika förlusttermer för rotorn. Följande rotorförluster undersöks: incidens, väggfriktion, strypning, jet-wake blandning, rotorbladens laddning, nav till hölje laddning, spelrum bladspets till hölje, och ojämnheter i inloppsflödet. Diffusorutloppet beräknas med hjälp av en numerisk lösning av de fundamentala differentialekvationerna. En samling empiriska förlusttermer används för voluten. Förlusterna från numeriska strömningsmekanikberäkningar (CFD) beräknas i form av entropiökningar. På grund av CFD modellens komplexitet kan inte alla förlusttermer extraheras oberoende av varandra. Incidens, strypning, väggfriktion, rotorbladens laddning och jet-wakeblandning mäts längs rotorn. Även diffusorförluster och volutförluster erhålls från CFD:n. Resultatet visar att relativa felet i tryckförhållandet är mindre än fem procent i 49 av 77 undersökta driftpunkter i kompressorn. I 69 punkter uppskattas det relativa fel till mindre än tio procent. CFD:nger bättre resultat, särskilt vid låga varvtal på rotorn. Vid höga varvtal är noggrannheten mellan CFD och endimensionella modeller likvärdigt. Uppskattningarna från CFD och endimensionella modellerskiljer sig mest i diffusorn och voluten. Avslutningsvis diskuteras styrkor, svagheter och möjliga framtida förbättringar i rotorförlustmodelleringen.
Cahill, Joseph E. "Identification and Evaluation of Loss and Deviation Models for use in Transonic Compressor Stage Performance Prediction." Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/37041.
Full textMaster of Science
Van, Acker Rene C. "Multiple-weed species interference in broadleaved crops : evaluation of yield loss prediction and competition models." Thesis, University of Reading, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308562.
Full textBooks on the topic "Path Loss Prediction Models"
Murray, Michael P. Middle-term loss prediction models for the Air Force's enlisted force management system: Information for updating. Santa Monica, CA: Rand, 1989.
Find full textM, Carter Grace, United States Air Force, Project Air Force (Rand Corporation), and Rand Corporation, eds. Middle-term loss prediction models for the Air Force's enlisted force management system: Specification and estimation. Santa Monica, CA: Rand, 1987.
Find full textBook chapters on the topic "Path Loss Prediction Models"
Bilgehan, Bülent. "Fuzzy Based Wireless Channel Path Loss Prediction Model." In Advances in Intelligent Systems and Computing, 515–22. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64058-3_64.
Full textAbolade, Robert O., Dare J. Akintade, Segun I. Popoola, Folasade A. Semire, Aderemi A. Atayero, and Sanjay Misra. "Calibration of Empirical Models for Path Loss Prediction in Urban Environment." In Computational Science and Its Applications – ICCSA 2020, 301–10. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58817-5_23.
Full textZhu, Qiuming, Chenghua Wang, Xueqiang Chen, Chao Chen, Xinyi Wang, and Chenbeixi Zhang. "Path Loss Prediction Model of Radio Propagation over Lunar Surface." In Communications in Computer and Information Science, 556–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25002-6_77.
Full textLihan, Marc, Takeshi Tsuchiya, and Keiichi Koyanagi. "Orientation-Aware Indoor Localization Path Loss Prediction Model for Wireless Sensor Networks." In Network-Based Information Systems, 169–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85693-1_19.
Full textTorres-Tovio, Juan M., Nelson A. Pérez-García, Angel D. Pinto-Mangones, Mario R. Macea-Anaya, Samir O. Castaño-Rivera, and Enrique I. Delgado Cuadro. "Novel Lee Model for Prediction of Propagation Path Loss in Digital Terrestrial Television Systems in Montevideo City, Uruguay." In Advances in Intelligent Systems and Computing, 542–53. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32022-5_50.
Full textAkinyemi, P., J. S. Ojo, C. I. Abiodun, O. L. Ojo, and O. A. Abiodun. "Path Loss Propagation Prediction and Optimization Using Walfisch-Bertoni Model at 900 and 1800 MHz Over Macro-Cellular Western Regions of Nigeria." In Proceedings of the Future Technologies Conference (FTC) 2018, 623–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02683-7_44.
Full textHamid, Masoud, and Ivica Kostanic. "Path Loss Prediction in Relay Station Environment." In Transactions on Engineering Technologies, 403–16. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9115-1_31.
Full textPopoola, Segun I., Aderemi A. Atayero, Nasir Faruk, Carlos T. Calafate, Lukman A. Olawoyin, and Victor O. Matthews. "Standard Propagation Model Tuning for Path Loss Predictions in Built-Up Environments." In Computational Science and Its Applications – ICCSA 2017, 363–75. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62407-5_26.
Full textPopoola, Segun I., Nasir Faruk, N. T. Surajudeen-Bakinde, Aderemi A. Atayero, and Sanjay Misra. "Artificial Neural Network Model for Path Loss Predictions in the VHF Band." In Conference Proceedings of ICDLAIR2019, 161–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67187-7_18.
Full textOgunnaike, Ruth M., and Dong Si. "Prediction of Insurance Claim Severity Loss Using Regression Models." In Machine Learning and Data Mining in Pattern Recognition, 233–47. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62416-7_17.
Full textConference papers on the topic "Path Loss Prediction Models"
Isnin, Ismail Fauzi, Martin Tomlinson, Mohammed Zaki Ahmed, and Marcel Ambroze. "1.25 GHz path loss prediction models for multifloored buildings." In SPIE Defense, Security, and Sensing, edited by Sohail A. Dianat and Michael D. Zoltowski. SPIE, 2009. http://dx.doi.org/10.1117/12.817738.
Full textNadir, Z., and H. Al Lawati. "LTE path-loss prediction models' comparative study for outdoor wireless communications." In 7th Brunei International Conference on Engineering and Technology 2018 (BICET 2018). Institution of Engineering and Technology, 2018. http://dx.doi.org/10.1049/cp.2018.1499.
Full textPopescu, Ileana, Dimitris Nikitopoulos, Philip Constantinou, and Ioan Nafornita. "Comparison of ANN Based Models for Path Loss Prediction in Indoor Environment." In IEEE Vehicular Technology Conference. IEEE, 2006. http://dx.doi.org/10.1109/vtcf.2006.43.
Full textCorre, Yoann, Julien Stephan, and Yves Lostanlen. "Indoor-to-outdoor path-loss models for femtocell predictions." In 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC 2011). IEEE, 2011. http://dx.doi.org/10.1109/pimrc.2011.6140082.
Full textWu, Liyun, Xiaomei Liu, Yingjian Qi, and Zhengpeng Wu. "Propagation Path Loss Prediction Based-on Grey Verhulst Model." In 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS). IEEE, 2018. http://dx.doi.org/10.1109/icis.2018.8466461.
Full textLavanya, Undela, Sowjanya Mupparaju, Padmavathi Patnala, Prathyeka Reddy Anugu, and Simi Surendran. "Model Selection for Path Loss Prediction in Wireless Networks." In 2020 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2020. http://dx.doi.org/10.1109/iccsp48568.2020.9182186.
Full textOnipe, John Asuva, Caroline Omoanatse Alenoghena, Nathaniel Salawu, and Eberechukwu Numan Paulson. "Optimal Propagation Models for Path-loss Prediction in a Mountainous Environment at 2100MHz." In 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS). IEEE, 2020. http://dx.doi.org/10.1109/icmcecs47690.2020.246994.
Full textEkiz, Erdem, and Radosveta Sokullu. "Comparison of path loss prediction models and field measurements for cellular networks in Turkey." In Wireless Networking (iCOST). IEEE, 2011. http://dx.doi.org/10.1109/icost.2011.6085834.
Full textPhaiboon, S., and P. Phokharatkul. "Comparison between Xia and Walfisch-Ikegami models for low-rise building path loss prediction." In 2010 IEEE Region 10 Conference (TENCON 2010). IEEE, 2010. http://dx.doi.org/10.1109/tencon.2010.5686558.
Full textVergos, George, Sotirios P. Sotiroudis, Georgia Athanasiadou, George V. Tsoulos, and Sotirios K. Goudos. "Comparing Machine Learning Methods for Air-to-Ground Path Loss Prediction." In 2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST). IEEE, 2021. http://dx.doi.org/10.1109/mocast52088.2021.9493374.
Full text