To see the other types of publications on this topic, follow the link: Pathogenic Microbiology.

Journal articles on the topic 'Pathogenic Microbiology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Pathogenic Microbiology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Balows, Albert. "Clinical and pathogenic microbiology." Diagnostic Microbiology and Infectious Disease 9, no. 3 (March 1988): 195–96. http://dx.doi.org/10.1016/0732-8893(88)90030-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kunin, Calvin M. "Book ReviewClinical and Pathogenic Microbiology." New England Journal of Medicine 318, no. 10 (March 10, 1988): 649. http://dx.doi.org/10.1056/nejm198803103181027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rouault, T. A. "MICROBIOLOGY: Enhanced: Pathogenic Bacteria Prefer Heme." Science 305, no. 5690 (September 10, 2004): 1577–78. http://dx.doi.org/10.1126/science.1102975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Zhenbo, Xingyong Xu, Da Qi, Ling Yang, Bing Li, Lin Li, Xiaoxi Li, and Dingqiang Chen. "Effect of aminoglycosides on the pathogenic characteristics of microbiology." Microbial Pathogenesis 113 (December 2017): 357–64. http://dx.doi.org/10.1016/j.micpath.2017.08.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

De Backer, Marianne D., Mitch Raponi, and Greg M. Arndt. "RNA-mediated gene silencing in non-pathogenic and pathogenic fungi." Current Opinion in Microbiology 5, no. 3 (June 2002): 323–29. http://dx.doi.org/10.1016/s1369-5274(02)00319-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Łanocha-Arendarczyk, Natalia, Danuta Kosik-Bogacka, Wojciech Zaorski, Karolina Kot, Katarzyna Galant, and Aleksandra Łanocha. "PATHOGENIC FREE-LIVING AMOEBA." Postępy Mikrobiologii - Advancements of Microbiology 56, no. 1 (2019): 106–12. http://dx.doi.org/10.21307/pm-2017.56.1.106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pennisi, E. "MICROBIOLOGY: Environmentally Sensitive Protein Proves Key to Making Yeast Pathogenic." Science 312, no. 5773 (April 28, 2006): 515. http://dx.doi.org/10.1126/science.312.5773.515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Korting, H. C. "Dimorphism in Human Pathogenic and Apathogenic Yeasts. Contributions to Microbiology." Mycoses 44, no. 9-10 (November 2001): 433. http://dx.doi.org/10.1046/j.1439-0507.2001.00683.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vyas, Ishan K., Melissa Jamerson, Guy A. Cabral, and Francine Marciano-Cabral. "Identification of Peptidases in Highly Pathogenic vs. Weakly Pathogenic Naegleria fowleri Amebae." Journal of Eukaryotic Microbiology 62, no. 1 (August 21, 2014): 51–59. http://dx.doi.org/10.1111/jeu.12152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wasylnka, Julie A., Megan I. Simmer, and Margo M. Moore. "Differences in sialic acid density in pathogenic and non-pathogenic Aspergillus species." Microbiology 147, no. 4 (April 1, 2001): 869–77. http://dx.doi.org/10.1099/00221287-147-4-869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Al-Terehi, Mona, Saadi Shershab, Hadeel Alaa Al-Rrubaei, and Ali H. Al-Saadi. "Some Oral Pathogenic Bacteria, Isolation and Diagnosis." Journal of Pure and Applied Microbiology 12, no. 3 (September 30, 2018): 1495–98. http://dx.doi.org/10.22207/jpam.12.3.54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kaper, James B. "Pathogenic Escherichia coli." International Journal of Medical Microbiology 295, no. 6-7 (October 2005): 355–56. http://dx.doi.org/10.1016/j.ijmm.2005.06.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shpigel, Nahum Y., Sharon Elazar, and Ilan Rosenshine. "Mammary pathogenic Escherichia coli." Current Opinion in Microbiology 11, no. 1 (February 2008): 60–65. http://dx.doi.org/10.1016/j.mib.2008.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bychenko, Oksana, Yulia Skvortsova, Rustam Ziganshin, Artem Grigorov, Leonid Aseev, Albina Ostrik, Arseny Kaprelyants, Elena G. Salina, and Tatyana Azhikina. "Mycobacterium tuberculosis Small RNA MTS1338 Confers Pathogenic Properties to Non-Pathogenic Mycobacterium smegmatis." Microorganisms 9, no. 2 (February 17, 2021): 414. http://dx.doi.org/10.3390/microorganisms9020414.

Full text
Abstract:
Small non-coding RNAs play a key role in bacterial adaptation to various stresses. Mycobacterium tuberculosis small RNA MTS1338 is upregulated during mycobacteria infection of macrophages, suggesting its involvement in the interaction of the pathogen with the host. In this study, we explored the functional effects of MTS1338 by expressing it in non-pathogenic Mycobacterium smegmatis that lacks the MTS1338 gene. The results indicated that MTS1338 slowed the growth of the recombinant mycobacteria in culture and increased their survival in RAW 264.7 macrophages, where the MTS1338-expressing strain significantly (p < 0.05) reduced the number of mature phagolysosomes and changed the production of cytokines IL-1β, IL-6, IL-10, IL-12, TGF-β, and TNF-α compared to those of the control strain. Proteomic and secretomic profiling of recombinant and control strains revealed differential expression of proteins involved in the synthesis of main cell wall components and in the regulation of iron metabolism (ESX-3 secretion system) and response to hypoxia (furA, whiB4, phoP). These effects of MTS1338 expression are characteristic for M. tuberculosis during infection, suggesting that in pathogenic mycobacteria MTS1338 plays the role of a virulence factor supporting the residence of M. tuberculosis in the host.
APA, Harvard, Vancouver, ISO, and other styles
15

Spielmann, P. M., R. Yu, and M. Neeff. "Skull base osteomyelitis: current microbiology and management." Journal of Laryngology & Otology 127, S1 (October 22, 2012): S8—S12. http://dx.doi.org/10.1017/s0022215112002356.

Full text
Abstract:
AbstractIntroduction:Skull base osteomyelitis typically presents in an immunocompromised patient with severe otalgia and otorrhoea.Pseudomonas aeruginosais the commonest pathogenic micro-organism, and reports of resistance to fluoroquinolones are now emerging, complicating management. We reviewed our experience of this condition, and of the local pathogenic organisms.Methods:A retrospective review from 2004 to 2011 was performed. Patients were identified by their admission diagnostic code, and computerised records examined.Results:Twenty patients were identified. A facial palsy was present in 12 patients (60 per cent). Blood cultures were uniformly negative, and culture of ear canal granulations was non-diagnostic in 71 per cent of cases.Pseudomonas aeruginosawas isolated in only 10 (50 per cent) cases; one strain was resistant to ciprofloxacin but all were sensitive to ceftazidime. Two cases of fungal skull base osteomyelitis were identified. The mortality rate was 15 per cent. The patients’ treatment algorithm is presented.Conclusion:Our treatment algorithm reflects the need for multidisciplinary input, early microbial culture of specimens, appropriate imaging, and prolonged and systemic antimicrobial treatment. Resolution of infection must be confirmed by close follow up and imaging.
APA, Harvard, Vancouver, ISO, and other styles
16

Lee, J.-Y., Y.-J. Jung, H.-K. Jun, and B.-K. Choi. "Pathogenic potential ofTannerella forsythiaenolase." Molecular Oral Microbiology 31, no. 2 (August 10, 2015): 189–203. http://dx.doi.org/10.1111/omi.12115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Coen, Donald M. "Acyclovir-resistant, pathogenic herpesviruses." Trends in Microbiology 2, no. 12 (December 1994): 481–85. http://dx.doi.org/10.1016/0966-842x(94)90652-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

MartíneZ, AUGUSTO J., FREDERICK L. SCHUSTER, and GOVINDA S. VISVESVARA. "Balamuthia mandrillaris: its Pathogenic Potential." Journal of Eukaryotic Microbiology 48 (June 2001): 6s—9s. http://dx.doi.org/10.1111/j.1550-7408.2001.tb00434.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rhome, Ryan, and Maurizio Del Poeta. "Lipid Signaling in Pathogenic Fungi." Annual Review of Microbiology 63, no. 1 (October 2009): 119–31. http://dx.doi.org/10.1146/annurev.micro.091208.073431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ratledge, Colin, and Lynn G. Dover. "Iron Metabolism in Pathogenic Bacteria." Annual Review of Microbiology 54, no. 1 (October 2000): 881–941. http://dx.doi.org/10.1146/annurev.micro.54.1.881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

SERRANO-LUNA, JESÚS, ISAAC CERVANTES-SANDOVAL, VICTOR TSUTSUMI, and MINEKO SHIBAYAMA. "A Biochemical Comparison of Proteases from Pathogenic Naegleria fowleri and Non-Pathogenic Naegleria gruberi." Journal of Eukaryotic Microbiology 54, no. 5 (September 2007): 411–17. http://dx.doi.org/10.1111/j.1550-7408.2007.00280.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dennis, P. J., and J. V. Lee. "Differences in aerosol survival between pathogenic and non-pathogenic strains ofLegionella pneumophilaserogroup 1." Journal of Applied Bacteriology 65, no. 2 (August 1988): 135–41. http://dx.doi.org/10.1111/j.1365-2672.1988.tb01501.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Mitchell, James K., Kathy M. Orsted, and Carl E. Warnes. "Fun Microbiology: Using a Plant Pathogenic Fungus to Demonstrate Koch's Postulates." American Biology Teacher 59, no. 9 (November 1, 1997): 574–77. http://dx.doi.org/10.2307/4450385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ismai1, S. M. "Current Topics in Microbiology and Immunology Vol. 186, Human Pathogenic Papillomaviruses." Histopathology 26, no. 1 (January 1995): 96. http://dx.doi.org/10.1111/j.1365-2559.1995.tb00632.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kaper, James B., James P. Nataro, and Harry L. T. Mobley. "Pathogenic Escherichia coli." Nature Reviews Microbiology 2, no. 2 (February 2004): 123–40. http://dx.doi.org/10.1038/nrmicro818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Tapsall, John. "The 15th International Pathogenic Neisseria Conference." Future Microbiology 1, no. 4 (December 2006): 363–64. http://dx.doi.org/10.2217/17460913.1.4.363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hammerschmidt, Sven. "Adherence molecules of pathogenic pneumococci." Current Opinion in Microbiology 9, no. 1 (February 2006): 12–20. http://dx.doi.org/10.1016/j.mib.2005.11.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Brown, Jeremy S., and David W. Holden. "Insertional mutagenesis of pathogenic fungi." Current Opinion in Microbiology 1, no. 4 (August 1998): 390–94. http://dx.doi.org/10.1016/s1369-5274(98)80054-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Coombes, Brian K. "Type III secretion systems in symbiotic adaptation of pathogenic and non-pathogenic bacteria." Trends in Microbiology 17, no. 3 (March 2009): 89–94. http://dx.doi.org/10.1016/j.tim.2008.11.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Feresu, Sara, and Hilda Nyati. "Fate of pathogenic and non-pathogenic Escherichia coli strains in two fermented milk products." Journal of Applied Bacteriology 69, no. 6 (December 1990): 814–21. http://dx.doi.org/10.1111/j.1365-2672.1990.tb01578.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mandrell, Robert E., J. McLeod Griffiss, Harry Smith, and Jeff A. Cole. "Distribution of a lipooligosaccharide-specific sialyltransferase in pathogenic and non-pathogenic Neisseria." Microbial Pathogenesis 14, no. 4 (April 1993): 315–27. http://dx.doi.org/10.1006/mpat.1993.1031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Houben, Edith N. G., Anne Walburger, Giorgio Ferrari, Liem Nguyen, Charles J. Thompson, Christian Miess, Guido Vogel, Bernd Mueller, and Jean Pieters. "Differential expression of a virulence factor in pathogenic and non-pathogenic mycobacteria." Molecular Microbiology 72, no. 1 (March 19, 2009): 41–52. http://dx.doi.org/10.1111/j.1365-2958.2009.06612.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shaw, Edward I., and Daniel E. Voth. "Coxiella burnetii: A Pathogenic Intracellular Acidophile." Microbiology 165, no. 1 (January 1, 2019): 1–3. http://dx.doi.org/10.1099/mic.0.000707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Douglas, C. W. I. "Pathogenic mechanisms in infective endocarditis." Reviews in Medical Microbiology 4, no. 3 (July 1993): 130–37. http://dx.doi.org/10.1097/00013542-199307000-00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Janda, J. M., S. L. Abbott, S. Kroske-Bystrom, W. K. Cheung, C. Powers, R. P. Kokka, and K. Tamura. "Pathogenic properties of Edwardsiella species." Journal of Clinical Microbiology 29, no. 9 (1991): 1997–2001. http://dx.doi.org/10.1128/jcm.29.9.1997-2001.1991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Adhikari, Rajan P. "Staphylococcal Infections: Host and Pathogenic Factors." Microorganisms 9, no. 5 (May 18, 2021): 1080. http://dx.doi.org/10.3390/microorganisms9051080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Linial, Maxine. "Why aren’t foamy viruses pathogenic?" Trends in Microbiology 8, no. 6 (June 2000): 284–89. http://dx.doi.org/10.1016/s0966-842x(00)01763-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Travis, Jemes, Jan Potempa, and Hiroshi Maeda. "Are bacterial proteinases pathogenic factors?" Trends in Microbiology 3, no. 10 (October 1995): 405–7. http://dx.doi.org/10.1016/s0966-842x(00)88988-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Fitzgerald, J. Ross, and James M. Musser. "Evolutionary genomics of pathogenic bacteria." Trends in Microbiology 9, no. 11 (November 2001): 547–53. http://dx.doi.org/10.1016/s0966-842x(01)02228-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Rapala-Kozik, M., O. Bochenska, D. Zajac, J. Karkowska-Kuleta, M. Gogol, M. Zawrotniak, and A. Kozik. "Extracellular proteinases ofCandidaspecies pathogenic yeasts." Molecular Oral Microbiology 33, no. 2 (January 19, 2018): 113–24. http://dx.doi.org/10.1111/omi.12206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Harrison, Odile B., Julia S. Bennett, Jeremy P. Derrick, Martin C. J. Maiden, and Christopher D. Bayliss. "Distribution and diversity of the haemoglobin–haptoglobin iron-acquisition systems in pathogenic and non-pathogenic Neisseria." Microbiology 159, Pt_9 (September 1, 2013): 1920–30. http://dx.doi.org/10.1099/mic.0.068874-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wiid, I., R. Grundlingh, W. Bourn, G. Bradley, A. Harington, E. G. Hoal-van Helden, and P. van Helden. "O6-alkylguanine-DNA alkyltransferase DNA repair in mycobacteria: pathogenic and non-pathogenic species differ." Tuberculosis 82, no. 2-3 (June 2002): 45–53. http://dx.doi.org/10.1054/tube.2002.0316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

MARQUES, M. A. M., V. L. ANTÔNIO, E. N. SARNO, P. J. BRENNAN, and M. C. V. PESSOLANI. "Binding of α2-laminins by pathogenic and non-pathogenic mycobacteria and adherence to Schwann cells." Journal of Medical Microbiology 50, no. 1 (January 1, 2001): 23–28. http://dx.doi.org/10.1099/0022-1317-50-1-23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

MARQUES, M. A. M., V. L. ANTÔNIO, E. N. SARNO, P. J. BRENNAN, and M. C. V. PESSOLANI. "Binding of α2-laminins by pathogenic and non-pathogenic mycobacteria and adherence to Schwann cells." Journal of Medical Microbiology 50, no. 1 (January 1, 2001): 23–28. http://dx.doi.org/10.1099/0022-2615-50-1-23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Karaman, Emin, Ozgun Enver, Yalcin Alimoglu, Nevriye Gonullu, Hrisi Bahar, Muzeyyen Mamal Torun, and Huseyin Isildak. "Oropharyngeal flora changes after tonsillectomy." Otolaryngology–Head and Neck Surgery 141, no. 5 (November 2009): 609–13. http://dx.doi.org/10.1016/j.otohns.2009.07.010.

Full text
Abstract:
Objective: We aimed to investigate the effect of tonsillectomy on oropharyngeal flora in children who underwent tonsillectomy for chronic recurrent tonsillitis. Study Design and Setting: A prospective study was performed comprising patients with chronic recurrent tonsillitis who underwent tonsillectomy at the Department of Otolaryngology, Cerrahpasa Medical School. Incisional core biopsies of excised tonsils were also performed. Swabs and core biopsy specimens were transferred and maintained in Stuart's medium and sent to the Department of Microbiology and Clinical Microbiology at Cerrahpasa Medical School for microbiologic evaluation. Subjects and Methods: Oropharyngeal swabs and tonsillar core biopsy specimens from 31 patients operated on for recurrent tonsillitis were cultured. Follow-up oropharyngeal swabs were cultured one month after tonsillectomy. Results: There was no significant difference between the preoperative and postoperative isolation rate of the potentially pathogenic bacteria. Normal aerobic flora did not change significantly. However, the isolation rate of the Neisseria species dropped ( P = 0.097) but did not reach statistical significance. Among anaerobes, Bacteroides fragilis, one of the major anaerobic bacteria, dropped significantly ( P = 0.007). The Propionibacterium acnes isolation rate increased significantly ( P = 0.009). Conclusion: Oropharyngeal anaerobic bacterial flora decreases after tonsillectomy in recurrent tonsillitis patients. The isolation rate for bacteria of the normal flora and potentially pathogenic bacteria does not change. Tonsils with recurrent infections may become a nidus for anaerobic bacteria. In patients with chronic recurrent tonsillitis, tonsillectomy may help change anaerobic bacterial oropharyngeal flora to the normal flora found in healthy individuals.
APA, Harvard, Vancouver, ISO, and other styles
46

Zhu, Xiaojian, Shanshan Yan, Fenghua Yuan, and Shaogui Wan. "The Applications of Nanopore Sequencing Technology in Pathogenic Microorganism Detection." Canadian Journal of Infectious Diseases and Medical Microbiology 2020 (December 31, 2020): 1–8. http://dx.doi.org/10.1155/2020/6675206.

Full text
Abstract:
Infectious diseases are major threats to human health and lead to a serious public health burden. The emergence of new pathogens and the mutation of known pathogens challenge our ability to diagnose and control infectious diseases. Nanopore sequencing technology exhibited versatile applications in pathogenic microorganism detection due to its flexible data throughput. This review article introduced the applications of nanopore sequencing in clinical microbiology and infectious diseases management, including the monitoring of emerging infectious diseases outbreak, identification of pathogen drug resistance, and disease-related microbial communities characterization.
APA, Harvard, Vancouver, ISO, and other styles
47

McNeil, M. M., and J. M. Brown. "The medically important aerobic actinomycetes: epidemiology and microbiology." Clinical Microbiology Reviews 7, no. 3 (July 1994): 357–417. http://dx.doi.org/10.1128/cmr.7.3.357.

Full text
Abstract:
The aerobic actinomycetes are soil-inhabiting microorganisms that occur worldwide. In 1888, Nocard first recognized the pathogenic potential of this group of microorganisms. Since then, several aerobic actinomycetes have been a major source of interest for the commercial drug industry and have proved to be extremely useful microorganisms for producing novel antimicrobial agents. They have also been well known as potential veterinary pathogens affecting many different animal species. The medically important aerobic actinomycetes may cause significant morbidity and mortality, in particular in highly susceptible severely immunocompromised patients, including transplant recipients and patients infected with human immunodeficiency virus. However, the diagnosis of these infections may be difficult, and effective antimicrobial therapy may be complicated by antimicrobial resistance. The taxonomy of these microorganisms has been problematic. In recent revisions of their classification, new pathogenic species have been recognized. The development of additional and more reliable diagnostic tests and of a standardized method for antimicrobial susceptibility testing and the application of molecular techniques for the diagnosis and subtyping of these microorganisms are needed to better diagnose and treat infected patients and to identify effective control measures for these unusual pathogens. We review the epidemiology and microbiology of the major medically important aerobic actinomycetes.
APA, Harvard, Vancouver, ISO, and other styles
48

de S Araújo, Glauber R., Wanderley de Souza, and Susana Frases. "The hidden pathogenic potential of environmental fungi." Future Microbiology 12, no. 16 (December 2017): 1533–40. http://dx.doi.org/10.2217/fmb-2017-0124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Moran, Gary P., David C. Coleman, and Derek J. Sullivan. "Candida albicansversusCandida dubliniensis: Why IsC. albicansMore Pathogenic?" International Journal of Microbiology 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/205921.

Full text
Abstract:
Candida albicansandCandida dubliniensisare highly related pathogenic yeast species. However,C. albicansis far more prevalent in human infection and has been shown to be more pathogenic in a wide range of infection models. Comparison of the genomes of the two species has revealed that they are very similar although there are some significant differences, largely due to the expansion of virulence-related gene families (e.g.,ALSandSAP) inC. albicans, and increased levels of pseudogenisation inC. dubliniensis. Comparative global gene expression analyses have also been used to investigate differences in the ability of the two species to tolerate environmental stress and to produce hyphae, two traits that are likely to play a role in the lower virulence ofC. dubliniensis. Taken together, these data suggest thatC. dubliniensisis in the process of undergoing reductive evolution and may have become adapted for growth in a specialized anatomic niche.
APA, Harvard, Vancouver, ISO, and other styles
50

Burnens, A. P. "RECOGNITION OF PATHOGENIC YERSINIA." Letters in Applied Microbiology 19, no. 3 (September 1994): 179. http://dx.doi.org/10.1111/j.1472-765x.1994.tb00937.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography