Academic literature on the topic 'Pavement Design Pavement Performance 1993 AASHTO Guide for Pavement Structure Design'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pavement Design Pavement Performance 1993 AASHTO Guide for Pavement Structure Design.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Pavement Design Pavement Performance 1993 AASHTO Guide for Pavement Structure Design"

1

Islam, Shuvo, Mustaque Hossain, Christopher A. Jones, Avishek Bose, Ryan Barrett, and Nat Velasquez. "Implementation of AASHTOWare Pavement ME Design Software for Asphalt Pavements in Kansas." Transportation Research Record: Journal of the Transportation Research Board 2673, no. 4 (2019): 490–99. http://dx.doi.org/10.1177/0361198119835540.

Full text
Abstract:
Many highway agencies are transitioning from the 1993 AASHTO pavement design guide to the AASHTOWare Pavement ME Design (PMED). Pavement performance models embedded in the PMED software need to be calibrated for new and reconstructed hot-mix asphalt (HMA) pavements. Twenty-seven newly constructed HMA pavements were used to calibrate the prediction models—twenty-one for calibration and six for validation. Local calibration for permanent deformation, top-down fatigue cracking, and the International Roughness Index (IRI) models was done using the traditional split-sample method. Comparison with the results from the 1993 AASHTO design guide for ten new HMA pavement sections with varying traffic levels was done. The results show that the thicknesses obtained from locally calibrated PMED are within 1 inch of the AASHTO 1993 design guide prediction for low to medium-low traffic. For sections with high traffic level, the 1993 AASHTO design guide yielded higher thickness than PMED. The PMED implementation strategies adopted in Kansas and relevant concerns are discussed. Finally, an automated calibration technique has been proposed to help highway agencies to perform periodic in-house calibration of the performance models.
APA, Harvard, Vancouver, ISO, and other styles
2

Hall, Kevin D., and Charles W. Schwartz. "Development of Structural Design Guidelines for Porous Asphalt Pavement." Transportation Research Record: Journal of the Transportation Research Board 2672, no. 40 (2018): 197–206. http://dx.doi.org/10.1177/0361198118758335.

Full text
Abstract:
Porous asphalt pavements allow designers to introduce more sustainability into projects and lessen their environmental impact. Current design procedures are based primarily on hydrologic considerations; comparatively little attention has been paid to their structural design aspects. As their use grows, a design procedure and representative material structural properties are needed to ensure that porous pavements do not deteriorate excessively under traffic loads. The objective of this project was to develop a simple, easy to apply design procedure for the structural design of porous asphalt pavements. Two methodologies were considered for such a structural design procedure: ( a) the 1993 AASHTO Pavement Design Guide empirical approach, and ( b) the mechanistic–empirical approach employed by the AASHTOWare Pavement ME Design software. A multifactor evaluation indicated the empirical 1993 AASHTO design procedure to be the most appropriate platform at this time. It is noted, however, that both design procedures lack validation of porous asphalt pavements against field performance. AASHTO design parameters and associated material characteristics are recommended, based on an extensive literature review. For “thin” open-graded base structures (12 in. or less), the AASHTO procedure is performed as published in the 1993 Guide. For “thick” base structures (>12 in.), the base/subgrade combination is considered a composite system which supports the porous asphalt layer; an equivalent deflection-based approach is described to estimate the composite resilient modulus of the foundation system, prior to applying the 1993 AASHTO design procedure.
APA, Harvard, Vancouver, ISO, and other styles
3

Timm, David H., David E. Newcomb, and Theodore V. Galambos. "Incorporation of Reliability into Mechanistic-Empirical Pavement Design." Transportation Research Record: Journal of the Transportation Research Board 1730, no. 1 (2000): 73–80. http://dx.doi.org/10.3141/1730-09.

Full text
Abstract:
Pavement thickness design traditionally has been based on empiricism. However, mechanistic-empirical (M-E) design procedures are becoming more prevalent, and there is a current effort by AASHTO to establish a nationwide M-E standard design practice. Concurrently, an M-E design procedure for flexible pavements tailored to conditions within Minnesota has been developed and is being implemented. Regardless of the design procedure type, inherent variability associated with the design input parameters will produce variable pavement performance predictions. Consequently, for a complete design procedure, the input variability must be addressed. To account for input variability, reliability analysis was incorporated into the M-E design procedure for Minnesota. Monte Carlo simulation was chosen for reliability analysis and was incorporated into the computer pavement design tool, ROADENT. A sensitivity analysis was conducted by using ROADENT in conjunction with data collected from the Minnesota Road Research Project and the literature. The analysis demonstrated the interactions between the input parameters and showed that traffic weight variability exerts the largest influence on predicted performance variability. The sensitivity analysis also established a minimum number of Monte Carlo cycles for design (5,000) and characterized the predicted pavement performance distribution by an extreme value Type I function. Finally, design comparisons made between ROADENT, the 1993 AASHTO pavement design guide, and the existing Minnesota design methods showed that ROADENT produced comparable designs for rutting performance but was somewhat conservative for fatigue cracking.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Ningyuan, Ralph Haas, and Wei-Chau Xie. "Investigation of Relationship Between Deterministic and Probabilistic Prediction Models in Pavement Management." Transportation Research Record: Journal of the Transportation Research Board 1592, no. 1 (1997): 70–79. http://dx.doi.org/10.3141/1592-09.

Full text
Abstract:
A good pavement management system should have the capacity to predict pavement structural and functional deterioration versus age or accumulated traffic loading. Basically, there are two types of performance prediction models in pavement management: deterministic and probabilistic. Although both performance models can be used to predict pavement deterioration, the inherent relationship between the two models has not been explored. An investigation was directed to find the relationship in terms of system conversion. Some of the findings related to system conversion, including the concepts and techniques applied in model conversion, the characteristics of model development, comparisons of prediction results between the two models, sensitivity analysis of the probabilistic models, and sample applications in real situations, are highlighted. The deterministic models that are to be converted to probabilistic models are the flexible pavement deterioration model used in the Ontario Pavement Analysis of Costs system and the flexible pavement design model recommended in the 1993 AASHTO design guide. The converted probabilistic models are time-related (nonhomogeneous) Markov processes, which are represented by a set of yearly transition probability matrices (TPMs). TPMs can be established for any individual pavement section in a road network.
APA, Harvard, Vancouver, ISO, and other styles
5

Galal, Khaled A., and Ghassan R. Chehab. "Implementing the Mechanistic–Empirical Design Guide Procedure for a Hot-Mix Asphalt–Rehabilitated Pavement in Indiana." Transportation Research Record: Journal of the Transportation Research Board 1919, no. 1 (2005): 121–33. http://dx.doi.org/10.1177/0361198105191900113.

Full text
Abstract:
One of the Indiana Department of Transportation's (INDOT's) strategic goals is to improve its pavement design procedures. This goal can be accomplished by fully implementing the 2002 mechanistic–empirical (M-E) pavement design guide (M-E PDG) once it is approved by AASHTO. The release of the M-E PDG software has provided a unique opportunity for INDOT engineers to evaluate, calibrate, and validate the new M-E design process. A continuously reinforced concrete pavement on I-65 was rubblized and overlaid with a 13–in.-thick hot-mix asphalt overlay in 1994. The availability of the structural design, material properties, and climatic and traffic conditions, in addition to the availability of performance data, provided a unique opportunity for comparing the predicted performance of this section using the M-E procedure with the in situ performance; calibration efforts were conducted subsequently. The 1993 design of this pavement section was compared with the 2002 M-E design, and performance was predicted with the same design inputs. In addition, design levels and inputs were varied to achieve the following: ( a) assess the functionality of the M-E PDG software and the feasibility of applying M-E design concepts for structural pavement design of Indiana roadways, ( b) determine the sensitivity of the design parameters and the input levels most critical to the M-E PDG predicted distresses and their impact on the implementation strategy that would be recommended to INDOT, and ( c) evaluate the rubblization technique that was implemented on the I-65 pavement section.
APA, Harvard, Vancouver, ISO, and other styles
6

Zaghloul, Sameh, Khaled Helali, Riaz Ahmed, Zubair Ahmed, and Andris A. Jumikis. "Implementation of Reliability-Based Backcalculation Analysis." Transportation Research Record: Journal of the Transportation Research Board 1905, no. 1 (2005): 97–106. http://dx.doi.org/10.1177/0361198105190500111.

Full text
Abstract:
The reliability concept provides a means of incorporating some degree of certainty into the pavement design process to ensure that the outcomes of the process will provide acceptable levels of service until the end of the intended design life. Pavement structural performance and rehabilitation design are highly dependent on the in situ layer properties. Pavement layer thickness is an essential input in backcalculation analysis performed with measured surface deflections to evaluate the in situ structural capacity of a pavement. Inaccurate thickness information may lead to significant errors in the backcalculated layer moduli and, hence, in the rehabilitation design. Because pavement layer thickness has some degree of variability (normal variability), it is important to consider this variability in the backcalculation analysis and rehabilitation design. A procedure was developed to implement the reliability concept in backcalculation analysis to account for the normal variability in layer thickness within structurally homogeneous sections. This procedure was developed on the basis of in situ layer information obtained from a ground-penetrating radar study performed for the New Jersey Department of Transportation. This paper provides an overview of the procedure, along with the results of the pilot implementation of the procedure. This reliability procedure complements the reliability factor of the 1993 AASHTO pavement design guide, as the latter reliability factor does not account for the in situ layer thickness.
APA, Harvard, Vancouver, ISO, and other styles
7

Carvajal, Mateo E., Murugaiyah Piratheepan, Peter E. Sebaaly, Elie Y. Hajj, and Adam J. Hand. "Structural Contribution of Cold In-Place Recycling Base Layer." CivilEng 2, no. 3 (2021): 736–46. http://dx.doi.org/10.3390/civileng2030040.

Full text
Abstract:
Cold in-place recycling (CIR) of asphalt pavements is a process that has successfully been used for many years. The use of CIR for rehabilitation offers many advantages over traditional overlays due to its excellent resistance to reflective cracking and its environmentally friendly impacts. Despite the good performance and positive sustainability aspects of CIR, the structural contribution of the CIR base layer has not been well defined. In this research, CIR mixtures were designed with different asphalt emulsions. The mixtures were then subjected to dynamic modulus, repeated load triaxial, and flexural beam fatigue testing over a range of temperature and loading conditions. The performance test data generated were then used to develop CIR rutting and fatigue performance models used in the mechanistic analysis of flexible pavements. The technique used to develop the performance models leveraged the fact that the rutting and fatigue models for individual CIR mixtures were all within the 95 percent confidence interval of each other. A mechanistic analysis was conducted using the 3D-Move Mechanistic Analysis model. With the laboratory-developed performance models, the structural layer coefficient for the CIR base layer were developed for use in the 1993 AASHTO Guide for the Design of Pavement Structures. This analysis led to the determination of an average structural coefficient of the CIR base layer of 0.25.
APA, Harvard, Vancouver, ISO, and other styles
8

Habbouche, Jhony, Elie Y. Hajj, Peter E. Sebaaly, and Adam J. Hand. "Fatigue-Based Structural Layer Coefficient of High Polymer-Modified Asphalt Mixtures." Transportation Research Record: Journal of the Transportation Research Board 2674, no. 3 (2020): 232–47. http://dx.doi.org/10.1177/0361198120909109.

Full text
Abstract:
Florida Department of Transportation uses the 1993 AASHTO guide to conduct new and rehabilitation designs for all the state’s flexible pavements. Based on previous experience, a structural layer coefficient of 0.44 was found to be well representative of the department’s conventional polymer-modified (PMA) asphalt concrete (AC) mixtures. If the positive impact of the polymer on the layer is assumed to be maintained at higher contents, then the use of high polymer-modified (HP) asphalt binder may lead to a higher AC structural layer coefficient and a reduced AC layer thickness for the same design traffic and serviceability design loss. The objective of this paper was to determine a fatigue-based structural layer coefficient for asphalt mixtures that contain HP binder using comprehensive mechanistic analyses. This approach relied on combining measured engineering properties and performance characteristics of AC mixtures with advanced flexible pavement modeling (3D-Move). A total of eight PMA and eight HP AC mixtures were designed and evaluated in the laboratory. Overall, the HP AC mixtures showed similar or lower dynamic modulus and better fatigue performance models when compared with those of their respective PMA AC mixtures. However, the fatigue-based structural layer coefficients, determined via mechanistic analysis using the service life approach, ranged between 0.33 (lower than 0.44) and 1.32 (greater than 0.44). Using advanced statistical analyses, a fatigue-based structural layer coefficient of 0.54 was determined for HP AC mixtures. This coefficient should still be verified for other modes of distress.
APA, Harvard, Vancouver, ISO, and other styles
9

M. O. Mohamed Elsaid, Esra, and Awad M. Mohamed. "Flexible Pavement Design Suitable for Sudan." FES Journal of Engineering Sciences 9, no. 3 (2021): 127–34. http://dx.doi.org/10.52981/fjes.v9i3.706.

Full text
Abstract:
Pavement design is the process of calculation the thickness of pavement layers which can withstand the expected traffic load over the design life without deteriorating. In another word, it is providing a pavement structure in which stresses on the subgrade are reduced to the acceptable magnitude. Highways in Sudan deteriorate in the first years of construction due to many reasons including the deficiency in pavement design. This research aims to minimize the probability of roads failure by selecting the appropriate pavement design method for Sudan based on the performance evaluation of each method. Various pavement sections with different environment, traffic loading, subgrade and material properties were designed using AASHTO, Road Note 31, Group Index and CBR design method. The layered elastic analysis and the structural number approach were adopted to evaluate the performance of these sections. The evaluation results were the base for selecting of the suitable design method. The evaluation results concludes that, the AASHTO design method is the most suitable design method to withstand pavement deformations followed by Road Note 31 method. But, from economical prospective Road Note 31 method; with some modifications; can be considered as the suitable design method for Sudan. Recommendations for future studies focus on the development and implementation of mechanistic-empirical pavement design guide applicable in Sudan.
APA, Harvard, Vancouver, ISO, and other styles
10

Behnam, Maliheh, Hedyeh Khojasteh, Mir mohammad Seyyed Hashemi, and Mehdi Javid. "Investigation causes of pavement structure failure using new AASHTO mechanistic-empirical procedures for optimization roads performance in different climatic condition of Iran." Environment Conservation Journal 16, SE (2015): 659–70. http://dx.doi.org/10.36953/ecj.2015.se1677.

Full text
Abstract:
Abstract
 In recent years, procedure of AASHTO (American Association State Highway and Transportation Officials) Guide for Design of Pavement Structures distanced from first empirical procedure and advanced toward mechanistic-empirical procedures. “Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures” in 2004 and its attached software M-EPDG is the result of this new procedure that AASHTO presented it through projects NCHRP 1-37 A and NCHRP 1-40 B with cooperation of NCHRP (National Cooperative Highway Research Program) and FHWA (Federal Highway Administration) institutions. In this paper, requireddata for software analyzing of three real pavement structures pieces collected from three different climatic areas and pavement structures modeled in software by entering data into software. Modeled sections by this software were analyzed failure, and, regarding to obtained results, common designing pavement structures procedures compared with the new way of AASHTO, and efficiency rate of related software investigated in two different climatic zone of Iran. Toward this process, Save- Hamadan and Qazvin- Boin Zahra cities selected as a case study and then studied. Results of software analyzing showed that the designs of old AASHTO method in tempered climate of country met all criteria of designing but in both of cold and warm areas, some failure at designed pavement structures via this method exceeded from allowed rate and according to presented failure, will be excessed more in future. This destruction in case project of cold area was longitude crack and was rutting of pavement structures subgrade in warm area. Then, probable causes of mentioned failures studied in pavement structures projects and procedures designed for rehabilitation pavement structures for met all of the designated criteria. Also, in Iran some suggestions indicated about required conductions for application of new method of AASHTO.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Conference papers on the topic "Pavement Design Pavement Performance 1993 AASHTO Guide for Pavement Structure Design"

1

Zeiada, Waleed, Sham Mirou, Ayat Ashour, Reem Hassan, and Muamer Abuzwidah. "Development of Climate Data Inputs Towards the Implementation of Mechanistic-Empirical Pavement Design in the UAE." In The 2nd International Conference on Civil Infrastructure and Construction. Qatar University Press, 2023. http://dx.doi.org/10.29117/cic.2023.0166.

Full text
Abstract:
The current state of practice in the UAE is to use AASHTO 1993 for pavement designs, yet this method is empirical and has several limitations. The local traffic characteristics, climate conditions, and materials properties must be incorporated in more explicit and mechanistic ways. This study is part of ongoing local research efforts to move towards the implementation of the Mechanistic-Empirical Pavement Design Guide, known as MEPDG, which depends on fundamental material properties, integrated climate conditions, and real traffic characteristics. The main objective of this study is to develop the historical climate data files and climate inputs for 20 different automatic and airports stations covering the entire UAE. These weather stations were divided into four geographical regions: desert area, urban area, coastal area, and mountainous area. In addition, the study investigates the impact of local climate conditions on the simulated asphalt pavement performance using the AASHTOWare Pavement ME Design. This study showed that, however, UAE is a small country yet there are some differences between the climate records of the different weather stations, which is expected to affect pavement design and performance depending on the project site location. For example, the warmest weather station has 36% higher temperature than the coldest weather station at Jabal Jais. This in turn displayed up to 40% and 23% differences in the asphalt concrete (AC) rutting and total rutting, respectively between these extreme weather stations. These findings and many other emphasize the crucial need to consider the climate data inputs at the project level bases, where a single climate data file cannot represent the entire UAE.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!