To see the other types of publications on this topic, follow the link: PBI blend membranes.

Journal articles on the topic 'PBI blend membranes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 49 journal articles for your research on the topic 'PBI blend membranes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cho, Hyeongrae, Henning Krieg, and Jochen Kerres. "Performances of Anion-Exchange Blend Membranes on Vanadium Redox Flow Batteries." Membranes 9, no. 2 (February 17, 2019): 31. http://dx.doi.org/10.3390/membranes9020031.

Full text
Abstract:
Anion exchange blend membranes (AEBMs) were prepared for use in Vanadium Redox Flow Batteries (VRFBs). These AEBMs consisted of 3 polymer components. Firstly, PBI-OO (nonfluorinated PBI) or F6-PBI (partially fluorinated PBI) were used as a matrix polymer. The second polymer, a bromomethylated PPO, was quaternized with 1,2,4,5-tetramethylimidazole (TMIm) which provided the anion exchange sites. Thirdly, a partially fluorinated polyether or a non-fluorinated poly (ether sulfone) was used as an ionical cross-linker. While the AEBMs were prepared with different combinations of the blend polymers, the same weight ratios of the three components were used. The AEBMs showed similar membrane properties such as ion exchange capacity, dimensional stability and thermal stability. For the VRFB application, comparable or better energy efficiencies were obtained when using the AEBMs compared to the commercial membranes included in this study, that is, Nafion (cation exchange membrane) and FAP 450 (anion exchange membrane). One of the blend membranes showed no capacity decay during a charge-discharge cycles test for 550 cycles run at 40 mA/cm2 indicating superior performance compared to the commercial membranes tested.
APA, Harvard, Vancouver, ISO, and other styles
2

Jung, Mina, Wonmi Lee, N. Nambi Krishnan, Sangwon Kim, Gaurav Gupta, Lidiya Komsiyska, Corinna Harms, Yongchai Kwon, and Dirk Henkensmeier. "Porous-Nafion/PBI composite membranes and Nafion/PBI blend membranes for vanadium redox flow batteries." Applied Surface Science 450 (August 2018): 301–11. http://dx.doi.org/10.1016/j.apsusc.2018.04.198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cho, Hyeongrae, Eun Hur, Dirk Henkensmeier, Gisu Jeong, Eunae Cho, Hyoung Juhn Kim, Jong Hyun Jang, et al. "meta-PBI/methylated PBI-OO blend membranes for acid doped HT PEMFC." European Polymer Journal 58 (September 2014): 135–43. http://dx.doi.org/10.1016/j.eurpolymj.2014.06.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Joseph, Dickson, N. Nambi Krishnan, Dirk Henkensmeier, Jong Hyun Jang, Sun Hee Choi, Hyoung-Juhn Kim, Jonghee Han, and Suk Woo Nam. "Thermal crosslinking of PBI/sulfonated polysulfone based blend membranes." Journal of Materials Chemistry A 5, no. 1 (2017): 409–17. http://dx.doi.org/10.1039/c6ta07653j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mack, Florian, Karin Aniol, Corina Ellwein, Jochen Kerres, and Roswitha Zeis. "Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells." Journal of Materials Chemistry A 3, no. 20 (2015): 10864–74. http://dx.doi.org/10.1039/c5ta01337b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Morandi, Carlo Gottardo, Retha Peach, Henning M. Krieg, and Jochen Kerres. "Novel imidazolium-functionalized anion-exchange polymer PBI blend membranes." Journal of Membrane Science 476 (February 2015): 256–63. http://dx.doi.org/10.1016/j.memsci.2014.11.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schoeman, H., H. M. Krieg, A. J. Kruger, A. Chromik, K. Krajinovic, and J. Kerres. "H2SO4 stability of PBI-blend membranes for SO2 electrolysis." International Journal of Hydrogen Energy 37, no. 1 (January 2012): 603–14. http://dx.doi.org/10.1016/j.ijhydene.2011.09.113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Q. F., H. C. Rudbeck, A. Chromik, J. O. Jensen, C. Pan, T. Steenberg, M. Calverley, N. J. Bjerrum, and J. Kerres. "Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes." Journal of Membrane Science 347, no. 1-2 (February 1, 2010): 260–70. http://dx.doi.org/10.1016/j.memsci.2009.10.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Akay, Ramiz Gültekin, Kürşat Can Ata, Tuncay Kadıoğlu, and Cenk Çelik. "Evaluation of SPEEK/PBI blend membranes for possible direct borohydride fuel cell (DBFC) application." International Journal of Hydrogen Energy 43, no. 40 (October 2018): 18702–11. http://dx.doi.org/10.1016/j.ijhydene.2018.07.129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kerres, J., F. Schönberger, A. Chromik, T. Häring, Q. Li, J. O. Jensen, C. Pan, P. Noyé, and N. J. Bjerrum. "Partially Fluorinated Arylene Polyethers and Their Ternary Blend Membranes with PBI and H3PO4. Part I. Synthesis and Characterisation of Polymers and Binary Blend Membranes." Fuel Cells 8, no. 3‒4 (July 2008): 175–87. http://dx.doi.org/10.1002/fuce.200800011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Krishnan, N. Nambi, Dickson Joseph, Ngoc My Hanh Duong, Anastasiia Konovalova, Jong Hyun Jang, Hyoung-Juhn Kim, Suk Woo Nam, and Dirk Henkensmeier. "Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells." Journal of Membrane Science 544 (December 2017): 416–24. http://dx.doi.org/10.1016/j.memsci.2017.09.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kerres, Jochen A., Danmin Xing, and Frank Schönberger. "Comparative investigation of novel PBI blend ionomer membranes from nonfluorinated and partially fluorinated poly arylene ethers." Journal of Polymer Science Part B: Polymer Physics 44, no. 16 (2006): 2311–26. http://dx.doi.org/10.1002/polb.20862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Peach, Retha, Henning M. Krieg, Andries J. Krüger, Jacobus J. C. Rossouw, Dmitri Bessarabov, and Jochen Kerres. "Novel cross-linked partially fluorinated and non-fluorinated polyaromatic PBI-containing blend membranes for SO2 electrolysis." International Journal of Hydrogen Energy 41, no. 28 (July 2016): 11868–83. http://dx.doi.org/10.1016/j.ijhydene.2016.05.246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Giffin, Guinevere A., Samuele Galbiati, Mario Walter, Karin Aniol, Corina Ellwein, Jochen Kerres, and Roswitha Zeis. "Interplay between structure and properties in acid-base blend PBI-based membranes for HT-PEM fuel cells." Journal of Membrane Science 535 (August 2017): 122–31. http://dx.doi.org/10.1016/j.memsci.2017.04.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hosseini, Seyed Saeid, Mohammad Reza Omidkhah, Abdolsamad Zarringhalam Moghaddam, Vahid Pirouzfar, William B. Krantz, and Nicolas R. Tan. "Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process." Separation and Purification Technology 122 (February 2014): 278–89. http://dx.doi.org/10.1016/j.seppur.2013.11.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Badenhorst, Wouter Dirk, Cloete Rossouw, Hyeongrae Cho, Jochen Kerres, Dolf Bruinsma, and Henning Krieg. "Electrowinning of Iron from Spent Leaching Solutions Using Novel Anion Exchange Membranes." Membranes 9, no. 11 (October 24, 2019): 137. http://dx.doi.org/10.3390/membranes9110137.

Full text
Abstract:
In the Pyror process, electrowinning (EW) is used to recover acid and iron from spent leaching solutions (SLS), where a porous Terylene membrane acts as a separator between the cathode and anode. In this study, a novel anion exchange membrane (AEM)-based EW process is benchmarked against a process without and with a porous Terylene membrane by comparing the current efficiency, specific energy consumption (SEC), and sulfuric acid generation using an in-house constructed EW flow cell. Using an FAP-PK-130 commercial AEM, it was shown that the AEM-based process was more efficient than the traditional processes. Subsequently, 11 novel polybenzimidazole (PBI)-based blend AEMs were compared with the commercial AEM. The best performing novel AEM (BM-5), yielded a current efficiency of 95% at an SEC of 3.53 kWh/kg Fe, which is a 10% increase in current efficiency and a 0.72 kWh/kg Fe decrease in SEC when compared to the existing Pyror process. Furthermore, the use of the novel BM-5 AEM resulted in a 0.22 kWh/kg Fe lower SEC than that obtained with the commercial AEM, also showing mechanical stability in the EW flow cell. Finally, it was shown that below 5 g/L Fe, side reactions at the cathode resulted in a decrease in process efficiency, while 40 g/L yielded the highest efficiency and lowest SECs.
APA, Harvard, Vancouver, ISO, and other styles
17

Hu, J., J. Luo, P. Wagner, C. Agert, and O. Conrad. "Thermal Behaviours and Single Cell Performance of PBI-OO/PFSA Blend Membranes Composited with Lewis Acid Nanoparticles for Intermediate Temperature DMFC Application." Fuel Cells 11, no. 6 (May 2, 2011): 756–63. http://dx.doi.org/10.1002/fuce.201000148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Cichon, Patrizia J., Andries J. Krϋger, Henning M. Krieg, Dmitri Bessarabov, Karin Aniol, and Jochen Kerres. "Sulfonated poly(arylene thioether phosphine oxide)s and poly(arylene ether phosphine oxide)s PBI-blend membranes and their performance in SO2 electrolysis." International Journal of Hydrogen Energy 41, no. 8 (March 2016): 4521–37. http://dx.doi.org/10.1016/j.ijhydene.2015.11.147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Moradihamedani, Pourya, and Abdul Halim Abdullah. "High-performance cellulose acetate/polysulfone blend ultrafiltration membranes for removal of heavy metals from water." Water Science and Technology 75, no. 10 (March 1, 2017): 2422–33. http://dx.doi.org/10.2166/wst.2017.122.

Full text
Abstract:
Neat cellulose acetate (CA) and CA/polysulfone (PSf) blend ultrafiltration membranes in the presence of polyvinylpyrrolidone as a pore former were prepared via a phase inversion technique. The prepared membranes were characterized by Fourier transform infrared, scanning electron microscopy, mechanical strength, water content, porosity, permeate flux and heavy metals (Pb2+, Cd2+, Zn2+ and Ni2+) rejection to comprehend the impact of polymer blend composition and additive on the properties of the modified membranes. The water flux expanded by increasing of PSf content in the polymer composition. CA/PSf (60/40) had the highest flux among prepared membranes. Prepared blend membranes were able to remove heavy metals from water in the following order: Pb2+ > Cd2+ > Zn2+ > Ni2+. The CA/PSf (80/20) blend membrane had great performance among prepared membranes due to the high heavy metals removal and permeate flux.
APA, Harvard, Vancouver, ISO, and other styles
20

Krüger, Andries J., Patrizia Cichon, Jochen Kerres, Dmitri Bessarabov, and Henning M. Krieg. "Characterisation of a polyaromatic PBI blend membrane for SO2 electrolysis." International Journal of Hydrogen Energy 40, no. 8 (March 2015): 3122–33. http://dx.doi.org/10.1016/j.ijhydene.2014.12.081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Chung, Tai-Shung, Wei Fen Guo, and Ye Liu. "Enhanced Matrimid membranes for pervaporation by homogenous blends with polybenzimidazole (PBI)." Journal of Membrane Science 271, no. 1-2 (March 2006): 221–31. http://dx.doi.org/10.1016/j.memsci.2005.07.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Aili, David, Martin Kalmar Hansen, Chao Pan, Qingfeng Li, Erik Christensen, Jens Oluf Jensen, and Niels J. Bjerrum. "Phosphoric acid doped membranes based on Nafion®, PBI and their blends – Membrane preparation, characterization and steam electrolysis testing." International Journal of Hydrogen Energy 36, no. 12 (June 2011): 6985–93. http://dx.doi.org/10.1016/j.ijhydene.2011.03.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhou, Dao, Hongyu Wang, and Shenglian Guo. "Preparation of Cellulose/Chitin Blend Materials and Influence of Their Properties on Sorption of Heavy Metals." Sustainability 13, no. 11 (June 7, 2021): 6460. http://dx.doi.org/10.3390/su13116460.

Full text
Abstract:
A series of biodegradable cellulose/chitin materials (beads and membranes) were successfully prepared by mixing cellulose with chitin in an NaOH/thiourea–water system and coagulation in a H2SO4 solution. The effects of chitin content on the materials’ mechanical properties, morphology, structure, and sorption ability for heavy metal ions (Pb2+, Cd2+, and Cu2+) were studied by tensile tests, scanning electron micrographs, Fourier transform infrared spectroscopy, and atomic absorption spectrophotometry. The results revealed that the cellulose/chitin blends exhibited relatively good mechanical properties, a homogeneous, microporous mesh structure, and the existence of strong hydrogen bonds between molecules of cellulose and chitin when the chitin content was less than 30 wt%, which indicated a good compatibility of the cellulose/chitin materials. Furthermore, in the same chitin content range, Pb2+, Cd2+, and Cu2+ can be adsorbed efficiently onto the cellulose/chitin beads at pH0 = 5, and the sorption capacity of the beads is more than that of chitin flakes. This shows that the hydrophilicity and microporous mesh structure of the blends are favorable for the kinetics of sorption. Preparation of environmentally friendly cellulose/chitin blend materials provides a simple and economical way to remove and recover heavy metals, showing a potential application of chitin as a functional material.
APA, Harvard, Vancouver, ISO, and other styles
24

Daletou, M. K., N. Gourdoupi, and J. K. Kallitsis. "Proton conducting membranes based on blends of PBI with aromatic polyethers containing pyridine units." Journal of Membrane Science 252, no. 1-2 (April 2005): 115–22. http://dx.doi.org/10.1016/j.memsci.2004.11.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pérez-Francisco, José Manuel, José Luis Santiago-García, María Isabel Loría-Bastarrachea, Donald R. Paul, Benny D. Freeman, and Manuel Aguilar-Vega. "CMS membranes from PBI/PI blends: Temperature effect on gas transport and separation performance." Journal of Membrane Science 597 (March 2020): 117703. http://dx.doi.org/10.1016/j.memsci.2019.117703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zaidi, S. M. Javaid. "Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate." Electrochimica Acta 50, no. 24 (August 2005): 4771–77. http://dx.doi.org/10.1016/j.electacta.2005.02.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Malaisamy, Ramamoorthy, Doraiswamy Raju Mohan, and Munnuswamy Rajendran. "Polyurethane and sulfonated polysulfone blend ultrafiltration membranes: II. Application studies." Polymer International 52, no. 3 (2003): 412–19. http://dx.doi.org/10.1002/pi.1077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Du, Chun-Hui, Bao-Ku Zhu, Jian-Yong Chen, and You-Yi Xu. "Metal ion permeation properties of silk fibroin/chitosan blend membranes." Polymer International 55, no. 4 (2006): 377–82. http://dx.doi.org/10.1002/pi.1995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sajitha, C?J, and D. Mohan. "Studies on cellulose acetate-carboxylated polysulfone blend ultrafiltration membranes?Part II." Polymer International 52, no. 1 (January 2003): 138–45. http://dx.doi.org/10.1002/pi.1076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ignatenko, Viktoria Y., Tatyana S. Anokhina, Sergey O. Ilyin, Anna V. Kostyuk, Danila S. Bakhtin, Sergey V. Antonov, and Alexey V. Volkov. "Fabrication of microfiltration membranes from polyisobutylene/polymethylpentene blends." Polymer International 69, no. 2 (November 13, 2019): 165–72. http://dx.doi.org/10.1002/pi.5932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sánchez-Laínez, Javier, Beatriz Zornoza, Mariolino Carta, Richard Malpass-Evans, Neil B. McKeown, Carlos Téllez, and Joaquín Coronas. "Hydrogen Separation at High Temperature with Dense and Asymmetric Membranes Based on PIM-EA(H2)-TB/PBI Blends." Industrial & Engineering Chemistry Research 57, no. 49 (November 12, 2018): 16909–16. http://dx.doi.org/10.1021/acs.iecr.8b04209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hosseini, Seyed Saeid, and Tai Shung Chung. "Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification." Journal of Membrane Science 328, no. 1-2 (February 2009): 174–85. http://dx.doi.org/10.1016/j.memsci.2008.12.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

da Trindade, L. G., L. Zanchet, R. Dreon, J. C. Souza, M. Assis, E. Longo, E. M. A. Martini, A. J. Chiquito, and F. M. Pontes. "Microwave-assisted solvothermal preparation of Zr-BDC for modification of proton exchange membranes made of SPEEK/PBI blends." Journal of Materials Science 55, no. 30 (July 20, 2020): 14938–52. http://dx.doi.org/10.1007/s10853-020-05068-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Larhrafi, M., A. Mas, N. Toreis, H. Blancou, and F. Schué. "Hydrophobic surface properties of fluoropolyetherimide blends for pervaporation membranes." Polymer International 52, no. 12 (October 8, 2003): 1795–98. http://dx.doi.org/10.1002/pi.1373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Strużyńska-Piron, Izabela, Mina Jung, Artjom Maljusch, Oliver Conradi, Sangwon Kim, Jong Hyun Jang, Hyoung-Juhn Kim, Yongchai Kwon, Suk Woo Nam, and Dirk Henkensmeier. "Imidazole based ionenes, their blends with PBI-OO and applicability as membrane in a vanadium Redox flow battery." European Polymer Journal 96 (November 2017): 383–92. http://dx.doi.org/10.1016/j.eurpolymj.2017.09.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Mathew, Chithra M., Karuppiah Kesavan, and Somasundaram Rajendran. "Dielectric and thermal response of poly[(vinylidene chloride)-co -acrylonitrile]/poly(methyl methacrylate) blend membranes." Polymer International 64, no. 6 (December 9, 2014): 750–57. http://dx.doi.org/10.1002/pi.4846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yamazaki, Kota, Manabu Tanaka, and Hiroyoshi Kawakami. "Preparation and characterization of sulfonated block-graft copolyimide/sulfonated polybenzimidazole blend membranes for fuel cell application." Polymer International 64, no. 9 (May 26, 2015): 1079–85. http://dx.doi.org/10.1002/pi.4936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Iizuka, Yusuke, Manabu Tanaka, and Hiroyoshi Kawakami. "Preparation and proton conductivity of phosphoric acid-doped blend membranes composed of sulfonated block copolyimides and polybenzimidazole." Polymer International 62, no. 5 (March 1, 2013): 703–8. http://dx.doi.org/10.1002/pi.4486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Li, Q., J. O. Jensen, C. Pan, V. Bandur, M. S. Nilsson, F. Schönberger, A. Chromik, et al. "Partially Fluorinated Aarylene Polyethers and their Ternary Blends with PBI and H3PO4. Part II. Characterisation and Fuel Cell Tests of the Ternary Membranes." Fuel Cells 8, no. 3‒4 (July 2008): 188–99. http://dx.doi.org/10.1002/fuce.200800007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Li, Q., J. O. Jensen, C. Pan, V. Bandur, M. S. Nilsson, F. Schönberger, A. Chromik, et al. "Partially Fluorinated Aarylene Polyethers and their Ternary Blends with PBI and H3PO4. Part II. Characterisation and Fuel Cell Tests of the Ternary Membranes." Fuel Cells 8, no. 5 (October 2008): 374. http://dx.doi.org/10.1002/fuce.200890014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Govinna, Nelaka, Papatya Kaner, Davette Ceasar, Anita Dhungana, Cody Moers, Katherine Son, Ayse Asatekin, and Peggy Cebe. "Electrospun fiber membranes from blends of poly(vinylidene fluoride) with fouling-resistant zwitterionic copolymers." Polymer International 68, no. 2 (April 16, 2018): 231–39. http://dx.doi.org/10.1002/pi.5578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Khodabakhshi, Ali Reza, Sayed Siavash Madaeni, and Sayed Mohsen Hosseini. "Preparation and characterization of monovalent ion-selective poly(vinyl chloride)-blend -poly(styrene-co -butadiene) heterogeneous anion-exchange membranes." Polymer International 60, no. 3 (November 12, 2010): 466–74. http://dx.doi.org/10.1002/pi.2970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Swapna, Valiya Parambath, Padinharu Madathil Gopalakrishnan Nambissan, Selvin P. Thomas, Abitha Vayyaprontavida Kaliyathan, Thomasukutty Jose, Soney C. George, Sabu Thomas, and Ranimol Stephen. "Free volume defects and transport properties of mechanically stable polyhedral oligomeric silsesquioxane embedded poly(vinyl alcohol)‐poly(ethylene oxide) blend membranes." Polymer International 68, no. 7 (April 10, 2019): 1280–91. http://dx.doi.org/10.1002/pi.5815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhao, Chengji, Zhe Wang, Dawu Bi, Haidan Lin, Ke Shao, Tiezhu Fu, Shuangling Zhong, and Hui Na. "Blend membranes based on disulfonated poly(aryl ether ether ketone)s (SPEEK) and poly(amide imide) (PAI) for direct methanol fuel cell usages." Polymer 48, no. 11 (May 2007): 3090–97. http://dx.doi.org/10.1016/j.polymer.2007.03.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wu, Defeng, Jie Zhang, Weidong Zhou, Zhen Yao, Ming Zhang, Dongpo Lin, and Jianghong Wang. "Morphological control of porous ethylene-vinyl acetate copolymer membrane obtained from a co-continuous ethylene-vinyl acetate copolymer/poly(ϵ-caprolactone) blend." Polymer International 63, no. 3 (May 22, 2013): 470–78. http://dx.doi.org/10.1002/pi.4530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mondal, Sudipta, Shweta Soam, and Patit Paban Kundu. "Reduction of methanol crossover and improved electrical efficiency in direct methanol fuel cell by the formation of a thin layer on Nafion 117 membrane: Effect of dip-coating of a blend of sulphonated PVdF-co-HFP and PBI." Journal of Membrane Science 474 (January 2015): 140–47. http://dx.doi.org/10.1016/j.memsci.2014.09.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

"PBI/PFSA Blend Membranes Based on "Proton Donor-Proton Acceptor" Concept for High Temperature PEMFC Application." ECS Meeting Abstracts, 2009. http://dx.doi.org/10.1149/ma2009-02/10/1084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hooshyari, Khadijeh, Hamidreza Rezania, Vahid Vatanpour, Mohadese Rastgoo‐Deylami, and Hamid Reza Rajabi. "New blend nanocomposite membranes based on PBI /sulfonated poly(ether keto imide sulfone) and functionalized quantum dot with improved fuel cell performance at high temperatures." International Journal of Energy Research, August 17, 2021. http://dx.doi.org/10.1002/er.7178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lin, Jingjing, Sabine Willbold, Tatiana Zinkevich, Sylvio Indris, and Carsten Korte. "Ionic (Proton) transport and molecular interaction of ionic Liquid–PBI blends for the use as electrolyte membranes." Journal of Molecular Liquids, July 2021, 116964. http://dx.doi.org/10.1016/j.molliq.2021.116964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography