Academic literature on the topic 'PD (Probability of default)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'PD (Probability of default).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "PD (Probability of default)"
Burova, Anna, Henry Penikas, and Svetlana Popova. "Probability of Default Model to Estimate Ex Ante Credit Risk." Russian Journal of Money and Finance 80, no. 3 (September 2021): 49–72. http://dx.doi.org/10.31477/rjmf.202103.49.
Full textMetzler, Adam, and Alexandre Scott. "Importance Sampling in the Presence of PD-LGD Correlation." Risks 8, no. 1 (March 10, 2020): 25. http://dx.doi.org/10.3390/risks8010025.
Full textFilusch, Tobias. "Risk assessment for financial accounting: modeling probability of default." Journal of Risk Finance 22, no. 1 (October 28, 2020): 1–15. http://dx.doi.org/10.1108/jrf-02-2020-0033.
Full textKuznichenko, Yana, Mariia V. Dykha, Natalia Pavlova, Serhiy Frolov, and Olha Hryhorash. "Defining the probability of bank debtors’ default using financial solvency assessment models." Banks and Bank Systems 13, no. 2 (May 25, 2018): 1–11. http://dx.doi.org/10.21511/bbs.13(2).2018.01.
Full textKhromova, Ella. "Dynamic Mapping of Probability of Default and Credit Ratings of Russian Banks." Journal of Corporate Finance Research / Корпоративные Финансы | ISSN: 2073-0438 14, no. 4 (December 1, 2020): 31–46. http://dx.doi.org/10.17323/j.jcfr.2073-0438.14.4.2020.31-46.
Full textGupta, Vandana. "An Empirical Analysis of Default Prediction Models: Evidence from lndian Listed Companies." Journal of Prediction Markets 8, no. 3 (January 8, 2015): 1–23. http://dx.doi.org/10.5750/jpm.v8i3.946.
Full textVan Vuuren, Gary, Riaan De Jongh, and Tanja Verster. "The Impact Of PD-LGD Correlation On Expected Loss And Economic Capital." International Business & Economics Research Journal (IBER) 16, no. 3 (June 30, 2017): 157–70. http://dx.doi.org/10.19030/iber.v16i3.9975.
Full textHu, Kuang-Hua, Shih-Kuei Lin, Yung-Kang Ching, and Ming-Chin Hung. "Goodness-of-Fit of Logistic Regression of the Default Rate on GDP Growth Rate and on CDX Indices." Mathematics 9, no. 16 (August 13, 2021): 1930. http://dx.doi.org/10.3390/math9161930.
Full textSuárez, Rebeca Peláez, Ricardo Cao Abad, and Juan M. Vilar Fernández. "A Doubly Smoothed PD Estimator in Credit Risk." Proceedings 54, no. 1 (September 1, 2020): 55. http://dx.doi.org/10.3390/proceedings2020054055.
Full textKim, Myung Jig, Sung Hwan Shin, and Hong Sun Song. "Estimating Credit Rating and Transition Matrix of Savings Bank Industry Based upon IRB-Approach." Journal of Derivatives and Quantitative Studies 13, no. 2 (November 30, 2005): 61–85. http://dx.doi.org/10.1108/jdqs-02-2005-b0003.
Full textDissertations / Theses on the topic "PD (Probability of default)"
Santos, Bárbara Leitão. "Practical approach for probability of default estimation under IFRS 9." Master's thesis, Instituto Superior de Economia e Gestão, 2018. http://hdl.handle.net/10400.5/17350.
Full textThis report is part of the conclusion of the Master degree in Mathematical Finance, as a result of a 6-month internship at EY, in Financial Services - Advisory. Due to a recent financial crisis, credit entities had to deal with uncertainty, being credit risk one of the main concerns. Risk management in this type of entities is crucial to assure financial stability, and therefore, there is always a constant need of improvement. During the financial crisis of 2008, risk management failed its man purpose since risk models reveal insufficient to capture the risk deterioration on exposures and fail to estimate credit losses under a change in the economic cycle. Therefore, IFRS 9 becomes the new standard imposed by IASB, in order to replace IAS 39. This internship was a vector to expand my knowledge concerning impairment models and the new regulatory framework of the International Accounting Standard Board based on IFRS 9 Financial instruments, by studying a general approach on a specific perspective of a Portuguese bank. This report focuses on collective impairment, regarding the choices and validation of the model for the risk parameter PD used by the bank institution in analysis under this new standard.
info:eu-repo/semantics/publishedVersion
Kauffmann, Luiz Henrique Outi. "Uma abordagem Forward-Looking para estimar a PD segundo IFRS9." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55137/tde-06112018-182558/.
Full textThis paper aims to discuss the methodologies used to estimate the Probability Of Default used in the financial industry. In addition, contextualize the application of the work to IFRS9 requirements and its targeting to the Credit Risk theme. Historically large multi-banks use a variety of econometric methodologies to model the Probability of Default, one of the more traditional methods is logistic regression. However, with the need to calculate the expected credit loss through IFRS9, it becomes necessary to change the estimation paradigm to a forwardlooking approach, this is being interpreted by many institutions and consultancies companies as the inclusion of factors and variables projected within the estimation process, that is, not only historical data are used to predict the default. Within this context will be proposed an approach that joins the estimation of Probability of Default with the inclusion of a forward-looking factor.
Pereira, Bernardo Vieira Gonçalves. "Estudo sobre evolução do balanço de um banco em situação de stress económico : modelo macroeconómico de PD." Master's thesis, Instituto Superior de Economia e Gestão, 2019. http://hdl.handle.net/10400.5/19770.
Full textEste relatório de estágio enquadra-se no âmbito do Trabalho Final de Mestrado para o Mestrado de Econometria Aplicada e Previsão do Instituto Superior de Economia e Gestão (ISEG). O estágio decorreu na Deloitte Consultores, S.A., num dos escritórios de Lisboa, com o intuito de me preparar para a realidade do mercado de trabalho através de um processo de integração na empresa durante a realização das atividades propostas. Neste relatório pretende-se expor um retrato daquilo que foram os meus primeiros seis meses de trabalho na Deloitte, através da descrição aprofundada do tema de trabalho, procurando sempre relacioná-lo com os conceitos adquiridos no decorrer do mestrado. A Deloitte faz parte das Big 4, grupo de empresas que domina o setor de serviços profissionais, sendo de realçar o seu grau de exigência e profissionalismo nos projetos a que se compromete. Na Deloitte, as minhas funções passaram pela análise das taxas de incumprimento e de migrações entre classe de risco de uma carteira de clientes empresa de um banco, tendo estabelecido um modelo econométrico que permite a previsão da evolução dessas taxas com base em variáveis macroeconómicas. Este tipo de modelos é aplicado na obtenção da perda esperada usada, por exemplo, no cálculo de provisões por imparidade e em testes de stress.
This report consists of my thesis for the Master in Applied Econometrics and Forecasting from ISEG, Lisbon School of Econmics. My internship took place in Deloitte Consultores, S.A., in one of the Lisbon offices, with the intent of not only adapting myself to the labor market reality but also to get acquainted with the company practices and costumes while performing my planned activities. In this report it is exposed my first six months of work for this company, through a detailed description of what was done, while always attempting to correlate it with the knowledge acquired thoughout my master degree. Deloitte is part of the Big 4, a group of consulting companies that rule the great majority of the market, and it is known for its high work quality and demand. In Deloitte, my job was to analyse default ratios and migration matrices, resultant from an undisclosed financial institution's portfolio, producing a macroeconomic regression model that would allow for the forecast of this default probability. These kind of models, to obtain estimates of the Expected Loss, are used, for example, in the computation of impairment provisions and stress tests.
info:eu-repo/semantics/publishedVersion
Čabrada, Jiří. "Kreditní rizika z pohledu Basel II." Master's thesis, Vysoká škola ekonomická v Praze, 2007. http://www.nusl.cz/ntk/nusl-5575.
Full textZhang, Jie. "Modelling examples of loss given default and probability of default." Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/172581/.
Full textZollinger, Lance M. "Probability of default rating methodology review." Thesis, Kansas State University, 2014. http://hdl.handle.net/2097/18811.
Full textDepartment of Agricultural Economics
Allen M. Featherstone
Institutions of the Farm Credit System (FCS) focus on risk-based lending in accordance with regulatory direction. The rating of risk also assists retail staff in loan approval, risk-based pricing, and allowance decisions. FCS institutions have developed models to analyze financial and related customer information in determining qualitative and quantitative risk measures. The objective of this thesis is to examine empirical account data from 2006-2012 to review the probability of default (PD) rating methodology within the overall risk rating system implemented by a Farm Credit System association. This analysis provides insight into the effectiveness of this methodology in predicting the migration of accounts across the association’s currently-established PD ratings where negative migration may be an apparent precursor to actual loan default. The analysis indicates that average PD ratings hold relatively consistent over the years, though the distribution of the majority of PD ratings shifted to higher quality by two rating categories over the time period. Various regressions run in the analysis indicate that the debt to asset ratio is most consistently statistically significant in estimating future PD ratings. The current ratio appears to be superior to working capital to gross profit as a liquidity measure in predicting PD rating migration. Funded debt to EBITDA is more effective in predicting PD rating movement as a measure of earnings to debt than gross profit to total liabilities, although the change of these ratios over time appear to be weaker indicators of the change in PD rating potentially due to the variable nature of annual earnings of production agriculture operations due to commodity price volatility. The debt coverage ratio is important as it relates to future PD migration, though the same variability in commodity price volatility suggests the need implement multi-year averaging for calculation of earnings-based ratios. These ratios were important in predicting the PD rating of observations one year into the future for production agriculture operations. To further test the predictive ability of the PD ratings, similar regression analyses were completed comparing current year rating and ratios to future PD ratings beyond one year, specifically for three and five years. Results from these regression models indicate that current year PD rating and ratios are less effective in predicting future PD ratings beyond one year. Furthermore, because of the variation in regression results between the analyses completed for one, three and five years into the future, it is important to regularly capture ratio and rating information, at least annually.
Lan, Yi. "Survival Probability and Intensity Derived from Credit Default Swaps." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/82.
Full textCaetano, João Manuel Nunes. "Predictive models of probability of default : an empirical application." Master's thesis, Instituto Superior de Economia e Gestão, 2014. http://hdl.handle.net/10400.5/7704.
Full textEste estudo tem como objetivo realizar uma pesquisa dos modelos de previsão do incumprimento a empresas listadas em bolsa. Foram abordadas as metodologias do modelo de Merton (1974), modelo Contabilístico e Híbrido. Testou-se uma amostra de 172 empresas presentes no mercado Americano dos setores do Consumo, Distribuição, Produção e Telecomunicações nas quais 82 entram em incumprimento. Para cada metodologia, a capacidade preditiva foi testada através dos erros Tipo I e II. Os resultados sugerem que o modelo Híbrido, i.e., a combinação de modelos de mercado e análise contabilística, confere maior poder de precisão na classificação de incumprimento, ao invés de cada modelo individualmente.
This study intends to conduct a survey of Probability of Default models to listed companies. The methodologies of Merton (1974) model, Accounting model and Hybrid were addressed. We tested a sample of 172 American companies in the sectors of Consumer Products, Distribution, Manufacturing and Telecommunications in which 82 entered into default. For each methodology, the predictive ability was tested with Type I and II errors. The results suggests that the Hybrid model, i.e. a combination of market models and accounting analysis, have a better performance in the classification of credit default than each model individually.
Azeredo, Daniela Rita Charrua Cabral de. "Structural models to estimate financial institution´s default probability." Master's thesis, Instituto Superior de Economia e Gestão, 2014. http://hdl.handle.net/10400.5/7898.
Full textNeste estudo procurámos, no âmbito do Modelo de Merton (1973), determinar a Distância ao Incumprimento (DD) para uma amostra de bancos Ibéricos. Através da especificação de três diferentes Barreiras de Imcumprimento (DB), foi possivel obter diferentes resultados, sublinhando a importância da DB para output do modelo. Durante a crise, o risco de liquidez foi atenuado pelas políticas de cedência de liquidez levadas a cabo pelo BCE. As definições usadas para db1 e db2, diferem na forma como são tratados os emprestimos do BCE, permitindo implementar um procedimento assente no cálculo da DD para quantificar a redução no risco dos bancos induzida por estas medidas. Os nossos resultados demonstram que as políticas do BCE reduziram o risco de incumprimento dos bancos que constituem a amostra.
This paper is intended to model the default probabilities for selected Iberian Financial Institutions through the application of Merton's Model (1973) framework. Through the use of three different Default Barrier (db) definitions, we were able to obtain very different outputs, stressing how crucial db definition is to the structural model output. Throughout this crisis, liquidity risk was, in some dimension, offset by the ECB funding policies. db1 and db2 definitions, differing only on the way Central Bank loans were treated, were convenient to test non-standard applications of the model. In our study we introduce and test a procedure anchored on Distance to Distress calculation, to quantify the reduction in risk induced by ECB measures, finding that ECB actions effectively reduced bank's default risk.
Kornfeld, Sarah. "Predicting Default Probability in Credit Risk using Machine Learning Algorithms." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275656.
Full textDenna uppsats har undersökt internt utvecklade modeller för att estimera sannolikheten för utebliven betalning (PD) inom kreditrisk. Samtidigt som nya regelverk sätter restriktioner på metoder för modellering av kreditrisk och i viss mån hämmar utvecklingen av riskmätning, utvecklas samtidigt mer avancerade metoder inom maskinlärning för riskmätning. Således har avvägningen mellan strängare regelverk av internt utvecklade modeller och framsteg i dataanalys undersökts genom jämförelse av modellprestanda för referens metoden logistisk regression för uppskattning av PD med maskininlärningsteknikerna beslutsträd, Random Forest, Gradient Boosting och artificiella neurala nätverk (ANN). Dataunderlaget kommer från SEB och består utav 45 variabler och 24 635 observationer. När maskininlärningsteknikerna blir mer komplexa för att gynna förbättrad prestanda är det ofta på bekostnad av modellens tolkbarhet. En undersökande analys gjordes därför med målet att mäta förklarningsvariablers betydelse i maskininlärningsteknikerna. Resultaten från den undersökande analysen kommer att jämföras med resultat från etablerade metoder som mäter variabelsignifikans. Resultatet av studien visar att den logistiska regressionen presterade bättre än maskininlärningsteknikerna baserat på prestandamåttet AUC som mätte 0.906. Resultatet from den undersökande analysen för förklarningsvariablers betydelse ökade tolkbarheten för maskininlärningsteknikerna. Resultatet blev även validerat med utkomsten av de etablerade metoderna för att mäta variabelsignifikans.
Books on the topic "PD (Probability of default)"
Kiefer, Nicholas M. The probability approach to default probabilities. Washington, DC: Office of the Comptroller of the Currency, 2007.
Find full textMoro, Virilo. Sovereign bond default risk: An estimation of Brady bonds default probability with risk aversion. [s.l.]: typescript, 1997.
Find full textSimon, Gleeson. Part II Commercial Banking, 10 The Internal Ratings-Based Approach. Oxford University Press, 2018. http://dx.doi.org/10.1093/law/9780198793410.003.0010.
Full textDatz, Giselle. Sovereign Debt Default. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190846626.013.299.
Full textChorafas, Daniel N., and Prof. Dr Dimitris N. Chorfas. Managing Credit Risk Vol. 1 - Analysing, Rating and Pricing the Probability of Default. Euromoney Institutional Investor PLC, 2000.
Find full textBook chapters on the topic "PD (Probability of default)"
Scandizzo, Sergio. "Probability of Default Models." In The Validation of Risk Models, 59–77. London: Palgrave Macmillan UK, 2016. http://dx.doi.org/10.1057/9781137436962_5.
Full textEl Karoui, N., M. Jeanblanc, Y. Jiao, and B. Zargari. "Conditional Default Probability and Density." In Inspired by Finance, 201–19. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02069-3_9.
Full textRuiz, Ignacio. "Default Probability, Loss Given Default, and Credit Portfolio Models." In XVA Desks — A New Era for Risk Management, 104–25. London: Palgrave Macmillan UK, 2015. http://dx.doi.org/10.1057/9781137448200_7.
Full textColetti, Giulianella, and Romano Scozzafava. "Coherent Conditional Probability and Default Reasoning." In Probabilistic Logic in a Coherent Setting, 241–55. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0474-9_20.
Full textFranke, Jürgen, Wolfgang Karl Härdle, and Christian Matthias Hafner. "Nonparametric Estimators for the Probability of Default." In Statistics of Financial Markets, 535–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16521-4_21.
Full textBonini, Stefano, and Giuliana Caivano. "Probability of Default: A Modern Calibration Approach." In Mathematical and Statistical Methods for Actuarial Sciences and Finance, 41–44. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05014-0_9.
Full textFranke, Jürgen, Wolfgang Härdle, and Christian M. Hafner. "Nonparametric Estimators for the Probability of Default." In Universitext, 383–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10026-4_20.
Full textFranke, Jürgen, Wolfgang Karl Härdle, and Christian Matthias Hafner. "Nonparametric Estimators for the Probability of Default." In Universitext, 511–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13751-9_21.
Full textBroske, Mary S., and Haim Levy. "The Stochastic Dominance Estimation of Default Probability." In Studies in the Economics of Uncertainty, 91–112. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8922-4_6.
Full textFranke, Jürgen, Wolfgang Karl Härdle, and Christian Matthias Hafner. "Non-parametric Estimators for the Probability of Default." In Universitext, 491–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54539-9_21.
Full textConference papers on the topic "PD (Probability of default)"
Schroeder, Philipp, and Gabriel Wittum. "Calculation of default probability (PD) solving Merton Model PDEs on sparse grids." In Distributed Processing (IPDPS). IEEE, 2009. http://dx.doi.org/10.1109/ipdps.2009.5161149.
Full textZhang, Ying, Lin Chen, and Zongfang Zhou. "Research on Default Probability of Emerging Technology Firms." In 2008 Fourth International Conference on Networked Computing and Advanced Information Management (NCM). IEEE, 2008. http://dx.doi.org/10.1109/ncm.2008.66.
Full textCoenen, Lize, Ahmed K. A. Abdullah, and Tias Guns. "Probability of default estimation, with a reject option." In 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2020. http://dx.doi.org/10.1109/dsaa49011.2020.00058.
Full textHui Zhou, Yi Wang, Wei Wang, Tao Li, and Hong Yang. "Prediction of default probability of clients' electricity charge arrears." In 2008 IEEE International Conference on Service Operations and Logistics, and Informatics. IEEE, 2008. http://dx.doi.org/10.1109/soli.2008.4682972.
Full textKristof, Tamas, and Miklos Virag. "Lifetime Probability Of Default Modeling For Hungarian Corporate Debt Instruments." In 31st Conference on Modelling and Simulation. ECMS, 2017. http://dx.doi.org/10.7148/2017-0041.
Full textMaruddani, Di Asih I., Dedi Rosadi, Gunardi, and Abdurakhman. "Default probability of multiperiods coupon bond based on classical approach." In 2015 International Conference on Research and Education in Mathematics (ICREM7). IEEE, 2015. http://dx.doi.org/10.1109/icrem.2015.7357068.
Full textYusof, N. M., and M. M. Jaffar. "The analysis of KMV-Merton model in forecasting default probability." In 2012 IEEE Symposium on Humanities, Science and Engineering Research (SHUSER). IEEE, 2012. http://dx.doi.org/10.1109/shuser.2012.6269010.
Full textLuo, Jian-Hua, and Han-Yun Lei. "Empirical Study of Corporation Credit Default Probability Based on Logit Model." In 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). IEEE, 2008. http://dx.doi.org/10.1109/wicom.2008.2276.
Full textLi, Yingqiu, Wei He, and Xiaobing Yan. "Default Probability of Listed Companies Based on the Generalized Error Distribution." In 2010 International Conference on Multimedia Technology (ICMT). IEEE, 2010. http://dx.doi.org/10.1109/icmult.2010.5631369.
Full textHocman, Frantisek. "PROBABILITY OF UNPROCLAIMED DEFAULT AND ITS INGERENTION IN SOVEREIGN COUNTRY RISK." In SGEM 2014 Scientific SubConference on POLITICAL SCIENCES, LAW, FINANCE, ECONOMICS AND TOURISM. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgemsocial2014/b22/s6.075.
Full textReports on the topic "PD (Probability of default)"
Boruchowicz, Cynthia, Florencia López Bóo, Benjamin Roseth, and Luis Tejerina. Default Options: A Powerful Behavioral Tool to Increase COVID-19 Contact Tracing App Acceptance in Latin America? Inter-American Development Bank, December 2020. http://dx.doi.org/10.18235/0002983.
Full textGomez-Gonzalez, Jose E., Oscar Valencia, and Gustavo Sánchez. Sudden Stops, Sovereign Risk, and Fiscal Rules. Inter-American Development Bank, March 2021. http://dx.doi.org/10.18235/0003146.
Full textClausen, Jay, Michael Musty, Anna Wagner, Susan Frankenstein, and Jason Dorvee. Modeling of a multi-month thermal IR study. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41060.
Full text